Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid biosynthesis of glycoprotein therapeutics and vaccines from freeze-dried bacterial cell lysates

Abstract

The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell-free systems accelerate glycoprotein production.
Fig. 2: Constructing glycosylation pathways.
Fig. 3: Cell-free lysate preparation methods.
Fig. 4: Reproducibility and optimization of cell-free glycoprotein synthesis.
Fig. 5: Cell-free systems synthesize diverse glycoproteins.

Similar content being viewed by others

Data availability

The data discussed in this manuscript were generated as part of our previously published work22,23,24. Source data are provided with this paper.

References

  1. US Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases 13th edn (eds Hamborsky, J., Korger, A. & Wolfe, C.) (Public Health Foundation, 2015).

  2. FDA okays marketing of human insulin. Chem. Eng. News Arch. 60, 5 (1982).

  3. Mullin, R. Cost to develop new pharmaceutical drug now exceeds $2.5 B. Scientific American https://www.scientificamerican.com/article/cost-to-develop-new-pharmaceutical-drug-now-exceeds-2-5b/ (24 November 2014).

  4. Thiel, K. A. Biomanufacturing, from bust to boom…to bubble? Nat. Biotechnol. 22, 1365 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Jayapal, K. P., Wlaschin, K. F., Hu, W. & Yap, M. G. S. Recombinant protein therapeutics from CHO cells-20 years and counting. Chem. Eng. Prog. 103, 40 (2007).

    CAS  Google Scholar 

  6. Dolsten, M. & Sogaard, M. Precision medicine: an approach to R&D for delivering superior medicines to patients. Clin. Transl. Med. 1, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ashok, A., Brison, M. & LeTallec, Y. Improving cold chain systems: challenges and solutions. Vaccine 35, 2217–2223 (2017).

    Article  PubMed  Google Scholar 

  8. Kumru, O. S. et al. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals 42, 237–259 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Choi, E. J. & Ling, G. S. Battlefield medicine: paradigm shift for pharmaceuticals manufacturing. PDA J. Pharm. Sci. Technol. 68, 312 (2014).

    Article  PubMed  Google Scholar 

  10. Perez-Pinera, P. et al. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat. Commun. 7, 12211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crowell, L. E. et al. On-demand manufacturing of clinical-quality biopharmaceuticals. Nat. Biotechnol. 36, 988–995 (2018).

  12. Pardee, K. et al. Portable, on-demand biomolecular manufacturing. Cell 167, 248–259.e12 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Salehi, A. S. et al. Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system. Biotechnol. J. 11, 274–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Adiga, R. et al. Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-018-0259-1 (2018).

  15. Adiga, R. et al. Manufacturing biological medicines on demand: Safety and efficacy of granulocyte colony-stimulating factor in a mouse model of total body irradiation. Biotechnol. Prog. 36, e2970 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Kightlinger, W., Warfel, K. F., DeLisa, M. P. & Jewett, M. C. Synthetic glycobiology: parts, systems, and applications. ACS Synth. Biol. 9, 1534–1562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sethuraman, N. & Stadheim, T. A. Challenges in therapeutic glycoprotein production. Curr. Opin. Biotechnol. 17, 341–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sola, R. J. & Griebenow, K. Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 98, 1223–1245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, C. W. et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl Acad. Sci. USA 112, 10611–10616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elliott, S. et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21, 414–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 8, 226–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Stark, J. C. et al. On-demand biomanufacturing of protective conjugate vaccines. Sci. Adv. 7, eabe9444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaroentomeechai, T. et al. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat. Commun. 9, 2686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hershewe, J. M. et al. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat. Commun. 12, 2363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoborg, J. A. et al. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol. Bioeng. 115, 739–750 (2017).

    Article  PubMed  Google Scholar 

  26. Jaroentomeechai, T. et al. A pipeline for studying and engineering single-subunit oligosaccharyltransferases. Methods Enzymol. 597, 55–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kightlinger, W. et al. A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat. Commun. 10, 5404 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin, L. et al. Sequential glycosylation of proteins with substrate-specific N-glycosyltransferases. ACS Cent. Sci. 6, 144–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Natarajan, A. et al. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat. Chem. Biol. 16, 1062–1070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Warfel, K. F. et al. A low-cost, thermostable, cell-free protein synthesis platform for on demand production of conjugate vaccines. ACS Synth. Biol. 12, 95–107 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Perez, J. G., Stark, J. C. & Jewett, M. C. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb. Perspect. Biol. 8, a023853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hershewe, J., Kightlinger, W. & Jewett, M. C. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J. Ind. Microbiol. Biotechnol. 47, 977–991 (2020).

    Article  PubMed  Google Scholar 

  34. Williams, A. J. et al. A low-cost recombinant glycoconjugate vaccine confers immunogenicity and protection against enterotoxigenic Escherichia coli infections in mice. Preprint at bioRxiv https://doi.org/10.1101/2022.10.31.514630 (2022).

  35. Tarui, H., Imanishi, S. & Hara, T. A novel cell-free translation/glycosylation system prepared from insect cells. J. Biosci. Bioeng. 90, 508–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Moreno, S. N., Ip, H. S. & Cross, G. A. An mRNA-dependent in vitro translation system from Trypanosoma brucei. Mol. Biochem. Parasitol. 46, 265–274 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Shibutani, M., Kim, E., Lazarovici, P., Oshima, M. & Guroff, G. Preparation of a cell-free translation system from PC12 cell. Neurochem. Res. 21, 801–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Mikami, S., Kobayashi, T., Yokoyama, S. & Imataka, H. A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J. Biotechnol. 127, 65–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Brodel, A. K. et al. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems. PLoS ONE 8, e82234 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gurramkonda, C. et al. Improving the recombinant human erythropoietin glycosylation using microsome supplementation in CHO cell-free system. Biotechnol. Bioeng. 115, 1253–1264 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Lingappa, V. R., Lingappa, J. R., Prasad, R., Ebner, K. E. & Blobel, G. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc. Natl Acad. Sci. USA 75, 2338–2342 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rothblatt, J. A. & Meyer, D. I. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell 44, 619–628 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Valderrama-Rincon, J. D. et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8, 434–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feldman, M. F. et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl Acad. Sci. USA 102, 3016–3021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kightlinger, W. et al. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat. Chem. Biol. 14, 627–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ollis, A. A. et al. Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences. Sci. Rep. 5, 15237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan, C. et al. Biosynthesis of conjugate vaccines using an O-linked glycosylation system. MBio 7, e00443–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harding, C. M. et al. A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nat. Commun. 10, 891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kowarik, M. et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, M. et al. Shotgun scanning glycomutagenesis: a simple and efficient strategy for constructing and characterizing neoglycoproteins. Proc. Natl Acad. Sci. USA 118, e2107440118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon, Y. C. & Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 5, 8663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, D. M. & Swartz, J. R. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol. Bioeng. 85, 122–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cai, Q. et al. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnol. Prog. 31, 823–831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Calhoun, K. A. & Swartz, J. R. An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol. Prog. 21, 1146–1153 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Jewett, M. C. & Swartz, J. R. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Cuccui, J. et al. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 3, 130002 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Celik, E. et al. Glycoarrays with engineered phages displaying structurally diverse oligosaccharides enable high-throughput detection of glycan–protein interactions. Biotechnol. J. 10, 199–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Valvano, M. A. & Crosa, J. H. Molecular cloning and expression in Escherichia coli K-12 of chromosomal genes determining the O7 lipopolysaccharide antigen of a human invasive strain of E. coli O7:K1. Infect. Immun. 57, 937–943 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ollis, A. A., Zhang, S., Fisher, A. C. & DeLisa, M. P. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10, 816–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.C.S. acknowledges support from NIH/NCI F32 Postdoctoral Fellowship 1F32CA250324-01 and American Cancer Society Postdoctoral Fellowship PF-20-143-01-LIB. T.J. acknowledges support from the European Molecular Biology Organization Postdoctoral Fellowship 336-2021. K.F.W. acknowledges support from the National Defense Science and Engineering (NDSEG) Fellowship Program (ND-CEN-013-096). M.C.J. acknowledges support from the David and Lucile Packard Foundation, the Camille Dreyfus Teacher-Scholar Program, the Defense Threat Reduction Agency Grants HDTRA1-15-10052, HDTRA-12-11-0038 and HDTRA-12-01-0004, the Army Research Office Grants W911NF-20-1-0195, W911NF-18-1-0200 and W911NF-16-1-0372, the Army Contracting Command Contract W52P1J-21-9-3023 and DARPA Grant W911NF-23-2-0039.

Author information

Authors and Affiliations

Authors

Contributions

J.C.S., T.J., K.F.W. and J.M.H. wrote and edited the manuscript. J.C.S., M.P.D. and M.C.J. conceptualized the manuscript. M.P.D. and M.C.J. directed the research and edited the manuscript.

Corresponding authors

Correspondence to Jessica C. Stark, Matthew P. DeLisa or Michael C. Jewett.

Ethics declarations

Competing interests

M.C.J. is a cofounder of SwiftScale Biologics, Stemloop, Inc., Design Pharmaceuticals, and Pearl Bio. M.P.D. has interests in Glycobia Inc. and Versatope Inc. M.P.D. and M.C.J. have an interest in SwiftScale Biologics. M.C.J.’s and M.P.D.’s interests are reviewed and managed by Northwestern University and Cornell University, respectively, in accordance with their conflict of interest policies.

Peer review

Peer review information

Nature Protocols thanks Nigel Forest Reuel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Stark, J. C. et al. Sci. Adv. 7, eabe9444 (2021): https://doi.org/10.1126/sciadv.abe9444

Jaroentomeechai, T. et al. Nat. Commun. 9, 2686 (2018): https://doi.org/10.1038/s41467-018-05110-x

Natarajan, A. et al. Nat. Chem. Biol. 16, 1062–1070 (2020): https://doi.org/10.1038/s41589-020-0595-9

Hershewe, J. M. et al. Nat. Commun. 12, 2363 (2021): https://doi.org/10.1038/s41467-021-22329-3

Warfel, K. F. et al. ACS Synth. Biol. 12, 95–107 (2023): https://doi.org/10.1021/acssynbio.2c00392

Source data

Source Data Fig. 3

Statistical source data for Fig. 3b,c and uncropped western blot for Fig. 3c.

Source Data Fig. 4

Statistical source data for Fig. 4c and uncropped western blots for Fig. 4b,d.

Source Data Fig. 5

Uncropped western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, J.C., Jaroentomeechai, T., Warfel, K.F. et al. Rapid biosynthesis of glycoprotein therapeutics and vaccines from freeze-dried bacterial cell lysates. Nat Protoc 18, 2374–2398 (2023). https://doi.org/10.1038/s41596-022-00799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00799-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research