Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Determining small-molecule permeation through lipid membranes

Abstract

The passive permeability of cell membranes is of key importance in biology, biomedical research and biotechnology as it determines the extent to which various molecules such as drugs, products of metabolism, and toxins can enter or leave the cell unaided by dedicated transport proteins. The quantification of passive solute permeation is possible with radio-isotope distribution experiments, spectroscopic measurements and molecular dynamics simulations. This protocol describes stopped-flow fluorimetry measurements performed on lipid vesicles and living yeast cells to estimate the osmotic permeability of water and solutes across (bio)membranes. Encapsulation of the fluorescent dye calcein into lipid vesicles allows monitoring of volume changes upon osmotic shifts of the medium via (de)quenching of the fluorophore, which we interpret using a well-defined physical model that takes the dynamics of the vesicles into account to calculate the permeability coefficients of solutes. We also present analogous procedures to probe weak acid and base permeability in vesicles and cells by using the read-out of encapsulated or expressed pH-sensitive probes. We describe the preparation of synthetic vesicles of varying lipid composition and determination of vesicle size distribution by dynamic light scattering. Data on membrane permeation are obtained using either conventional or stopped-flow kinetic fluorescence measurements on instruments available in most research institutes and are analyzed with a suite of user-friendly MATLAB scripts (https://doi.org/10.5281/zenodo.6511116). Collectively, these procedures provide a comprehensive toolbox for determining membrane permeability coefficients in a variety of experimental systems, and typically take 2–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the effect of osmotic upshift on lipid vesicles and cells.
Fig. 2: Workflow of permeability experiments using calcein-loaded (orange), pyranine-loaded (lime green) and dye-free vesicles (light blue).
Fig. 3: Schematic representation of liposome preparation and fluorophore encapsulation.
Fig. 4: Plots of the measured osmolality as a function of osmolyte concentration.
Fig. 5: Removal of external dye by size-exclusion chromatography of lipid vesicles.
Fig. 6: Time evolution of fluorescence of liposomes.
Fig. 7: Relative volume change of vesicles over time.
Fig. 8: Time evolution of fluorescent traces of pyranine-loaded vesicles and of cells expressing pHluorin.
Fig. 9: Relative volume relaxation times of POPC vesicles osmotically shocked with different amino acids.
Fig. 10: Membrane permeation of amino acids.

Similar content being viewed by others

Data availability

Raw data for Figs. 9 and 10 can be obtained from the corresponding author upon request and at https://github.com/jacopofrallicciardi/Data-Determining-small-molecule-permeations.

Code availability

All the MATLAB scripts used in this study are available at https://doi.org/10.5281/zenodo.6511116 (ref. 36).

References

  1. Krämer, S. D. et al. When barriers ignore the “rule-of-five”. Adv. Drug Deliv. Rev. 101, 62–74 (2016).

    PubMed  Google Scholar 

  2. Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson, R. K., Fendler, K. & Poolman, B. Coupling efficiency of secondary active transporters. Curr. Opin. Biotechnol. 58, 62–71 (2019).

    CAS  PubMed  Google Scholar 

  4. Fricke, W. Water transport and energy. Plant. Cell Environ. 40, 977–994 (2017).

    CAS  PubMed  Google Scholar 

  5. Hannesschlaeger, C., Horner, A. & Pohl, P. Intrinsic membrane permeability to small molecules. Chem. Rev. 119, 5922–5953 (2019).

    CAS  PubMed  Google Scholar 

  6. Kerns, E. H. & Li, D. Drug-like Properties: Concepts, Structure Optimization, Design and Methods from ADME to Toxicity (Academic, 2008).

  7. Bangham, A. D., De Gier, J. & Greville, G. D. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Phys. Lipids 1, 225–246 (1967).

    CAS  Google Scholar 

  8. Gabba, M. et al. Weak acid permeation in synthetic lipid vesicles and across the yeast plasma membrane. Biophys. J. 118, 422–434 (2020).

    CAS  PubMed  Google Scholar 

  9. Neijssel, O. M., Buurman, E. T. & de Mattos, M. J. T. The role of futile cycles in the energetics of bacterial growth. Biochim. Biophys. Acta 1018, 252–255 (1990).

    CAS  PubMed  Google Scholar 

  10. Poolman, B. & Konings, W. N. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J. Bacteriol. 170, 700–707 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999).

    CAS  PubMed  Google Scholar 

  12. Hill, W. G. & Zeidel, M. L. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J. Biol. Chem. 275, 30176–30185 (2000).

    CAS  PubMed  Google Scholar 

  13. Krylov, A. V., Pohl, P., Zeidel, M. L. & Hill, W. G. Water permeability of asymmetric planar lipid bilayers. J. Gen. Physiol. 118, 333–340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frallicciardi, J., Melcr, J., Siginou, E., Marrink, S. J. & Poolman, B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commum. 13, 1605 (2022).

    CAS  Google Scholar 

  15. Chen, P. Y., Pearce, D. & Verkman, A. S. Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry 27, 5713–5718 (1988).

    CAS  PubMed  Google Scholar 

  16. Sha’afi, R. I., Rich, G. T., Sidel, V. W., Bossert, W. & Solomon, A. K. The effect of the unstirred layer on human red cell water permeability. J. Gen. Physiol. 50, 1377–1399 (1967).

    PubMed  PubMed Central  Google Scholar 

  17. Zeidel, M. L., Ambudkar, S. V., Smith, B. L. & Agre, P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

    CAS  PubMed  Google Scholar 

  18. Tsunoda, S. P., Wiesner, B., Lorenz, D., Rosenthal, W. & Pohl, P. Aquaporin-1, nothing but a water channel. J. Biol. Chem. 279, 11364–11367 (2004).

    CAS  PubMed  Google Scholar 

  19. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387 (1992).

    CAS  PubMed  Google Scholar 

  20. Mlekoday, H. J., Moore, R. & Levitt, D. G. Osmotic water permeability of the human red cell. Dependence on direction of water flow and cell volume. J. Gen. Physiol. 81, 213–220 (1983).

    CAS  PubMed  Google Scholar 

  21. Mathai, J. C., Sprott, G. D. & Zeidel, M. L. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J. Biol. Chem. 276, 27266–27271 (2001).

    CAS  PubMed  Google Scholar 

  22. Verkman, A. S. Water permeability measurement in living cells and complex tissues. J. Membr. Biol. 173, 73–87 (2000).

    CAS  PubMed  Google Scholar 

  23. Saparov, S. M., Antonenko, Y. N., Koeppe, R. E. & Pohl, P. Desformylgramicidin: a model channel with an extremely high water permeability. Biophys. J. 79, 2526–2534 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shatil-cohen, A. et al. Measuring the osmotic water permeability coefficient (Pf) of spherical cells: isolated plant protoplasts as an example. J. Vis. Exp. 92, e51652 (2014).

    Google Scholar 

  25. Vitali, V., Sutka, M., Amodeo, G., Chara, O. & Ozu, M. The water to solute permeability ratio governs the osmotic volume dynamics in beetroot vacuoles. Front. Plant Sci. 7, 1388 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Massari, S., Frigeri, L. & Azzone, G. F. Permeability to water, dimension of surface, and structural changes during swelling in rat liver mitochondria. J. Membr. Biol. 9, 57–70 (1972).

    CAS  PubMed  Google Scholar 

  27. Brahm, J. Diffusional water permeability of human erythrocytes and their ghosts. J. Gen. Physiol. 79, 791–819 (1982).

    CAS  PubMed  Google Scholar 

  28. Mathai, J. C. et al. Functional analysis of aquaporin-1 deficient red cells. J. Biol. Chem. 271, 1309–1313 (1996).

    CAS  PubMed  Google Scholar 

  29. Pfeuffer, J. et al. Expression of aquaporins in Xenopus laevis oocytes and glial cells as detected by diffusion-weighted 1H NMR spectroscopy and photometric swelling assay. Biochim. Biophys. Acta 1448, 27–36 (1998).

    CAS  PubMed  Google Scholar 

  30. Ye, R. & Verkman, A. S. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28, 824–829 (1989).

    CAS  PubMed  Google Scholar 

  31. Karan, D. M. & Macey, R. I. The permeability of the human red cell to deuterium oxide (heavy water). J. Cell. Physiol. 104, 209–214 (1980).

    CAS  PubMed  Google Scholar 

  32. Zhang, R. B. & Verkman, A. S. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am. J. Physiol. Physiol. 260, C26–C34 (1991).

    CAS  Google Scholar 

  33. Lande, M. B., Priver, N. A. & Zeidel, M. L. Determinants of apical membrane permeabilities of barrier epithelia. Am. J. Physiol. Physiol. 267, C367–C374 (1994).

    CAS  Google Scholar 

  34. Levitt, D. G. & Mlekoday, H. J. Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane. J. Gen. Physiol. 81, 239–253 (1983).

    CAS  PubMed  Google Scholar 

  35. Gabba, M. & Poolman, B. Physiochemical modeling of vesicle dynamics upon osmotic upshift. Biophys. J. 118, 435–447 (2020).

    CAS  PubMed  Google Scholar 

  36. Frallicciardi, J., Gabba, M. & Poolman, B. Determining small molecule permeation through lipid membranes. GitHub https://doi.org/10.5281/zenodo.6511116 (2022).

  37. Rawicz, W., Smith, B. A., McIntosh, T. J., Simon, S. A. & Evans, E. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Biophys. J. 94, 4725–4736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindahl, L., Genheden, S., Eriksson, L. A., Olsson, L. & Bettiga, M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol. Bioeng. 113, 744–753 (2016).

    CAS  PubMed  Google Scholar 

  39. Di, L. et al. The critical role of passive permeability in designing successful drugs. ChemMedChem 15, 1862–1874 (2020).

    CAS  PubMed  Google Scholar 

  40. Dahan, A. & Miller, J. M. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 14, 244–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pols, T. et al. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Costa, A. P., Xu, X. & Burgess, D. J. Freeze–anneal–thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm. Res. 31, 97–103 (2014).

    CAS  PubMed  Google Scholar 

  43. Llu, L. & Yonetani, T. Preparation and characterization of liposome-encapsulated haemoglobin by a freeze–thaw method. J. Microencapsul. 11, 409–421 (1994).

    Google Scholar 

  44. Geertsma, E. R., Nik Mahmood, N. A. B., Schuurman-Wolters, G. K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).

    CAS  PubMed  Google Scholar 

  45. Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Herget, M. et al. Purification and reconstitution of the antigen transport complex TAP. J. Biol. Chem. 284, 33740–33749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sacerdote, M. G. & Szostak, J. W. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl Acad. Sci. USA 102, 6004–6008 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hannesschlaeger, C., Barta, T., Pechova, H. & Pohl, P. The effect of buffers on weak acid uptake by vesicles. Biomolecules 9, 63 (2019).

    PubMed Central  Google Scholar 

  49. Shi, S. et al. Hidden complexity in membrane permeabilization behavior of antimicrobial polycations. Phys. Chem. Chem. Phys. 23, 1475–1488 (2021).

    CAS  PubMed  Google Scholar 

  50. Dutta, S., Watson, B., Mattoo, S. & Rochet, J.-C. Calcein release assay to measure membrane permeabilization by recombinant alpha-synuclein. Bio Protoc. 10, e3690 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Allen, T. M. & Cleland, L. G. Serum-induced leakage of liposome contents. Biochim. Biophys. Acta 597, 418–426 (1980).

    CAS  PubMed  Google Scholar 

  52. De Gier, J., Mandersloot, J. G. & Van Deenen, L. L. M. Lipid composition and permeability of liposomes. Biochim. Biophys. Acta 150, 666–675 (1968).

    PubMed  Google Scholar 

  53. De Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N. & Van Beek, W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 233, 610–618 (1971).

    PubMed  Google Scholar 

  54. Allen, T. M., Hong, K. & Papahadjopoulos, D. Membrane contact, fusion and hexagonal (HII) transitions in phosphatidylethanolamine liposomes. Biochemistry 29, 2976–2985 (1990).

    CAS  PubMed  Google Scholar 

  55. D'Souza, G. G. M. Liposomes 1522 (Springer, 2017).

  56. Hamann, S. et al. Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 12, 139–145 (2002).

    CAS  Google Scholar 

  57. Foctave & Scilab. MINUIT—a Binding to Minuit for Matlab (1996).

  58. Blicher, A., Wodzinska, K., Fidorra, M., Winterhalter, M. & Heimburg, T. The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys. J. 96, 4581–4591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. James, F. Minuit: Function Minimization and Error Analysis Version 94.1 (CERN, 1994).

  60. El Tayar, N., Tsai, R.-S., Carrupt, P.-A. & Testa, B. Octan-1-ol–water partition coefficients of zwitterionic α-amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components. J. Chem. Soc. Perkin Trans. 2, 79–84 (1992).

    Google Scholar 

  61. Perkins, R. & Vaida, V. Phenylalanine increases membrane permeability. J. Am. Chem. Soc. 139, 14388–14391 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by an ERC Advanced grant (ABCVolume; no. 670578) and the EU CoFund program ALERT. We thank C. Presutti for testing the protocol.

Author information

Authors and Affiliations

Authors

Contributions

B.P. and M.G. conceived the idea and developed the design guidelines; M.G. performed the initial fluorescence measurements and developed the mathematical model for the data processing; J.F. performed the majority of the experiments, developed the protocol further and improved the computational data processing; J.F. and B.P. wrote the manuscript. B.P. supervised, resourced and led the project.

Corresponding author

Correspondence to Bert Poolman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ulo Langel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Gabba, M. et al. Biophys. J. 118, 422–434 (2020): https://doi.org/10.1016/j.bpj.2019.11.3384

Gabba, M. & Poolman, B. Biophys. J. 118, 435–447 (2020): https://doi.org/10.1016/j.bpj.2019.11.3383

Frallicciardi, J. et al. Nat. Commun. 13, 1605 (2022): https://doi.org/10.1038/s41467-022-29272-x

Key data used in this protocol

Frallicciardi, J. et al. Nat. Commun. 13, 1605 (2022): https://doi.org/10.1038/s41467-022-29272-x

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frallicciardi, J., Gabba, M. & Poolman, B. Determining small-molecule permeation through lipid membranes. Nat Protoc 17, 2620–2646 (2022). https://doi.org/10.1038/s41596-022-00734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00734-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing