Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ion and lipid orchestration of secondary active transport

Abstract

Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General principles of ion-coupled alternating-access mechanisms.
Fig. 2: The major conformations of rocker-switch and elevator symporters.
Fig. 3: Examples of ion-coupling mechanisms.
Fig. 4: Lipid properties regulate transporters.

Similar content being viewed by others

References

  1. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Wright, E. M. SGLT2 inhibitors: physiology and pharmacology. Kidney360 2, 2027–2037 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klingenberg, M. Ligand–protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry 44, 8563–8570 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966). The terminologyalternating-accesswas first coined in this study of small molecule transporters.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016). This review defined the elevator alternating-access mechanism, which was first observed in the sodium-coupled glutamate transporter GltPh.

    Article  CAS  PubMed  Google Scholar 

  8. Keller, R., Ziegler, C. & Schneider, D. When two turn into one: evolution of membrane transporters from half modules. Biol. Chem. 395, 1379–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Forrest, L. R. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Andersen, C. G., Bavnhoj, L. & Pedersen, B. P. May the proton motive force be with you: a plant transporter review. Curr. Opin. Struct. Biol. 79, 102535 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Bianchi, F., Van’t Klooster, J. S., Ruiz, S. J. & Poolman, B. Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83, e00024–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021). This recent review comprehensively explores the structure, function, regulation, dynamics, oligomerization and complexes of the major facilitator superfamily (MFS).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ethayathulla, A. S. et al. Structure-based mechanism for Na+/melibiose symport by MelB. Nat. Commun. 5, 3009 (2014).

    Article  ADS  PubMed  Google Scholar 

  16. Claxton, D. P., Jagessar, K. L. & McHaourab, H. S. Principles of alternating access in multidrug and toxin extrusion (MATE) transporters. J. Mol. Biol. 433, 166959 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castellano, S. et al. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na+ in ion-coupled drug efflux. J. Biol. Chem. 296, 100262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Isom, D. G., Castaneda, C. A., Cannon, B. R. & Garcia-Moreno, B. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrison, E. A., Robinson, A. E., Liu, Y. & Henzler-Wildman, K. A. Asymmetric protonation of EmrE. J. Gen. Physiol. 146, 445–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gayen, A., Leninger, M. & Traaseth, N. J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E. & McIntosh, L. P. Arginine: its pKa value revisited. Protein Sci. 24, 752–761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lev, B., Roux, B. & Noskov, S. Y. in Encyclopedia of Metalloproteins (eds Kretsinger, R. H. et al.) (Springer, 2013); https://doi.org/10.1007/978-1-4614-1533-6_242.

  24. Jaud, S. et al. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl Acad. Sci. USA 106, 11588–11593 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parker, J. L. et al. Proton movement and coupling in the POT family of peptide transporters. Proc. Natl Acad. Sci. USA 114, 13182–13187 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smirnova, I. N., Kasho, V. & Kaback, H. R. Protonation and sugar binding to LacY. Proc. Natl Acad. Sci. USA 105, 8896–8901 (2008). This study uses fluourescent-probe-based analysis and kinetics to conclusively demonstrate that LacY is always protonated prior to sugar binding across all physiologically relevant pH ranges.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaback, H. R. & Guan, L. It takes two to tango: the dance of the permease. J. Gen. Physiol. 151, 878–886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lolkema, J. S. & Poolman, B. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. J. Biol. Chem. 270, 12670–12676 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Bavnhoj, L. et al. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nat. Plants 9, 938–950 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solcan, N. et al. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31, 3411–3421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madej, M. G., Sun, L., Yan, N. & Kaback, H. R. Functional architecture of MFS d-glucose transporters. Proc. Natl Acad. Sci. USA 111, E719–E727 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leano, J. B. et al. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol. 17, e3000260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geistlinger, K., Schmidt, J. D. R. & Beitz, E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS Nexus 2, pgad007 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jia, R. et al. Hydrogen–deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nat. Commun. 11, 6162 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parker, J. L. et al. Structural basis of antifolate recognition and transport by PCFT. Nature 595, 130–134 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bozzi, A. T., Bane, L. B., Zimanyi, C. M. & Gaudet, R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J. Gen. Physiol. 151, 1413–1429 (2019). Transport kinetics of an bacterial metal transporter elegantly show that some transition metals are proton-coupled whereas others are not, and that uncoupled proton uniport is possible in the presence of a membrane potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, W. et al. Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat. Commun. 12, 5690 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490, 361–366 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Mitrovic, D. et al. Reconstructing the transport cycle in the sugar porter superfamily using coevolution-powered machine learning. eLife 12, e84805 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Canul-Tec, J. C. et al. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J. 41, e108341 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Qiu, B. & Boudker, O. Symport and antiport mechanisms of human glutamate transporters. Nat. Commun. 14, 2579 (2023). This cryo-EM study of a human glutamate transporter reveals the detailed structural mechanism of coupled symport of sodium ions and protons and potassium antiport.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reyes, N., Oh, S. & Boudker, O. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20, 634–640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3, e02283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat. Commun. 7, 13420 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ravera, S. et al. Structural insights into the mechanism of the sodium/iodide symporter. Nature 612, 795–801 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu, B., Matthies, D., Fortea, E., Yu, Z. & Boudker, O. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Sci. Adv. 7, eabf5814 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jensen, S., Guskov, A., Rempel, S., Hanelt, I. & Slotboom, D. J. Crystal structure of a substrate-free aspartate transporter. Nat. Struct. Mol. Biol. 20, 1224–1226 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Koch, H. P., Hubbard, J. M. & Larsson, H. P. Voltage-independent sodium-binding events reported by the 4B–4C loop in the human glutamate transporter excitatory amino acid transporter 3. J. Biol. Chem. 282, 24547–24553 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Oh, S. & Boudker, O. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. eLife 7, e37291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 9, e58417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alleva, C. et al. Na+-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. Sci. Adv. 6, eaba9854 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 9, 5245 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hariharan, P. & Guan, L. Cooperative binding ensures the obligatory melibiose/Na+ cotransport in MelB. J. Gen. Physiol. 153, e202012710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niu, Y. et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 601, 280–284 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Grytsyk, N., Sugihara, J., Kaback, H. R. & Hellwig, P. pKa of Glu325 in LacY. Proc. Natl Acad. Sci. USA 114, 1530–1535 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guan, L. & Kaback, H. R. Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35, 67–91 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosa, L. T., Bianconi, M. E., Thomas, G. H. & Kelly, D. J. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front. Cell Infect. Microbiol. 8, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Davies, J. S. et al. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 14, 1120 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peter, M. F. et al. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 13, 4471 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mulligan, C., Leech, A. P., Kelly, D. J. & Thomas, G. H. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J. Biol. Chem. 287, 3598–3608 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Mager, T., Rimon, A., Padan, E. & Fendler, K. Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J. Biol. Chem. 286, 23570–23581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuldiner, S. Competition as a way of life for H+-coupled antiporters. J. Mol. Biol. 426, 2539–2546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Coincon, M. et al. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23, 248–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Nagarathinam, K. et al. Outward open conformation of a major facilitator superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nat. Commun. 9, 4005 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Heng, J. et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 25, 1060–1073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, H. H., Symersky, J. & Lu, M. Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition. Commun. Biol. 2, 210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yerushalmi, H. & Schuldiner, S. A common binding site for substrates and protons in EmrE, an ion-coupled multidrug transporter. FEBS Lett. 476, 93–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Nelson, P. J. & Rudnick, G. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254, 10084–10089 (1979).

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, S. G. et al. The dopamine transporter antiports potassium to increase the uptake of dopamine. Nat. Commun. 13, 2446 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Billesbolle, C. B. et al. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter. Nat. Commun. 7, 12755 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt, S. G., Nygaard, A., Mindell, J. A. & Loland, C. J. Exploring the K+ binding site and its coupling to transport in the neurotransmitter:sodium symporter LeuT. eLife 12, RP87985 (2023).

    Article  Google Scholar 

  80. Picollo, A., Xu, Y., Johner, N., Berneche, S. & Accardi, A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl exchanger. Nat. Struct. Mol. Biol. 19, 525–531 (2012). This elegant study uses isothermal titration calorimetry to uncover an unexpected coupling between protonation and Cl binding in a bacterial H+/Cl exchanger.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Accardi, A. Structure and gating of CLC channels and exchangers. J. Physiol. 593, 4129–4138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parker, J. L., Mindell, J. A. & Newstead, S. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273 (2014). In this study, a reconstituted proteoliposome system is used to demonstrate that the proton:substrate stoichiometry is different between di- and tri-peptides, highlighting flexibility in substrate–H+ coupling.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fluman, N. & Bibi, E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim. Biophys. Acta 1794, 738–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Tirosh, O. et al. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc. Natl Acad. Sci. USA 109, 12473–12478 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Edgar, R. & Bibi, E. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J. 18, 822–832 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dohan, O. et al. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc. Natl Acad. Sci. USA 104, 20250–20255 (2007). This study revealed that iodide and perchlorate are co-transported by the LeuT-fold protein NIS with distinct numbers of Na+ ions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewinson, O. et al. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc. Natl Acad. Sci. USA 100, 1667–1672 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schaedler, T. A. & van Veen, H. W. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J. 24, 3653–3661 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Sigal, N., Fluman, N., Siemion, S. & Bibi, E. The secondary multidrug/proton antiporter MdfA tolerates displacements of an essential negatively charged side chain. J. Biol. Chem. 284, 6966–6971 (2009). This study showed that the H+-coupling residue can be shifted to a different location in the bacterial MFS protein while retaining its ability to use export drugs, demonstrating that H+-coupled transport can be flexible.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Debruycker, V. et al. An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat. Struct. Mol. Biol. 27, 829–835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Henderson, R. & Poolman, B. Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae. Sci Rep. 7, 14375 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Li, C. & Voth, G. A. A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces. Proc. Natl Acad. Sci. USA 118, e2113141118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han, W., Cheng, R. C., Maduke, M. C. & Tajkhorshid, E. Water access points and hydration pathways in CLC H+/Cl transporters. Proc. Natl Acad. Sci. USA 111, 1819–1824 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Liu, Y. et al. Key computational findings reveal proton transfer as driving the functional cycle in the phosphate transporter PiPT. Proc. Natl Acad. Sci. USA 118, e2101932118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, S., Mayes, H. B., Swanson, J. M. & Voth, G. A. The origin of coupled chloride and proton transport in a Cl/H+ antiporter. J. Am. Chem. Soc. 138, 14923–14930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bozzi, A. T. et al. Structures in multiple conformations reveal distinct transition metal and proton pathways in an Nramp transporter. eLife 8, e41124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).

  100. Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

  101. Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007). This article showed that charged neutralization with either a negatively charged residue or a choloride ion is evolutionary-conserved to such an extent that just a single mutation introduces Cl coupling to the bacterial NSS homologue LeuT.

  102. Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weng, J. et al. Insight into the mechanism of H+-coupled nucleobase transport. Proc. Natl Acad. Sci. USA 120, e2302799120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kalayil, S., Schulze, S. & Kuhlbrandt, W. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc. Natl Acad. Sci. USA 110, 17296–17301 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Trebesch, N. & Tajkhorshid, E. Structure reveals homology in elevator transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.06.14.544989 (2023).

  107. LeVine, M. V., Cuendet, M. A., Khelashvili, G. & Weinstein, H. Allosteric mechanisms of molecular machines at the membrane: transport by sodium-coupled symporters. Chem. Rev. 116, 6552–6587 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Swanson, J. M. Multiscale kinetic analysis of proteins. Curr. Opin. Struct. Biol. 72, 169–175 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Henderson, R. K., Fendler, K. & Poolman, B. Coupling efficiency of secondary active transporters. Curr. Opin. Biotechnol. 58, 62–71 (2019). This review highlights examples of imperfect ion coupling in secondary-active transporters and where these ion leaks may benefit the host organism.

    Article  CAS  PubMed  Google Scholar 

  110. Bazzone, A., Zabadne, A. J., Salisowski, A., Madej, M. G. & Fendler, K. A loose relationship: incomplete H+/sugar coupling in the MFS sugar transporter GlcP. Biophys. J. 113, 2736–2749 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lim, H. H. & Miller, C. Intracellular proton-transfer mutants in a CLC Cl/H+ exchanger. J. Gen. Physiol. 133, 131–138 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Miller, C. & Nguitragool, W. A provisional transport mechanism for a chloride channel-type Cl/H+ exchanger. Philos. Trans. R. Soc. Lond. B 364, 175–180 (2009).

    Article  CAS  Google Scholar 

  115. Panayotova-Heiermann, M., Loo, D. D. & Wright, E. M. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270, 27099–27105 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Galli, A., DeFelice, L. J., Duke, B. J., Moore, K. R. & Blakely, R. D. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J. Exp. Biol. 198, 2197–2212 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Vandenberg, R. J., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J. Biol. Chem. 270, 17668–17671 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Cammack, J. N., Rakhilin, S. V. & Schwartz, E. A. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13, 949–960 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Borre, L., Andreassen, T. F., Shi, L., Weinstein, H. & Gether, U. The second sodium site in the dopamine transporter controls cation permeation and is regulated by chloride. J. Biol. Chem. 289, 25764–25773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Bisignano, P. et al. A kinetic mechanism for enhanced selectivity of membrane transport. PLoS Comput. Biol. 16, e1007789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24, 377–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Zeuthen, T., Gorraitz, E., Her, K., Wright, E. M. & Loo, D. D. Structural and functional significance of water permeation through cotransporters. Proc. Natl Acad. Sci. USA 113, E6887–E6894 (2016). This pivotal study demonstrated that water is co-transported together with glucose across the apical membrane of the small intestine by SGLT1 rather than osmosis, a pathway of physiological significance in rehydration therapy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loo, D. D., Zeuthen, T., Chandy, G. & Wright, E. M. Cotransport of water by the Na+/glucose cotransporter. Proc. Natl Acad. Sci. USA 93, 13367–13370 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, J. et al. Transient formation of water-conducting states in membrane transporters. Proc. Natl Acad. Sci. USA 110, 7696–7701 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Terry, D. S. et al. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nat. Commun. 9, 230 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  127. Bozzi, A. T. & Gaudet, R. Molecular mechanism of Nramp-family transition metal transport. J. Mol. Biol. 433, 166991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Spreacker, P. J. et al. Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility. Nat. Commun. 13, 7655 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vandenberg, R. J., Huang, S. & Ryan, R. M. Slips, leaks and channels in glutamate transporters. Channels 2, 51–58 (2008).

    Article  PubMed  Google Scholar 

  130. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 14, 365–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, I. et al. Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591, 327–331 (2021). In this elegant paper, the authors combine cross-linking, electrophysiology and cryo-EM to capture the chloride-conducting state of a Na+-coupled glutamate transporter.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang, R., Eriksen, J. & Edwards, R. H. The dual role of chloride in synaptic vesicle glutamate transport. eLife 7, e34896 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li, F. et al. Ion transport and regulation in a synaptic vesicle glutamate transporter. Science 368, 893–897 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023). This recent review surveys how specific lipids and lipid bilayer properties adjust to regulate the activity of membrane proteins.

    Article  CAS  PubMed  Google Scholar 

  138. Kobayashi, T. & Menon, A. K. Transbilayer lipid asymmetry. Curr. Biol. 28, R386–R391 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Dumas, F., Tocanne, J. F., Leblanc, G. & Lebrun, M. C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39, 4846–4854 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Corin, K. & Bowie, J. U. How physical forces drive the process of helical membrane protein folding. EMBO Rep. 23, e53025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chadda, R. et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jiang, Y. et al. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou, W. et al. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 8, e50576 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. van ‘t Klooster, J. S. et al. Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. eLife 9, e57003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Matsuoka, R. et al. Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nat. Struct. Mol. Biol. 29, 108–120 (2022). Cryo-EM structures reveal a surprisingly dynamic oligomeric interface in the elevator Na+/H+ exchanger NHA2, which could be remodelled by the binding of specific lipids.

  148. Winklemann, I. et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. 39, e105908 (2020).

    PubMed  PubMed Central  Google Scholar 

  149. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kokane S, M. P. et al. PI-(3,5)P2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9. Preprint at bioRxiv https://doi.org/10.1101/2023.09.10.557050 (2023).

  151. Romantsov, T., Guan, Z. & Wood, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta 1788, 2092–2100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nji, E., Chatzikyriakidou, Y., Landreh, M. & Drew, D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat. Commun. 9, 4253 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  153. Landreh, M. et al. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nat. Commun. 8, 13993 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pyle, E. et al. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem. Biol. 25, 840–848.e844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8, 14089 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Luethi, D. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun. Biol. 5, 1259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Anderluh, A. et al. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J. Biol. Chem. 289, 4387–4394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Das, A. K. et al. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J. Biol. Chem. 294, 5632–5642 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chew, T. A., Zhang, J. & Feng, L. High-resolution views and transport mechanisms of the NKCC1 and KCC transporters. J. Mol. Biol. 433, 167056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Arkhipova, V., Guskov, A. & Slotboom, D. J. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Nat. Commun. 11, 998 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hansen, S. B. Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim. Biophys. Acta 1851, 620–628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Heinz, V. et al. Osmotic stress response in BetP: how lipids and K+ team up to overcome downregulation. Preprint at bioRxiv https://doi.org/10.1101/2022.06.02.493408 (2022).

  164. Perez, C., Khafizov, K., Forrest, L. R., Kramer, R. & Ziegler, C. The role of trimerization in the osmoregulated betaine transporter BetP. EMBO Rep. 12, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Leray, X. et al. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. eLife 11, e74136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pedersen, S. F. & Counillon, L. The SLC9A–C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol. Rev. 99, 2015–2113 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e2735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, L. et al. Cholesterol stimulates the cellular uptake of l-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). J. Biol. Chem. 296, 100204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Raunser, S. et al. Heterologously expressed GLT-1 associates in approximately 200-nm protein–lipid islands. Biophys. J. 91, 3718–3726 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Butchbach, M. E., Tian, G., Guo, H. & Lin, C. L. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J. Biol. Chem. 279, 34388–34396 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Yang, D., Zhao, Z., Tajkhorshid, E. & Gouaux, E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc. Natl Acad. Sci. USA 120, e2304602120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Laursen, L. et al. Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martens, C. et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat. Commun. 9, 4151 (2018). In this study, hydrogen–deuterium exchange mass spectrometry and molecular dynamics simulations show how lipid compositions can influence conformational preferences and dynamics in MFS transporters.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  175. Andersson, M. et al. Proton-coupled dynamics in lactose permease. Structure 20, 1893–1904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bogdanov, M. & Dowhan, W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J. Biol. Chem. 270, 732–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  177. Hariharan, P. et al. Structural and functional characterization of protein-lipid interactions of the Salmonella typhimurium melibiose transporter MelB. BMC Biol. 16, 85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Suades, A. et al. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat. Commun. 14, 4070 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. van ‘t Klooster, J. S. et al. Membrane lipid requirements of the lysine transporter Lyp1 from Saccharomyces cerevisiae. J. Mol. Biol. 432, 4023–4031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hresko, R. C., Kraft, T. E., Quigley, A., Carpenter, E. P. & Hruz, P. W. Mammalian glucose transporter activity is dependent upon anionic and conical phospholipids. J. Biol. Chem. 291, 17271–17282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Reddy K. D. et al. Uncoupled substrate binding underlies the evolutionary switch between Na+ and H+-coupled prokaryotic aspartate transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.12.03.569786 (2023).

  182. Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Single-molecule visualization of conformational changes and substrate transport in the vitamin B(12) ABC importer BtuCD–F. Nat. Commun. 8, 1652 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  183. Fitzgerald, G. A. et al. Quantifying secondary transport at single-molecule resolution. Nature 575, 528–534 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ciftci, D. et al. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci. Adv. 6, eaaz1949 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ciftci, D. et al. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl Acad. Sci. USA 118, e2025520118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fang, X. Z. et al. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Front. Plant Sci. 12, 715694 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl Acad. Sci. USA 120, e2302325120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Windler, F. et al. The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat. Commun. 9, 2809 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jones, S. A. et al. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. Sci. Adv. 9, eadh4251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kang, Y. & Chen, L. Structural basis for the binding of DNP and purine nucleotides onto UCP1. Nature 620, 226–231 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.D. is a Wallenberg Scholar funded by the Knut and Alice Wallenberg Foundation and further acknowledges support from the European Research Council (ERC) Consolidator Grant EXCHANGE (ERC-CoG-820187), The Swedish Research Council (2021-04709) and the Göran Gustafsson Foundation. O.B. is a Howard Hughes Medical Institute (H.H.M.I) Investigator and further acknowledges support from the National Institute of Neurological Disorders and Stroke grant R37NS085318.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to David Drew or Olga Boudker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Bert Poolman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, D., Boudker, O. Ion and lipid orchestration of secondary active transport. Nature 626, 963–974 (2024). https://doi.org/10.1038/s41586-024-07062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07062-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing