Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels

Abstract

Many supramolecular materials in biological systems are driven to a nonequilibrium state by the irreversible consumption of high-energy molecules such as ATP or GTP. As a result, they exhibit unique dynamic properties such as a tunable lifetime, adaptivity or the ability to self-heal. In contrast, synthetic counterparts that exist in or close to equilibrium are controlled by thermodynamic parameters and therefore lack these dynamic properties. To mimic biological materials more closely, synthetic self-assembling systems have been developed that are driven out of equilibrium by chemical reactions. This protocol describes the synthesis and characterization of such an assembly, which is driven by carbodiimide fuels. Depending on the amount of chemical fuel added to the material, its lifetime can be tuned. In the first step, the protocol details the synthesis and purification of the peptide-based precursors for the fuel-driven assemblies by solid-phase peptide synthesis. Then, we explain how to analyze the kinetic response of the precursors to a carbodiimide-based chemical fuel by HPLC and kinetic models. Finally, we detail how to study the emerging assembly’s macro- and microscopic properties by time-lapse photography, UV-visible spectroscopy, shear rheology, confocal laser scanning microscopy and electron microscopy. The procedure is described using the example of a colloid-forming precursor Fmoc-E-OH and a fiber-forming precursor Fmoc-AAD-OH to emphasize the differences in characterization depending on the type of assembly. The characterization of a precursor’s transient assembly can be done within 5 d. The synthesis and purification of a peptide precursor requires 2 d of work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In chemically fueled self-assembly, molecules are activated and deactivated for assembly by a chemical reaction cycle.
Fig. 2: Kinetic analysis of the reaction cycle.
Fig. 3: Material properties of 10 mM precursor 1 in response to fuel.
Fig. 4: Material properties of precursor 2 in response to fuel.
Fig. 5: Overview of the experimental design.
Fig. 6: Reaction scheme of the proposed solid-phase peptide synthesis of 2.
Fig. 7: Reactions involved in the chemical reaction cycle.
Fig. 8: Time-lapse photography setup.
Fig. 9: HPLC chromatograms of precursor Fmoc-AAD-OH (2) after purification detected at 254 nm and the applied pump gradient.
Fig. 10: Nile red fluorescence intensity at 635 nm against concentration of the precursor.
Fig. 11: Calibration curves.
Fig. 12: Time-lapse series of photographs shows the activation of 10 mM Fmoc-E-OH (1) with several amounts of EDC.
Fig. 13: Preparation of a microscope glass slide with a grease chamber for microscope imaging.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article, the source data files and the Supplementary Information files. Source data are provided with this paper.

Software availability

The MATLAB code used in this protocol together with an exemplary dataset is provided at https://github.com/BoekhovenLab/Nature_protocols. Source data are provided with this paper.

References

  1. Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Amabilino, D. B., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, J., Li, J., Du, X. & Xu, B. Supramolecular biofunctional materials. Biomaterials 129, 1–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kato, T., Uchida, J., Ichikawa, T. & Soberats, B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J. 50, 149–166 (2017).

    Article  CAS  Google Scholar 

  5. Hegmann, T., Qi, H. & Marx, V. M. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym. Mater. 17, 483–508 (2007).

    Article  CAS  Google Scholar 

  6. Greaves, T. L. & Drummond, C. J. Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 37, 1709–1726 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. de Greef, T. F. & Meijer, E. W. Materials science: supramolecular polymers. Nature 453, 171–173 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grimaldi, N. et al. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 45, 6520–6545 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Webber, M. J. & Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 46, 6600–6620 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Kadler, K. E., Holmes, D. F., Trotter, J. A. & Chapman, J. A. Collagen fibril formation. Biochem. J. 316, 1–11 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, J. & Kaufman, L. J. Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys. J. 106, 1822–1831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, B., Hu, H., Mandal, S. K. & Haddon, R. C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17, 3235–3241 (2005).

    Article  CAS  Google Scholar 

  16. Amendola, V. & Meneghetti, M. Self-healing at the nanoscale. Nanoscale 1, 74–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Article  CAS  Google Scholar 

  19. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2 (2017).

  20. Korn, E., Carlier, M. & Pantaloni, D. Actin polymerization and ATP hydrolysis. Science 238, 638–644 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kohler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nat. Mater. 10, 462–468 (2011).

    Article  PubMed  CAS  Google Scholar 

  23. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. Engl. 49, 4825–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  PubMed  Google Scholar 

  26. Saha, B., Chatterjee, A., Reja, A. & Das, D. Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity. Chem. Commun. 55, 14194–14197 (2019).

    Article  CAS  Google Scholar 

  27. Post, E. A. J. & Fletcher, S. P. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem. Sci. 11, 9434–9442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng, J. & Walther, A. Pathway complexity in fuel-driven DNA nanostructures with autonomous reconfiguration of multiple dynamic steady states. J. Am. Chem. Soc. 142, 685–689 (2020).

    Article  PubMed  CAS  Google Scholar 

  29. Cardona, M. A. & Prins, L. J. ATP-fuelled self-assembly to regulate chemical reactivity in the time domain. Chem. Sci. 11, 1518–1522 (2020).

    Article  CAS  Google Scholar 

  30. Hossain, M. M., Atkinson, J. L. & Hartley, C. S. Dissipative assembly of macrocycles comprising multiple transient bonds. Angew. Chem. Int. Ed. Engl. 59, 13807–13813 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bal, S., Ghosh, C., Ghosh, T., Vijayaraghavan, R. K. & Das, D. Non-equilibrium polymerization of cross-beta amyloid peptides for temporal control of electronic properties. Angew. Chem. Int. Ed. Engl. 59, 13506–13510 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. van Ravensteijn, B. G. P., Hendriksen, W. E., Eelkema, R., van Esch, J. H. & Kegel, W. K. Fuel-mediated transient clustering of colloidal building blocks. J. Am. Chem. Soc. 139, 9763–9766 (2017).

    Article  PubMed  CAS  Google Scholar 

  36. Dambenieks, A. K., Vu, P. H. Q. & Fyles, T. M. Dissipative assembly of a membrane transport system. Chem. Sci. 5, 3396–3403 (2014).

    Article  CAS  Google Scholar 

  37. Ogden, W.A. & Guan, Z. Redox chemical-fueled dissipative self-assembly of active materials. ChemSystemsChem https://doi.org/10.1002/syst.201900030 (2019).

  38. Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    Article  CAS  Google Scholar 

  39. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Dai, K. et al. Regulating chemically fueled peptide assemblies by molecular design. J. Am. Chem. Soc. 142, 14142–14149 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Riess, B. et al. Dissipative assemblies that inhibit their deactivation. Soft Matter 14, 4852–4859 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Grotsch, R. K. et al. Dissipative self-assembly of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. Engl. 57, 14608–14612 (2018).

    Article  PubMed  CAS  Google Scholar 

  44. Grotsch, R. K. et al. Pathway dependence in the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wanzke, C., Tena-Solsona, M., Rieß, B., Tebcharani, L. & Boekhoven, J. Active droplets in a hydrogel release drugs with a constant and tunable rate. Mater. Horiz. 7, 1397–1403 (2020).

    Article  CAS  Google Scholar 

  47. Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kriebisch, B. A. K. et al. Reciprocal coupling in chemically fueled assembly: a reaction cycle regulates self-assembly and vice versa. J. Am. Chem. Soc. 142, 20837–20844 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Panja, S., Dietrich, B. & Adams, D. J. Chemically fuelled self-regulating gel-to-gel transition. ChemSystemsChem https://doi.org/10.1002/syst.201900038 (2019).

  50. Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. Engl. 58, 244–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Chung, B. K. W., White, C. J. & Yudin, A. K. Solid-phase synthesis, cyclization, and site-specific functionalization of aziridine-containing tetrapeptides. Nat. Protoc. 12, 1277–1287 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Murray, J. K. & Gellman, S. H. Parallel synthesis of peptide libraries using microwave irradiation. Nat. Protoc. 2, 624–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Sackett, D. L. & Wolff, J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 167, 228–234 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Stuart, M. C. A., van de Pas, J. C. & Engberts, J. B. F. N. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J. Phys. Org. Chem. 18, 929–934 (2005).

    Article  CAS  Google Scholar 

  56. Schnitter, F. & Boekhoven, J. A method to quench carbodiimide-fueled self-assembly. ChemSystemsChem https://doi.org/10.1002/syst.202000037 (2020).

  57. Draper, E. R. & Adams, D. J. Low-molecular-weight gels: the state of the art. Chem 3, 390–410 (2017).

    Article  CAS  Google Scholar 

  58. Greenspan, P., Mayer, E. P. & Fowler, S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Nakajima, N. & Ikada, Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug. Chem. 6, 123–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Goodling, K., Johnson, K., Lefkowitz, L. & Williams, B. W. The modern student laboratory: luminescent characterization of sodium dodecyl sulfate micellar solution properties. J. Chem. Educ. 71, A8 (1994).

    Article  CAS  Google Scholar 

  61. Brown, P. R. Effect of flow rates and the slope of the linear concentration gradient on peak areas in high pressure liquid chromatography. J. Chromatogr. A 57, 383–390 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted within the Max Planck School Matter to Life supported by the German Federal Ministry of Education and Research (BMBF) in collaboration with the Max Planck Society. J.B., F.S., A.M.B., B.W. and O.L. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB-863 – Project ID 111166240 (Project B11) and funding by the European Research Council (ERC starting grant 852187). J.R.F. acknowledges the Deutsche Forschungsgemeinschaft for project 411722921. Cryo-TEM measurements were performed using infrastructure contributed by the Dietz Lab and the TUM EM Core Facility. We acknowledge the technical support provided by F. Kohler.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and A.M.B. contributed equally to this protocol. They designed and performed the experiments and wrote the manuscript. B.W. and J.R.F. carried out the experiments. J.B. designed experiments, outlined and wrote the manuscript, and supervised the project. O.L. designed the experiments.

Corresponding author

Correspondence to Job Boekhoven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Dibyendu Das and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Tena-Solsona, M. et al. Nat. Commun. 8, 15895 (2017): https://doi.org/10.1038/ncomms15895

Schnitter, F. & Boekhoven, J. ChemSystemsChem 3, e2000037 (2021): https://doi.org/10.1002/syst.202000037

Donau, C. et al. Nat. Commun. 11, 5157 (2020): https://doi.org/10.1038/s41467-020-18815-9

Dai, K. et al. J. Am. Chem. Soc. 142, 33 (2020): https://doi.org/10.1021/jacs.0c04203

Kriebisch, B. A. K. et al. J. Am. Chem. Soc. 142, 49 (2020): https://doi.org/10.1021/jacs.0c10486

Extended data

Extended Data Fig. 1 Cryo-TEM microscope micrograph.

The control micrograph of a 10 mM precursor 2 stock solution excludes preassembly of the inactivated precursor in the absence of EDC fuel.

Extended Data Fig. 2 EDC hydrolysis and Fmoc deprotection kinetics.

a,b, The addition of the quenching solution freezes the reaction cycle of Fmoc-E-OH (1) (a) and Fmoc-AAD-OH (2) (b). In the timescale of the HPLC analysis, the degradation of EDC and Fmoc deprotection does not falsify the concentration determination.

Source data

Extended Data Fig. 3 The absorbance of light as a measure for turbidity.

a, Usage of different sample containers affects the measurement quality as sedimentation in a 96-well plate wrongly extends the system’s lifetime. b, Regarding colloids formed by 1, a cuvette is a better choice as sample container.

Source data

Supplementary information

Reporting Summary

Supplementary Video 1

Macroscopic property of reaction cycle shown by evolution of turbidity

Supplementary Video 2

Macroscopic property of reaction cycle shown by evolution of a hydrogel

Source data

Source Data Fig. 2

HPLC signal areas.

Source Data Fig. 3

UV-VIS absorbance.

Source Data Fig. 4

Rheology storage and loss modulus.

Source Data Fig. 10

Nile Red fluorescence intensity.

Source Data Fig. 11

HPLC calibration.

Source Data Extended Data Fig. 2

EDC hydrolysis and Fmoc deprotection kinetics.

Source Data Extended Data Fig. 3

Effect of sample container on UV-VIS measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnitter, F., Bergmann, A.M., Winkeljann, B. et al. Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels. Nat Protoc 16, 3901–3932 (2021). https://doi.org/10.1038/s41596-021-00563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00563-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing