Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical fuels for molecular machinery

Abstract

Chemical reaction networks that transform out-of-equilibrium ‘fuel’ to ‘waste’ are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically fuelled molecular dynamics.
Fig. 2: Chemical fuels used to power autonomous biological and synthetic molecular machinery.
Fig. 3: Chemical fuels for dissipative supramolecular assembly and macrocyclization.
Fig. 4: Chemical fuels for non-autonomous and non-directional molecular machinery.
Fig. 5: Molecular machines driven by chemical fuel pulses.
Fig. 6: Transition states for fuel-to-waste reactions mediated by molecular machines.

Similar content being viewed by others

References

  1. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    Article  CAS  Google Scholar 

  3. Biagini, C. & Di Stefano, S. Abiotic chemical fuels for the operation of molecular machines. Angew. Chem. Int. Ed. 59, 8344–8354 (2020).

    Article  CAS  Google Scholar 

  4. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  8. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  PubMed  Google Scholar 

  15. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    Article  CAS  Google Scholar 

  18. Howe, E. N. W. & Gale, P. A. Fatty acid fueled transmembrane chloride transport. J. Am. Chem. Soc. 141, 10654–10660 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

    Article  CAS  Google Scholar 

  20. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Toropova, K. et al. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823–829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2021).

    Article  CAS  Google Scholar 

  28. Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).

    Article  CAS  Google Scholar 

  29. Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leng, Z., Peng, F. & Hao, X. Chemical-fuel-driven assembly in macromolecular science: recent advances and challenges. ChemPlusChem 85, 1190–1199 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Merindola, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  Google Scholar 

  33. Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    Article  CAS  Google Scholar 

  35. Berrocal, J. A., Biagini, C., Mandolini, L. & Di Stefano, S. Coupling of the decarboxylation of 2-cyano-2-phenylpropanoic acid to large-amplitude motions: a convenient fuel for an acid–base-operated molecular switch. Angew. Chem. Int. Ed. 55, 6997–7001 (2016).

    Article  CAS  Google Scholar 

  36. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, Q. & Chen, C.-F. Step-by-step reaction-powered mechanical motion triggered by a chemical fuel pulse. Chem. Sci. 10, 2529–2533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866–1868 (1997).

    Article  CAS  Google Scholar 

  39. Kelly, T. R. Progress toward a rationally designed molecular motor. Acc. Chem. Res. 34, 514–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, A. P. Tilting at windmills? The Second Law survives. Angew. Chem. Int. Ed. Engl. 37, 909–910 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, 1963).

  42. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Carlone, A., Goldup, S. M., Lebrasseur, N., Leigh, D. A. & Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Pan, J., Li, F., Cha, T.-G., Chen, H. & Choi, J. H. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Valero, J. & Škugor, M. Mechanisms, methods of tracking and applications of DNA walkers: a review. Chemphyschem. 21, 1971–1988 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Mock, W. L. & Ochwat, K. J. Theory and example of a small-molecule motor. J. Phys. Org. Chem. 16, 175–182 (2003).

    Article  CAS  Google Scholar 

  50. Berná, J., Alajarín, M. & Orenes, R.-A. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132, 10741–10747 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Li, C.-B. & Toyabe, S. Efficiencies of molecular motors: a comprehensible overview. Biophys. Rev. 12, 419–423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rosing, J. & Slater, E. C. The value of ΔG° for the hydrolysis of ATP. Biochim. Biophys. Acta Bioenerg. 267, 275–290 (1972).

    Article  CAS  Google Scholar 

  53. Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Dhiman, S., Jain, A. & George, S. J. Transient helicity: fuel‐driven temporal control over conformational switching in a supramolecular polymer. Angew. Chem. Int. Ed. 56, 1329–1333 (2017).

    Article  CAS  Google Scholar 

  56. Watson, M. A. & Cockroft, S. L. An autonomously reciprocating transmembrane nanoactuator. Angew. Chem. Int. Ed. 55, 1345–1349 (2016).

    Article  CAS  Google Scholar 

  57. Wolfenden, R. & Snider, M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Kiani, F. A. & Fischer, S. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin. J. Biol. Chem. 288, 35569–35580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beis, I. & Newsholme, E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23–32 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kornberg, A. For the Love of Enzymes: Odyssey of a Biochemist (Harvard Univ. Press, 1989).

  61. Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 8, 527–535 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Zecchin, A., Stapor, P. C., Goveia, J. & Carmeliet, P. Metabolic pathway compartmentalization: an underappreciated opportunity? Curr. Opin. Biotechnol. 34, 73–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Bader, A. & Cockroft, S. L. Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices. Chem. Commun. 56, 5135–5138 (2020).

    Article  CAS  Google Scholar 

  64. Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510–1515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kamerlin, S. C. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2009).

    Article  CAS  Google Scholar 

  67. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Herges, R. Molecular assemblers: molecular machines performing chemical synthesis. Chem. Sci. 11, 9048–9055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Hosseini, M. W. et al. Supramolecular catalysis: polyammonium macrocycles as enzyme mimics for phosphoryl transfer in ATP hydrolysis. J. Am. Chem. Soc. 111, 6330–6335 (1989).

    Article  CAS  Google Scholar 

  71. Efremov, A. & Wang, Z. Universal optimal working cycles of molecular motors. Phys. Chem. Chem. Phys. 13, 6223–6233 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Albaugh, A. & Gingrich, T. R. Simulating a chemically-fueled molecular motor with nonequilibrium molecular dynamics. Nat. Commun. 13, 2204 (2021).

    Article  CAS  Google Scholar 

  73. SantaLucia, J. Jr. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Clancy, B. E., Behnke-Parks, W. M., Andreasson, J. O. L., Rosenfeld, S. S. & Block, S. M. A universal pathway for kinesin stepping. Nat. Struct. Mol. Biol. 18, 1020–1027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Tordini, F. et al. Theoretical study of hydration of cyanamide and carbodiimide. J. Phys. Chem. A 107, 1188–1196 (2003).

    Article  CAS  Google Scholar 

  77. Singh, N., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Devising synthetic reaction cycles for dissipative nonequilibrium self-assembly. Adv. Mater. 32, 1906834 (2020).

    Article  CAS  Google Scholar 

  78. Bazhin, N. The essence of ATP coupling. ISRN Biochem. 2012, 827604 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bonora, M. et al. ATP synthesis and storage. Purinergic Signal. 8, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Popson, M. S., Dimri, M. & Borger, J. Biochemistry, Heat and Calories (StatPearls, 2021).

  82. Ugajin, A. et al. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a ‘hot defensive bee ball’. PLoS One 7, e32902 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mater. 30, 1706750 (2018).

    Article  CAS  Google Scholar 

  85. Watson, M. A. & Cockroft, S. L. Man-made molecular machines: membrane bound. Chem. Soc. Rev. 45, 6118–6129 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Langton, M. J. Engineering of stimuli responsive lipid-bilayer membranes using supramolecular systems. Nat. Rev. Chem. 5, 46–61 (2021).

    Article  CAS  Google Scholar 

  87. Xu, X. et al. Boric acid‐fueled ATP synthesis by F0F1 ATP synthase reconstituted in a supramolecular architecture. Angew. Chem. Int. Ed. 60, 7617–7620 (2021).

    Article  CAS  Google Scholar 

  88. Dhiman, S., Jain, A., Kumar, M. & George, S. J. Adenosine-phosphate-fueled, temporally programmed supramolecular polymers with multiple transient states. J. Am. Chem. Soc. 139, 16568–16575 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Faulkner, A., van Leeuwen, T., Feringa, B. L. & Wezenberg, S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 138, 13597–13603 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo, H., Suzuki, T. & Rubinstein, J. L. Structure of a bacterial ATP synthase. eLife 8, e43128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schmidt, H., Zalyte, R., Urnavicius, L. & Carter, A. P. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518, 435–438 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC; grant number EP/P027067/1) and the European Research Council (ERC; Advanced Grant number 786630) for funding, and S. Amano and E. Kreidt for useful discussions. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Scott Hartley, Xiang Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsley, S., Leigh, D.A. & Roberts, B.M.W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022). https://doi.org/10.1038/s41557-022-00970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00970-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing