Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei

Abstract

Cell morphology encodes essential information on many underlying biological processes. It is commonly used by clinicians and researchers in the study, diagnosis, prognosis, and treatment of human diseases. Quantification of cell morphology has seen tremendous advances in recent years. However, effectively defining morphological shapes and evaluating the extent of morphological heterogeneity within cell populations remain challenging. Here we present a protocol and software for the analysis of cell and nuclear morphology from fluorescence or bright-field images using the VAMPIRE algorithm (https://github.com/kukionfr/VAMPIRE_open). This algorithm enables the profiling and classification of cells into shape modes based on equidistant points along cell and nuclear contours. Examining the distributions of cell morphologies across automatically identified shape modes provides an effective visualization scheme that relates cell shapes to cellular subtypes based on endogenous and exogenous cellular conditions. In addition, these shape mode distributions offer a direct and quantitative way to measure the extent of morphological heterogeneity within cell populations. This protocol is highly automated and fast, with the ability to quantify the morphologies from 2D projections of cells seeded both on 2D substrates or embedded within 3D microenvironments, such as hydrogels and tissues. The complete analysis pipeline can be completed within 60 minutes for a dataset of ~20,000 cells/2,400 images.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cells confined to narrow ranges of traditional morphological parameters still exhibit highly variable shapes.
Fig. 2: Overview of VAMPIRE analysis, from the extraction of contour coordinates to the automatic generation of shape modes.
Fig. 3: Overview of VAMPIRE implementation with the VAMPIRE GUI.
Fig. 4: Determinants of cluster coherence in the shape mode distributions.
Fig. 5: VAMPIRE analysis of LMNA+/+ and LMNA−/− mouse embryonic fibroblasts.
Fig. 6: VAMPIRE analysis of mouse embryonic fibroblasts seeded on adhesive micro-patterned surfaces.
Fig. 7: VAMPIRE analysis of human dermal fibroblasts from donors of different ages.
Fig. 8: Analysis of nuclear shape in H&E stained tissue sections with VAMPIRE.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from GitHub: Micropattern Data (https://github.com/kukionfr/Micropattern_MEF_LMNA_Image) and Aging Data (https://github.com/kukionfr/Aging_human_dermal_fibroblast_nucleus). A smaller example dataset is provided as Supplementary Data 1 and is also deposited on GitHub: https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.0/Supplementary.Data.zip.

Code availability

The VAMPIRE source code is available on GitHub: https://github.com/kukionfr/VAMPIRE_open. The code can be accessed and used by readers without restriction.

References

  1. Wu, P. H. et al. Evolution of cellular morpho-phenotypes in cancer metastasis. Sci. Rep. 5, 1–10 (2015).

    Article  Google Scholar 

  2. Chen, W.-C. et al. Functional interplay between the cell cycle and cell phenotypes. Integr. Biol. 5, 523–34 (2013).

    Article  CAS  Google Scholar 

  3. Chambliss, A. B., Wu, P. H., Chen, W. C., Sun, S. X. & Wirtz, D. Simultaneously defining cell phenotypes, cell cycle, and chromatin modifications at single-cell resolution. FASEB J 27, 2667–2676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakal, C., Aach, J., Church, G. & Perrimon, N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316, 1753–1756 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Rohban, M. H. et al. Systematic morphological profiling of human gene and allele function via cell painting. eLife 6, e24060 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu, P.-H. et al. Single-cell morphology encodes metastatic potential. Sci. Adv. https://doi.org/10.1126/sciadv.aaw6938 (2020).

  7. Driscoll, M. K. et al. Robust and automated detection of subcellular morphological motifs in 3D microscopy images. Nat. Methods https://doi.org/10.1038/s41592-019-0539-z (2019).

  8. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton https://doi.org/10.1002/cm.20041 (2005).

  9. Guo, Q. et al. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials 34, 9365–9372 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Sero, J. E. et al. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells. Mol. Syst. Biol. 11, 790 (2015).

    Article  PubMed  Google Scholar 

  11. Simm, J. et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2018.01.015 (2018).

  12. Bray, M.-A. et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. Gigascience 6, 1–5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wawer, M. J. et al. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc. Natl Acad. Sci. USA 111, 10911–10916 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bray, M. A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A. & Olivo-Marin, J. C. Imagining the future of bioimage analysis. Nat. Biotechnol. 34, 1250–1255 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Ruan, X. & Murphy, R. F. Evaluation of methods for generative modeling of cell and nuclear shape. Bioinformatics https://doi.org/10.1093/bioinformatics/bty983 (2019).

  18. Piccinini, F. et al. Advanced cell classifier: user-friendly machine-learning-based software for discovering phenotypes in high-content imaging data. Cell Syst 4, 651–655.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Danuser, G. Computer vision in cell biology. Cell 147, 973–978 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Chicco, D. Ten quick tips for machine learning in computational biology. BioData Mining https://doi.org/10.1186/s13040-017-0155-3 (2017).

  22. Gabril, M. Y. & Yousef, G. M. Informatics for practicing anatomical pathologists: Marking a new era in pathology practice. Modern Pathol. 23, 349–358 (2010).

    Article  Google Scholar 

  23. Fuchs, T. J. & Buhmann, J. M. Computational pathology: challenges and promises for tissue analysis. Computer. Med. Imag. Graphics 35, 515–530 (2011).

    Article  Google Scholar 

  24. Sarnecki, J. S. et al. A robust nonlinear tissue-component discrimination method for computational pathology. Lab. Investig 96, 450–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113–108ra113 (2011).

    Article  PubMed  Google Scholar 

  26. Phillip, J. M. et al. Biophysical and biomolecular determination of cellular age in humans. Nat. Biomed. Eng. 1, 0093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pegoraro, G. & Misteli, T. High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet. 33, 604–615 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lang, P., Yeow, K., Nichols, A. & Scheer, A. Cellular imaging in drug discovery. Nat. Rev. Drug Discov. 5, 343–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Loo, L. H., Wu, L. F. & Altschuler, S. J. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4, 445–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Sailem, H. Z., Sero, J. E. & Bakal, C. Visualizing cellular imaging data using PhenoPlot. Nat. Commun. 6, 1–6 (2015).

    Article  Google Scholar 

  31. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. https://doi.org/10.1371/journal.pbio.2005970 (2018).

  32. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. https://doi.org/10.1186/gb-2006-7-10-r100 (2016).

  33. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).

  34. Jayatilaka, H. et al. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration. FASEB J. https://doi.org/10.1096/fj.201700444RR (2018).

  35. Jayatilaka, H. et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 8, 15584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jayatilaka, H. et al. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget 9, 32556–32569 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Phillip, J. M., Aifuwa, I., Walston, J. & Wirtz, D. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17, 113–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, D.-H. et al. Volume regulation and shape bifurcation in the cell nucleus. J. Cell Sci. 129, 457–457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, Y. et al. Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 28, 82–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Driscoll, M. K. et al. Automated image analysis of nuclear shape: What can we learn from a prematurely aged cell? Aging 4, 119–132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bookstein, F. L. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Med. Image Anal. https://doi.org/10.1016/S1361-8415(97)85012-8 (1997).

  42. Dryden, I. L. & Mardia, K. V. Statistical Shape Analysis, with Applications in R 2nd edn. https://doi.org/10.1002/9781119072492 (2016).

  43. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pincus, Z. & Theriot, J. A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 227, 140–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. MacLeod, N. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25, 107–138 (1999).

    Google Scholar 

  46. Tsai, A. et al. A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging https://doi.org/10.1109/TMI.2002.808355 (2003).

  47. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. (2011).

  48. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A Density-based algorithm for discovering clusters in large spatial databases with noise. in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (1996).

  49. Ankerst, M., Breunig, M. M., Kriegel, H. P. & Sander, J. OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 28, 49–60 (1999).

    Article  Google Scholar 

  50. Kim, D. H. & Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB J. 27, 1351–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J.-K. et al. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today https://doi.org/10.1016/j.drudis.2013.07.001 (2003).

  53. Kashyap, A., Jain, M., Shukla, S. & Andley, M. Role of nuclear morphometry in breast cancer and its correlation with cytomorphological grading of breast cancer: a study of 64 cases. J. Cytol. https://doi.org/10.4103/JOC.JOC_237_16 (2003).

  54. Seethala, R. R. et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod. Pathol. https://doi.org/10.1038/modpathol.2017.130 (2018).

  55. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics https://doi.org/10.1093/bioinformatics/btw413 (2016).

  56. Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2, 433–459 (2010).

    Article  Google Scholar 

  57. Shlens, J. A tutorial on principal component analysis. Preprint at https://arxiv.org/abs/1404.1100 (2014).

  58. Lee, H. C., Liao, T., Zhang, Y. J. & Yang, G. Shape component analysis: Structure-preserving dimension reduction on biological shape spaces. Bioinformatics https://doi.org/10.1093/bioinformatics/btv648 (2016).

  59. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science https://doi.org/10.1126/science.1127647 (2006).

  60. Goodfellow, I. J. et al. Generative adversarial nets. GitHub http://www.github.com/goodfeli/adversarial.

  61. Osokin, A., Chessel, A., Salas, R. E. C. & Vaggi, F. GANs for biological image synthesis. Proc. IEEE Int. Conf. Comput. Vis. 2017, 2252–2261 (2017).

    Google Scholar 

  62. Johnson, G. R., Donovan-Maiye, R. M. & Maleckar, M. M. Generative modeling with conditional autoencoders: building an integrated cell. Preprint at arXiv https://arxiv.org/abs/1705.00092 (2017).

  63. Liberti, L. Distance geometry and data science. TOP 28, 271–339 (2020).

    Article  Google Scholar 

  64. Donaldson, J. G. Immunofluorescence staining. Curr. Protoc. Cell Biol. 60, 4.3.1–4.3.6 (1998).

    Google Scholar 

  65. Giri, A. et al. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J 27, 4089–4099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. https://doi.org/10.1038/ncb2062 (2010).

  67. Artym, V. V. & Matsumoto, K. Imaging cells in three-dimensional collagen matrix. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1018s48 (2010).

  68. Fischer, A. H., Jacobson, K. A., Rose, J. & Zeller, R. Hematoxylin and eosin staining of tissueand cell sections. Cold Spring Harb. Protoc. 3, pdb.prot4986 (2008).

    Article  Google Scholar 

  69. Kim, S. W., Roh, J. & Park, C. S. Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. J. Pathol. Transl. Med. 50, 411–418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hale, C. M. et al. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 124, 4267–4285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, D. H. & Wirtz, D. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hale, C. M. et al. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 124, 4267–4285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants U54CA143868 (D.W.), R01CA174388 (D.W.), P30AG021334 (P.H.W. and J.M.P.) and U01AG060903 (D.W., J.M.P. and P.H.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.P. and P.H.W. designed and conducted experiments; P.H.W., J.M.P., D.W. and W.C. conceived analysis and workflow of VAMPIRE; P.H.W. developed the original VAMPIRE software; K.S.H. converted the VAMPIRE software from MATLAB to Python; K.S.H. developed the graphical user interface of VAMPIRE; K.S.H. and J.M.P. analyzed and plotted data; P.H.W. and D.W. supervised the study; J.M.P., D.W., K.S.H. and P.H.W. wrote and edited the protocol; D.W., J.M.P., and P.H.W. secured funding.

Corresponding authors

Correspondence to Denis Wirtz or Pei-Hsun Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wu, P. -H. et al. Sci. Rep. 5, 1–10 (2015): https://www.nature.com/articles/srep18437

Wu, P.-H. et al. Sci. Adv. 6, eaaw6938 (2020): https://advances.sciencemag.org/content/6/4/eaaw6938

Phillip, J. M. et al. Nat. Biomed. Eng. 1, 0093 (2017): https://www.nature.com/articles/s41551-017-0093

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Data 1

Example input files for the protocol procedures, including fluorescence images of phalloidin-stained mouse embryonic fibroblast, their segmented images, CellProfiler segmentation workflow pipeline file, lists of segmented images for building and applying the model in CSV format, and example output files generated during the analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillip, J.M., Han, KS., Chen, WC. et al. A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. Nat Protoc 16, 754–774 (2021). https://doi.org/10.1038/s41596-020-00432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00432-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics