Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Structure determination protocol for transmembrane domain oligomers

Abstract

The transmembrane (TM) anchors of cell surface proteins have been one of the ‘blind spots’ in structural biology because they are generally very hydrophobic, sometimes dynamic, and thus difficult targets for structural characterization. A plethora of examples show these membrane anchors are not merely anchors but can multimerize specifically to activate signaling receptors on the cell surface or to stabilize envelope proteins in viruses. Through a series of studies of the TM domains (TMDs) of immune receptors and viral membrane proteins, we have established a robust protocol for determining atomic-resolution structures of TM oligomers by NMR in bicelles that closely mimic a lipid bilayer. Our protocol overcomes hurdles typically encountered by structural biology techniques such as X-ray crystallography and cryo-electron microscopy (cryo-EM) when studying small TMDs. Here, we provide the details of the protocol, covering five major technical aspects: (i) a general method for producing isotopically labeled TM or membrane-proximal (MP) protein fragments that involves expression of the protein (which is fused to TrpLE) into inclusion bodies and releasing the target protein by cyanogen bromide (CNBr) cleavage; (ii) determination of the oligomeric state of TMDs in bicelles; (iii) detection of intermolecular contacts using nuclear Overhauser effect (NOE) experiments; (iv) structure determination; and (v) paramagnetic probe titration (PPT) to characterize the membrane partition of the TM oligomers. This protocol is broadly applicable for filling structural gaps of many type I/II membrane proteins. The procedures may take 3–6 months to complete, depending on the complexity and stability of the protein sample.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protocol overview.
Fig. 2: Schematic of the pMM-LR6 vector.
Fig. 3: Expression, purification, and bicelle reconstitution of TMDs.
Fig. 4: Pulse sequence of the 3D JCH-modulated NOE experiment.
Fig. 5: Characterization of the oligomeric state of TMDs in bicelles.
Fig. 6: Detection of interchain NOEs.
Fig. 7: Sample mixing profiles for TMDs.
Fig. 8: Structure determination of TMDs.
Fig. 9: The PPT method for determination of the protein membrane partition.
Fig. 10: Analysis of the protein TM partition.

Similar content being viewed by others

Code availability

The code and instructions for the ExSSO program are freely accessible from the website: http://www.csbio.sjtu.edu.cn/bioinf/ExSSO/. The software is also provided as Supplementary Software 1 and 2.

References

  1. Call, M. E., Wucherpfennig, K. W. & Chou, J. J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat. Immunol. 11, 1023–1029 (2010).

    Article  CAS  Google Scholar 

  2. Call, M. E. & Wucherpfennig, K. W. Common themes in the assembly and architecture of activating immune receptors. Nat. Rev. Immunol. 7, 841–850 (2007).

    Article  CAS  Google Scholar 

  3. Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013).

    Article  CAS  Google Scholar 

  4. Arkhipov, A. et al. Architecture and membrane interactions of the EGF receptor. Cell 152, 557–569 (2013).

    Article  CAS  Google Scholar 

  5. Fu, Q. et al. Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol. Cell 61, 602–613 (2016).

    Article  CAS  Google Scholar 

  6. MacKenzie, K. R., Prestegard, J. H. & Engelman, D. M. A transmembrane helix dimer: structure and implications. Science 276, 131–133 (1997).

    Article  CAS  Google Scholar 

  7. Trenker, R., Call, M. E. & Call, M. J. Crystal structure of the glycophorin a transmembrane dimer in lipidic cubic phase. J. Am. Chem. Soc. 137, 15676–15679 (2015).

    Article  CAS  Google Scholar 

  8. Call, M. E. et al. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368 (2006).

    Article  CAS  Google Scholar 

  9. Bocharov, E. V. et al. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283, 6950–6956 (2008).

    Article  CAS  Google Scholar 

  10. Lau, T. L., Kim, C., Ginsberg, M. H. & Ulmer, T. S. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 28, 1351–1361 (2009).

    Article  CAS  Google Scholar 

  11. Barrett, P. J. et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336, 1168–1171 (2012).

    Article  CAS  Google Scholar 

  12. Dev, J. et al. Structural basis for membrane anchoring of HIV-1 envelope spike. Science 353, 172–175 (2016).

    Article  CAS  Google Scholar 

  13. Chen, W. et al. Familial Alzheimer’s mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site. Nat. Commun. 5, 3037 (2014).

    Article  Google Scholar 

  14. Lee, J. et al. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc. Natl. Acad. Sci. USA 114, E7987–E7996 (2017).

    Article  CAS  Google Scholar 

  15. Klammt, C. et al. Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat. Methods 9, 834 (2012).

    Article  CAS  Google Scholar 

  16. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  17. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  Google Scholar 

  18. Glover, K. J. et al. Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys. J. 81, 2163–2171 (2001).

    Article  CAS  Google Scholar 

  19. Piai, A., Fu, Q., Dev, J. & Chou, J. J. Optimal bicelle size q for solution NMR studies of the protein transmembrane partition. Chemistry 23, 1361–1367 (2017).

    Article  CAS  Google Scholar 

  20. Sanders, C. R., Hare, B. J., Howard, K. P. & Prestegard, J. H. Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. Nucl. Magn. Reson. Spectrosc. 26, 421–444 (1994).

    Article  CAS  Google Scholar 

  21. Caldwell, T. A. et al. Low-q bicelles are mixed micelles. J. Phys. Chem. Lett. 9, 4469–4473 (2018).

    Article  CAS  Google Scholar 

  22. Piai, A., Dev, J., Fu, Q. & Chou, J. J. Stability and water accessibility of the trimeric membrane anchors of the HIV-1 envelope spikes. J. Am. Chem. Soc. 139, 18432–18435 (2017).

    Article  CAS  Google Scholar 

  23. Chen, W. et al. The unusual transmembrane partition of the hexameric channel of the hepatitis C virus. Structure 26, 627–634.e4 (2018).

    Article  CAS  Google Scholar 

  24. Fu, Q. et al. Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 115, E8892–E8899 (2018).

    Article  CAS  Google Scholar 

  25. Knoblich, K. et al. Transmembrane complexes of DAP12 crystallized in lipid membranes provide insights into control of oligomerization in immunoreceptor assembly. Cell Rep. 11, 1184–1192 (2015).

    Article  CAS  Google Scholar 

  26. Hofer, N., Aragao, D. & Caffrey, M. Crystallizing transmembrane peptides in lipidic mesophases. Biophys. J. 99, L23–L25 (2010).

    Article  Google Scholar 

  27. Thomaston, J. L. & DeGrado, W. F. Crystal structure of the drug-resistant S31N influenza M2 proton channel. Protein Sci. 25, 1551–1554 (2016).

    Article  CAS  Google Scholar 

  28. Cooper, R. S., Georgieva, E. R., Borbat, P. P., Freed, J. H. & Heldwein, E. E. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat. Struct. Mol. Biol. 25, 416–424 (2018).

    Article  CAS  Google Scholar 

  29. Barbet-Massin, E. et al. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J. Am. Chem. Soc. 136, 12489–12497 (2014).

    Article  CAS  Google Scholar 

  30. Andreas, L. B. et al. Structure and mechanism of the influenza A M218-60 dimer of dimers. J. Am. Chem. Soc. 137, 14877–14886 (2015).

    Article  CAS  Google Scholar 

  31. van Dam, L., Karlsson, G. & Edwards, K. Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim. Biophys. Acta 1664, 241–256 (2004).

    Article  Google Scholar 

  32. Galperin, M. Y. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188, 4169–4182 (2006).

    Article  CAS  Google Scholar 

  33. Parkinson, J. S. & Kofoid, E. C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  Google Scholar 

  34. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

    Article  CAS  Google Scholar 

  35. Wolanin, P. M., Thomason, P. A. & Stock, J. B. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3, REVIEWS3013 (2002).

    Article  Google Scholar 

  36. Blacklow, S. C. & Kim, P. S. Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nat. Struct. Biol. 3, 758–762 (1996).

    Article  CAS  Google Scholar 

  37. North, C. L. & Blacklow, S. C. Solution structure of the sixth LDL-A module of the LDL receptor. Biochemistry 39, 2564–2571 (2000).

    Article  CAS  Google Scholar 

  38. Crimmins, D. L., Mische, S. M. & Denslow, N. D. Chemical cleavage of proteins in solution. Curr. Protoc. Protein Sci. Chapter 11, Unit 11.4 (2005).

  39. Ni, J. & Kanai, M. Site-selective peptide/protein cleavage. Top Curr. Chem. 372, 103–123 (2016).

    Article  CAS  Google Scholar 

  40. Hwang, P. M., Pan, J. S. & Sykes, B. D. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett. 588, 247–252 (2014).

    Article  CAS  Google Scholar 

  41. Caldwell, T. A. et al. Low- q bicelles are mixed micelles. J. Phys. Chem. Lett. 9, 4469–4473 (2018).

    Article  CAS  Google Scholar 

  42. Lata, S., Reichel, A., Brock, R., Tampe, R. & Piehler, J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205–10215 (2005).

    Article  CAS  Google Scholar 

  43. Yang, J., Piai, A., Shen, H. B. & Chou, J. J. An exhaustive search algorithm to aid NMR-based structure determination of rotationally symmetric transmembrane oligomers. Sci. Rep. 7, 17373 (2017).

    Article  Google Scholar 

  44. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  45. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. USA 101, 4083–4088 (2004).

    Article  CAS  Google Scholar 

  46. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    Article  CAS  Google Scholar 

  47. McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell. Sci. 128, 1065–1070 (2015).

    Article  CAS  Google Scholar 

  48. Rossman, J. S., Jing, X., Leser, G. P. & Lamb, R. A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142, 902–913 (2010).

    Article  CAS  Google Scholar 

  49. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  50. Guidotti, G. The composition of biological membranes. Arch. Intern. Med. 129, 194–201 (1972).

    Article  CAS  Google Scholar 

  51. Trenker, R., Call, M. J. & Call, M. E. Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Curr. Opin. Struct. Biol. 39, 115–123 (2016).

    Article  CAS  Google Scholar 

  52. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  53. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  Google Scholar 

  54. Pielak, R. M., Oxenoid, K. & Chou, J. J. Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure 19, 1655–1663 (2011).

    Article  CAS  Google Scholar 

  55. Schnell, J. R. & Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595 (2008).

    Article  CAS  Google Scholar 

  56. OuYang, B. et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 498, 521–525 (2013).

    Article  CAS  Google Scholar 

  57. Wang, J., Pielak, R. M., McClintock, M. A. & Chou, J. J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol. 16, 1267–1271 (2009).

    Article  CAS  Google Scholar 

  58. Szyperski, T., Neri, D., Leiting, B., Otting, G. & Wuthrich, K. Support of 1H NMR assignments in proteins by biosynthetically directed fractional 13C-labeling. J. Biomol. NMR 2, 323–334 (1992).

    Article  CAS  Google Scholar 

  59. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants GM116898 and AI127193 to J.J.C.

Author information

Authors and Affiliations

Authors

Contributions

Q.F., A.P., W.C., and J.J.C. conceived the study. K.X. performed the mass spectrometry analysis. Q.F., A.P., W.C., and J.J.C. wrote the manuscript.

Corresponding author

Correspondence to James J. Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Fu, Q. et al. Mol. Cell 61, 602–613 (2016): https://doi.org/10.1016/j.molcel.2016.01.009

Piai, A., Devi, J., Fu, Q., & Chou, J. J. J. Am. Chem. Soc. 139, 18432–18435 (2017): https://doi.org/10.1021/jacs.7b09352

Chen, W. et al. Structure 26, 627–634.e4 (2018): https://doi.org/10.1016/j.str.2018.02.011

Fu, Q. et al. Proc. Natl. Acad. Sci. USA 115, E8892–E8899 (2018): https://doi.org/10.1073/pnas.1807259115

Supplementary information

Supplementary Software 1

ExSSO software for Linux.

Reporting Summary

Supplementary Software 2

ExSSO software for Mac OS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Piai, A., Chen, W. et al. Structure determination protocol for transmembrane domain oligomers. Nat Protoc 14, 2483–2520 (2019). https://doi.org/10.1038/s41596-019-0188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0188-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing