Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution

Abstract

The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to understanding membrane protein biology. We report Native-nanoBleach, a total internal reflection fluorescence microscopy-based single-molecule photobleaching step analysis technique to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ~10 nm. We achieved this by capturing target membrane proteins in native nanodiscs with their proximal native membrane environment using amphipathic copolymers. We applied Native-nanoBleach to quantify the oligomerization status of structurally and functionally diverse membrane proteins, including a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under growth-factor binding and oncogenic mutations, respectively. Our data suggest that Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes under physiologically and clinically relevant conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Native-nanoBleach approach to detect the oligomeric distribution of membrane proteins in their native membrane environments.
Fig. 2: Establishing Native-nanoBleach analysis using membrane proteins with well-established oligomeric states.
Fig. 3: Oligomeric distribution of TrkA in the presence and absence of NGF within native nanodiscs (SMA) isolated from SH-SY5Y cells.
Fig. 4: Oligomeric distribution of KRas and its oncogenic mutants within native nanodiscs (SMA) isolated from Expi293 cells.
Fig. 5: Oligomeric distribution of KRas and its oncogenic mutants within native nanodiscs (SMA) isolated from PDAC cells.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Other relevant data are available from the corresponding author on reasonable request. Source Data are provided with this paper.

Code availability

The calculations for single-molecule photobleaching step analysis, conversion of step distribution to oligomeric distribution, and the theoretical probability of coincidental overlap as a function of surface expression density, as described above and in Supplementary Methods, have been formulated as Matlab codes that are available via Zenodo at the following link (https://doi.org/10.5281/zenodo.8429321)68.

References

  1. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

    Article  CAS  Google Scholar 

  2. Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article  CAS  Google Scholar 

  3. Liu, S., Hoess, P. & Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, 301–326 (2022).

    Article  CAS  Google Scholar 

  4. Baddeley, D. & Bewersdorf, J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem. 87, 965–989 (2018).

    Article  CAS  Google Scholar 

  5. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  Google Scholar 

  6. Chung, J. K. et al. K-Ras4B remains monomeric on membranes over a wide range of surface densities and lipid compositions. Biophys. J. 114, 137–145 (2018).

    Article  CAS  Google Scholar 

  7. Kaliszewski, M. J. et al. Quantifying membrane protein oligomerization with fluorescence cross-correlation spectroscopy. Methods 140–141, 40–51 (2018).

    Article  Google Scholar 

  8. Huang, Y. et al. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. eLife 5, e14107 (2016).

    Article  Google Scholar 

  9. Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    Article  CAS  Google Scholar 

  10. Low-Nam, S. T. et al. ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 18, 1244–1249 (2011).

    Article  CAS  Google Scholar 

  11. Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. & Fujiwara, T. K. Tracking single molecules at work in living cells. Nat. Chem. Biol. 10, 524–532 (2014).

    Article  CAS  Google Scholar 

  12. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

  13. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  Google Scholar 

  14. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  CAS  Google Scholar 

  15. Deguchi, T. et al. Direct observation of motor protein stepping in living cells using MINFLUX. Science 379, 1010–1015 (2023).

    Article  CAS  Google Scholar 

  16. Panda, A. et al. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nat. Methods 20, 891–897 (2023).

    Article  CAS  Google Scholar 

  17. Sydor, A. M., Czymmek, K. J., Puchner, E. M. & Mennella, V. Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 25, 730–748 (2015).

    Article  CAS  Google Scholar 

  18. Duncan, A. L. et al. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci. Rep. 7, 16647 (2017).

    Article  Google Scholar 

  19. Kiessling, V., Yang, S.-T. & Tamm, L. K. Supported lipid bilayers as models for studying membrane domains. Curr. Top. Membr. 75, 1–23 (2015).

    Article  CAS  Google Scholar 

  20. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  Google Scholar 

  21. Coffman, V. C. & Wu, J.-Q. Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem. Sci. 37, 499–506 (2012).

    Article  CAS  Google Scholar 

  22. Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    Article  CAS  Google Scholar 

  23. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  24. Waters, A. M. & Der, C. J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8, a031435 (2018).

    Article  Google Scholar 

  25. Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287–1292 (2016).

    CAS  Google Scholar 

  26. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    Article  CAS  Google Scholar 

  27. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  Google Scholar 

  28. Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).

    Article  CAS  Google Scholar 

  29. Smith, A. A. A. et al. Lipid nanodiscs via ordered copolymers. Chem 6, 2782–2795 (2020).

    Article  CAS  Google Scholar 

  30. Esmaili, M. & Overduin, M. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers. Biochim. Biophys. Acta Biomembr. 1860, 257–263 (2018).

    Article  CAS  Google Scholar 

  31. Knowles, T. J. et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485 (2009).

    Article  CAS  Google Scholar 

  32. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  33. Swiecicki, J.-M., Santana, J. T. & Imperiali, B. A strategic approach for fluorescence imaging of membrane proteins in a native-like environment. Cell Chem. Biol. 27, 245–251.e3 (2020).

    Article  CAS  Google Scholar 

  34. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  Google Scholar 

  35. Sniegowski, J. A., Phail, M. E. & Wachter, R. M. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Biochem. Biophys. Res. Commun. 332, 657–663 (2005).

    Article  CAS  Google Scholar 

  36. Xu, Y. et al. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515, 448–452 (2014).

    Article  CAS  Google Scholar 

  37. Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587–1594 (2004).

    Article  CAS  Google Scholar 

  38. Kim, D. M. & Nimigean, C. M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb. Perspect. Biol. 8, a029231 (2016).

    Article  Google Scholar 

  39. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article  CAS  Google Scholar 

  40. Nemoto, Y. & De Camilli, P. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J. 18, 2991–3006 (1999).

    Article  CAS  Google Scholar 

  41. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).

    Article  CAS  Google Scholar 

  42. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  43. Zhang, F. et al. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal. Chem. 87, 9960–9965 (2015).

    Article  CAS  Google Scholar 

  44. Hood, F. E., Sahraoui, Y. M., Jenkins, R. E. & Prior, I. A. Ras protein abundance correlates with Ras isoform mutation patterns in cancer. Oncogene 42, 1224–1232 (2023).

    Article  CAS  Google Scholar 

  45. Byrne, P. O., Hristova, K. & Leahy, D. J. EGFR forms ligand-independent oligomers that are distinct from the active state. J. Biol. Chem. 295, 13353–13362 (2020).

    Article  CAS  Google Scholar 

  46. Shen, J. & Maruyama, I. N. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett. 585, 295–299 (2011).

    Article  CAS  Google Scholar 

  47. Ahmed, F. & Hristova, K. Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands. Biochem. J. 475, 3669–3685 (2018).

    Article  CAS  Google Scholar 

  48. Franco, M. L. et al. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 297, 100926 (2021).

    Article  CAS  Google Scholar 

  49. Van, Q. N. et al. RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention. Biomolecules 11, 377 (2021).

    Article  CAS  Google Scholar 

  50. Abankwa, D., Gorfe, A. A. & Hancock, J. F. Ras nanoclusters: molecular structure and assembly. Semin. Cell Dev. Biol. 18, 599–607 (2007).

    Article  CAS  Google Scholar 

  51. Nan, X. et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc. Natl Acad. Sci. USA 112, 7996–8001 (2015).

    Article  CAS  Google Scholar 

  52. Ambrogio, C. et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 172, 857–868.e15 (2018).

    Article  CAS  Google Scholar 

  53. Kessler, D. et al. Drugging an undruggable pocket on KRAS. Proc. Natl Acad. Sci. USA 116, 15823–15829 (2019).

    Article  CAS  Google Scholar 

  54. Tran, T. H. et al. The small molecule BI-2852 induces a nonfunctional dimer of KRAS. Proc. Natl Acad. Sci. USA 117, 3363–3364 (2020).

    Article  CAS  Google Scholar 

  55. Sarkar-Banerjee, S. et al. Spatiotemporal analysis of K-Ras plasma membrane Interactions reveals multiple high order homo-oligomeric complexes. J. Am. Chem. Soc. 139, 13466–13475 (2017).

    Article  CAS  Google Scholar 

  56. Buscail, L., Bournet, B. & Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 153–168 (2020).

    Article  CAS  Google Scholar 

  57. Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 8, 1090 (2017).

    Article  Google Scholar 

  58. Sligar, S. G. & Denisov, I. G. Nanodiscs: a toolkit for membrane protein science. Protein Sci. 30, 297–315 (2021).

    Article  CAS  Google Scholar 

  59. Boldog, T., Grimme, S., Li, M., Sligar, S. G. & Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl Acad. Sci. USA 103, 11509–11514 (2006).

    Article  CAS  Google Scholar 

  60. Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).

    Article  Google Scholar 

  61. Lindhoud, S., Carvalho, V., Pronk, J. W. & Aubin-Tam, M.-E. SMA-SH: modified styrene-maleic acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules 17, 1516–1522 (2016).

    Article  CAS  Google Scholar 

  62. Wood, E. R. et al. Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg. Med. Chem. Lett. 14, 953–957 (2004).

    Article  CAS  Google Scholar 

  63. Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  Google Scholar 

  64. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  Google Scholar 

  65. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  66. Karandur, D. et al. Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase. eLife 9, e57784 (2020).

    Article  CAS  Google Scholar 

  67. Mi, L.-Z. et al. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nat. Struct. Mol. Biol. 18, 984–989 (2011).

    Article  CAS  Google Scholar 

  68. Bhattacharyya, M. et al. MATLAB Codes for Native-nanoBleach (1.0.1) (Zenodo, 2023); https://doi.org/10.5281/zenodo.8429321

Download references

Acknowledgements

We thank members of the Bhattacharyya, Gupta and Muzumdar laboratories for helpful discussions. We especially thank Anthony Quinnert (Bhattacharyya laboratory) for maintenance of our microscopy set-up, and Dr. Felix Rivera-Molina for help with confocal microscopy. We thank Dr. Marc Llaguno for help with negative stain electron microscopy data collection, and Tathagata Das for help with Matlab codes. The pQE60-KcsA and pET16b-LeuT constructs were a gift from Dr. Crina Nimigean’s and Dr. Eric Gouaux’s laboratories, respectively. Expi293 and SF9 cells were a gift from Dr. Karin Reinisch’s and Dr. Joel Butterwick’s laboratories, respectively. NGF was a gift from Genentech. G.W. acknowledges support from the PPTP training grant (grant no. T32-GM007324), C.B. acknowledges support from the NSF GRFP fellowship (grant no. DGE-2139841) and the P.E.O. Scholar Award. X.G. was a CSC-Yale Scholar. M.D.M. acknowledges support from an National Cancer Institute Mentored Clinical Scientist Research Career Development Award (grant no. K08-CA208016), a NIH New Innovator Award (grant no. DP2-CA248136), a Lustgarten Foundation Therapeutics Focused Research Program award, an American Cancer Society Institutional Research Grant (grant no. IRG 17-172-57) and, in part, the Yale Comprehensive Cancer Center Support Grant (grant no. P30CA016359). K.G. acknowledges support from NIGMS (grant nos. R01GM141192 and RM1GM149406). M.B. acknowledges support from NIGMS (grant nos. R00GM126145 and R35GM147095) for funding.

Author information

Authors and Affiliations

Authors

Contributions

M.B. conceived the study and designed the experiments with all of the authors. G.W., C.B., X.G. and S.K. performed the experiments and analyzed the data in consultation with M.D.M., K.G. and M.B. X.G. and M.D.M. contributed the engineered PDAC cells. K.G. contributed key bacterial membrane protein constructs. M.B. and G.W. wrote the paper in consultation with all of the co-authors. All of the authors discussed the results and implications, and commented on the manuscript at all stages.

Corresponding author

Correspondence to Moitrayee Bhattacharyya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Henriette Autzen, Yamuna Krishnan, and Kabir Biswas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–3, Methods, and Source Data (1–4) for blots and scans reported in the supplementary figures.

Reporting Summary

Source data

Source Data Fig. 1

The first file: ‘source-data-Fig-1c-nanodisc-size-distribution.pzfx’ presents the nanodisc size distribution from negative stain electron microscopy data (for Fig. 1c), including statistical analysis. The second file: ‘example-single-molecule-image-G12D_rep2-Fig1e.png’ shows a representative single-molecule TIRF image (for Fig. 1e).

Source Data Fig. 2

The first file: ‘oligomeric-distribution-amtb-semisweet-kcsa-omp25.pzfx’ contains source data for Fig. 2a, including statistical analysis. The second: ‘oligomeric-distribution-model-systems-LeuT.pzfx’ contains source data for Fig. 2c,d, including statistical analysis. Finally, ‘theoretical-calculation-overlap-surface-density’ contains data that is plotted in Fig. 2e and generated through a MATLAB code that is made available (see ‘Code availability’ section).

Source Data Fig. 3

The first file: ‘fsec-trkA-shsy5y.pzfx’ is source data for Fig. 3b. The second file: ‘oligomeric-distribution-TrkA’ contains data for Fig. 3c, including statistical analysis.

Source Data Fig. 4

The first file: ‘oligomeric-distribution-KRas-WT+mutants-Expi293-and-BI-2853-treatment.pzfx’ contains source data for Fig. 4a,c, including statistical analysis. The second file: ‘norm-BI-2852-FSEC-overlay.pzfx’ shows data for the FSEC shown in Fig. 4b. Finally, ‘KRAS_recip_pulldown_quant.pzfx’ represents the source data for western blot quantification in Fig. 4d, including statistical analysis.

Source Data Fig. 5

The first file: ‘final-PDAC-lines-western-blots-quantification.pzfx’ contains data for western blot quantifications shown in Fig. 5b. We also provided another file for Fig. 5b, ‘final-PDAC-lines-western-statistics.pzfx’, which contains the statistical analysis shown in this figure. The third and fourth files: ‘NP10-low-analysis’ and ‘NP10-high-analysis.pzfx’ contain source data for the oligomeric distributions shown in Fig. 5c,d, including statistical analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, G., Brown, C., Ge, X. et al. Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution. Nat. Nanotechnol. 19, 85–94 (2024). https://doi.org/10.1038/s41565-023-01547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01547-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing