Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR

Abstract

The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5′ UTR of a transgene. The cleavage is modulated by a ‘dual-mechanism’—(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC50 of 0.5 µg ml1 tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modulation of PAS-mediated cleavage via Tc-binding aptamer.
Fig. 2: The Y-shaped structure converges the binding forces from three aptamers.
Fig. 3: Controlling PAS by alternative splicing as a second mechanism.
Fig. 4: Evaluation of the pA regulator in vitro.
Fig. 5: In vivo evaluation of the pA regulator.
Fig. 6: Controlling the expression of endogenous CD133 gene in human genome by the pA regulator.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the manuscript and its Supplementary information file. Source data are provided with this paper.

References

  1. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clackson, T. Regulated gene expression systems. Gene Ther. 7, 120–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Tickner, Z. J. & Farzan, M. Riboswitches for controlled expression of therapeutic transgenes delivered by adeno-associated viral vectors. Pharmaceuticals 14, 554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Latta-Mahieu, M. et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum. Gene Ther. 13, 1611–1620 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Favre, D. et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J. Virol. 76, 11605–11611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Guiner, C., Stieger, K., Snyder, R. O., Rolling, F. & Moullier, P. Immune responses to gene product of inducible promoters. Curr. Gene. Ther. 7, 334–346 (2007).

    Article  PubMed  Google Scholar 

  9. Mays, L. E. & Wilson, J. M. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol. Ther. 19, 16–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Gao, G. et al. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum. Gene Ther. 20, 930–942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Beilstein, K., Wittmann, A., Grez, M. & Suess, B. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth. Biol. 4, 526–534 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, G. C., Wang, H. M., Bailey, C. C., Gao, G. P. & Farzan, M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. eLife 5, e18858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Strobel, B. et al. A small-molecule-responsive riboswitch enables conditional induction of viral vector-mediated gene expression in mice. ACS Synth. Biol. 9, 1292–1305 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Finke, M. et al. Efficient splicing-based RNA regulators for tetracycline-inducible gene expression in human cell culture and C. elegans. Nucleic Acids Res. 49, e71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokobayashi, Y. Aptamer-based and aptazyme-based riboswitches in mammalian cells. Curr. Opin. Chem. Biol. 52, 72–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nomura, Y., Zhou, L. L., Miu, A. & Yokobayashi, Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth. Biol. 2, 684–689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl Acad. Sci. USA 107, 8531–8536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gimmi, E. R., Reff, M. E. & Deckman, I. C. Alterations in the pre-mRNA topology of the bovine growth hormone polyadenylation region decrease poly(A) site efficiency. Nucleic Acids Res. 17, 6983–6998 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zarudnaya, M. I., Kolomiets, I. M., Potyahaylo, A. L. & Hovorun, D. M. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res. 31, 1375–1386 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klasens, B. I., Thiesen, M., Virtanen, A. & Berkhout, B. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure. Nucleic Acids Res. 27, 446–454 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muller, M., Weigand, J. E., Weichenrieder, O. & Suess, B. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 34, 2607–2617 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xiao, H., Edwards, T. E. & Ferré-D’Amaré, A. R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berens, C., Thain, A. & Schroeder, R. A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9, 2549–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Agwuh, K. N. & MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 58, 256–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Nelson, M. L. & Levy, S. B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 1241, 17–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Grossman, T. H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 6, a025387 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu, J., Lutz, C. S., Wilusz, J. & Tian, B. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11, 1485–1493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levitt, N., Briggs, D., Gil, A. & Proudfoot, N. J. Definition of an efficient synthetic poly(A) site. Genes Dev. 3, 1019–1025 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Ashfield, R. et al. MAZ-dependent termination between closely spaced human complement genes. EMBO J. 13, 5656–5667 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yonaha, M. & Proudfoot, N. J. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3, 593–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Hanson, S., Bauer, G., Fink, B. & Suess, B. Molecular analysis of a synthetic tetracycline-binding riboswitch. RNA 11, 503–511 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Georgakopoulos-Soares, I. et al. Alternative splicing modulation by G-quadruplexes. Nat. Commun. 13, 2404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, H., Zhang, J., Harvey, S. E., Hu, X. & Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 31, 2296–2309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sibley, C. R., Blazquez, L. & Ule, J. Lessons from non-canonical splicing. Nat. Rev. Genet. 17, 407–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Movassat, M. et al. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns. RNA Biol. 13, 646–655 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrews, T. E., Wang, D. & Harki, D. A. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Deliv. Transl. Res. 3, 121–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2, 17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barzegar Behrooz, A., Syahir, A. & Ahmad, S. CD133: beyond a cancer stem cell biomarker. J. Drug Target. 27, 257–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Wurmthaler, L. A., Sack, M., Gense, K., Hartig, J. S. & Gamerdinger, M. A tetracycline-dependent ribozyme switch allows conditional induction of gene expression in Caenorhabditis elegans. Nat. Commun. 10, 491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berens, C., Groher, F. & Suess, B. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol. J. 10, 246–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19, 3437–3450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sporing, M., Boneberg, R. & Hartig, J. S. Aptamer-mediated control of polyadenylation for gene expression regulation in mammalian cells. ACS Synth. Biol. 9, 3008–3018 (2020).

    Article  PubMed  Google Scholar 

  46. Yen, L., Luo, L. & Chao, P. WO2017083747—exogenous control of mammalian gene expression through aptamer-mediated modulation of polyadenylation. International application no. Pct/Us2016/061665 (2017). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017083747&_cid=P12-LN3OA9-66428-1

  47. Felletti, M., Stifel, J., Wurmthaler, L. A., Geiger, S. & Hartig, J. S. Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat. Commun. 7, 12834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weigand, J. E. & Suess, B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 35, 4179–4185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vogel, M., Weigand, J. E., Kluge, B., Grez, M. & Suess, B. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res. 46, e48 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Babendure, J. R., Babendure, J. L., Ding, J. H. & Tsien, R. Y. Control of mammalian translation by mRNA structure near caps. RNA 12, 851–861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl Acad. Sci. USA 96, 3584–3589 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem Biol 4, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Etzel, M. & Morl, M. Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry 56, 1181–1198 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mehta, A. & Merkel, O. M. Immunogenicity of Cas9 protein. J. Pharm. Sci. 109, 62–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Cooper and R. Sifers for their critical suggestions, and the Gene Vector Core at Baylor College of Medicine and K. Oka for consultation and AAV production. J.D.-Y.J. was supported by E&M Foundation Pre-Doctoral Fellowship for Biomedical Research. L.Y. was supported by NIH R01EB013584, Biogen SRA and the seed fund from the Department of Pathology and Immunology, Baylor College of Medicine. This project was also supported in part by the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the CPRIT Core Facility Support Award (CPRIT-RP180672), the NIH (P30 CA125123 and S10 RR024574) and the expert assistance of J.M. Sederstrom. The authors would also like to thank C. Ward and the Mouse Metabolism and Phenotyping Core at Baylor College of Medicine for expert assistance and funding from NIH UM1HG006348, NIH R01DK114356 and NIH R01HL130249.

Author information

Authors and Affiliations

Authors

Contributions

L.L., J.D.-Y.J., Y.W. and P.-W.C. performed experiments. L.Y. conceived the project and obtained the funding. L.L., J.D.-Y.J. and L.Y. wrote the manuscript.

Corresponding author

Correspondence to Laising Yen.

Ethics declarations

Competing interests

L.Y. was partially supported by a ‘Sponsored Research Agreement’ from Biogen. L.Y., J.D.-Y.J., L.L. and P.-W.C. received patent loyalty from Biogen (patents WO2017083747 and WO2021041924A2). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 3

Uncropped gel of Fig. 3c.

Source Data Fig. 4

Uncropped gel of Fig. 4c.

Source Data Fig. 6

Uncropped gel of Fig. 6e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Jea, J.DY., Wang, Y. et al. Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-023-01989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01989-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research