Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated Southern Hemisphere moisture availability during glacial periods

Abstract

Late Pleistocene ice-age climates are routinely characterized as having imposed moisture stress on low- to mid-latitude ecosystems1,2,3,4,5. This idea is largely based on fossil pollen evidence for widespread, low-biomass glacial vegetation, interpreted as indicating climatic dryness6. However, woody plant growth is inhibited under low atmospheric CO2 (refs. 7,8), so understanding glacial environments requires the development of new palaeoclimate indicators that are independent of vegetation9. Here we show that, contrary to expectations, during the past 350 kyr, peaks in southern Australian climatic moisture availability were largely confined to glacial periods, including the Last Glacial Maximum, whereas warm interglacials were relatively dry. By measuring the timing of speleothem growth in the Southern Hemisphere subtropics, which today has a predominantly negative annual moisture balance, we developed a record of climatic moisture availability that is independent of vegetation and extends through multiple glacial–interglacial cycles. Our results demonstrate that a cool-moist response is consistent across the austral subtropics and, in part, may result from reduced evaporation under cool glacial temperatures. Insofar as cold glacial environments in the Southern Hemisphere subtropics have been portrayed as uniformly arid3,10,11, our findings suggest that their characterization as evolutionary or physiological obstacles to movement and expansion of animal, plant and, potentially, human populations10 should be reconsidered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CMI for the three main landmasses of the Southern Hemisphere subtropics and study sites.
Fig. 2: Two new speleothem proxy records of subtropical moisture in southern Australia show a cool-moist pattern.
Fig. 3: Naracoorte fossil pollen record and moisture reconstructions confirm Naracoorte KDE pattern.
Fig. 4: Southern Hemisphere subtropical hydroclimate proxy records show a widespread cool-moist pattern.
Fig. 5: Modelled responses of Southern Hemisphere hydroclimate proxy records to Southern Hemisphere temperature.
Fig. 6: Modelled responses of Southern Hemisphere hydroclimate proxy records to hemispheric temperature show the latitudinal limits of the subtropical cool-moist pattern.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Information and at https://doi.org/10.25375/uct.24609138Source data are provided with this paper.

Code availability

We used the R packages qgam, envirem, raster, geoChronR, astrochron, mgcv and rnaturalearth to generate Figs. 1, 5 and 6 and Extended Data Figs. 2, 3, 4, 9 and 10. The Wavemetrics Igor Pro code to calculate probabilistic KDEs, which was used in Figs. 2, 3 and 4 and Extended Data Fig. 6, is available at https://doi.org/10.25375/uct.24609138. Please cite this study when using this code.

References

  1. Bowler, J. M., Hope, G. S., Jennings, J. N., Singh, G. & Walker, D. Late Quaternary climates of Australia and New Guinea. Quat. Res. 6, 359–394 (1976).

    Article  Google Scholar 

  2. Sarnthein, M. Sand deserts during glacial maximum and climatic optimum. Nature 272, 43–46 (1978).

    Article  ADS  Google Scholar 

  3. Byrne, M. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat. Sci. Rev. 27, 2576–2585 (2008).

    Article  ADS  Google Scholar 

  4. Mynhardt, S. et al. Phylogeography of a morphologically cryptic Golden Mole assemblage from south-eastern Africa. PLoS ONE 10, e0144995 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Veth, P. Island in the interior: a model for colonisation of Australia’s arid zone. Archaeol. Oceania 24, 81–92 (1989).

    Article  Google Scholar 

  6. Williams, M. A. J. Late Pleistocene tropical aridity synchronous in both hemispheres? Nature 253, 617–618 (1975).

    Article  ADS  Google Scholar 

  7. Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Gerhart, L. M. & Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674–95 (2010).

    Article  PubMed  Google Scholar 

  9. Scheff, J., Seager, R., Liu, H. B. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).

    Article  ADS  Google Scholar 

  10. Bird, M. I., O’Grady, D. & Ulm, S. Humans, water and the colonization of Australia. Proc. Natl Acad. Sci. USA 113, 11477–11482 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl Acad. Sci. USA 110, 8777–8781 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gosling, W. D. et al. A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change. Science 376, 653–656 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159–195 (1994).

    Article  ADS  Google Scholar 

  16. Fuhrmann, F., Diensberg, B., Gong, X., Lohmann, G. & Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 16, 2221–2238 (2020).

    Article  Google Scholar 

  17. Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).

    Article  Google Scholar 

  18. Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).

    Article  Google Scholar 

  19. Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley-Blackwell, 2012).

  20. Ayliffe, L. K. et al. 500 ka precipitation record from southeastern Australia: evidence for interglacial relative aridity. Geology 26, 147–150 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Weij, R., Woodhead, J., Hellstrom, J. & Sniderman, K. An exploration of the utility of speleothem age distributions for palaeoclimate assessment. Quat. Geochronol. 60, 101112 (2020).

    Article  Google Scholar 

  22. Scroxton, N. et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 823–833 (2016).

    Article  Google Scholar 

  23. Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).

    Article  Google Scholar 

  24. Treble, P. C. et al. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia’s arid margin interpreted from speleothem records (23–15 ka). Clim. Past 13, 667–687 (2017).

    Article  Google Scholar 

  25. Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Collins, J. A., Schefuß, E., Govin, A., Mulitza, S. & Tiedemann, R. Insolation and glacial–interglacial control on southwestern African hydroclimate over the past 140 000 years. Earth Planet. Sci. Lett. 398, 1–10 (2014).

    Article  ADS  CAS  Google Scholar 

  28. Daniau, A.-L. et al. Precession and obliquity forcing of the South African monsoon revealed by sub-tropical fires. Quat. Sci. Rev. 310, 108128 (2023).

    Article  Google Scholar 

  29. Cruz, F. W. et al. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 71, 2250–2263 (2007).

    Article  ADS  CAS  Google Scholar 

  30. Dupont, L. M., Caley, T. & Castañeda, I. S. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa. Clim. Past 15, 1083–1097 (2019).

    Article  Google Scholar 

  31. Dupont, L. M., Zhao, X., Charles, C., Faith, J. T. & Braun, D. Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Clim. Past 18, 1–21 (2022).

    Article  Google Scholar 

  32. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Cohen, T. J. et al. Hydrological transformation coincided with megafaunal extinction in central Australia. Geology 43, 195–198 (2015).

    Article  ADS  Google Scholar 

  34. Fritz, S. C. et al. Hydrologic variation during the last 170,000 years in the Southern Hemisphere tropics of South America. Quat. Res. 61, 95–104 (2004).

    Article  Google Scholar 

  35. Kristen, I. et al. Hydrological changes in southern Africa over the last 200 ka as recorded in lake sediments from the Tswaing impact crater. S. Afr. J. Geol. 110, 311–326 (2007).

    Article  CAS  Google Scholar 

  36. Otto-Bliesner, B. L. et al. Large-scale features of last interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Clim. Past 17, 63–94 (2021).

    Article  Google Scholar 

  37. De Deckker, P. et al. Land–sea correlations in the Australian region: 460 ka of changes recorded in a deep-sea core offshore Tasmania. Part 2: the marine compared with the terrestrial record. Aust. J. Earth Sci. 66, 17–36 (2019).

    Article  ADS  Google Scholar 

  38. Petrick, B. et al. Glacial Indonesian throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).

    Article  ADS  Google Scholar 

  40. Pei, R. et al. Monitoring Australian monsoon variability over the past four glacial cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 568, 110280 (2021).

    Article  Google Scholar 

  41. Dupont, L. M. & Kuhlmann, H. Glacial–interglacial vegetation change in the Zambezi catchment. Quat. Sci. Rev. 155, 127–135 (2017).

    Article  ADS  Google Scholar 

  42. Ivory, S. J., Lézine, A.-M., Vincens, A. & Cohen, A. S. Waxing and waning of forests: Late Quaternary biogeography of southeast Africa. Glob. Change Biol. 24, 2939–2951 (2018).

    Article  ADS  Google Scholar 

  43. Thompson, J. C. et al. Early human impacts and ecosystem reorganization in southern-central Africa. Sci. Adv. 7, eabf9776 (2021).

  44. Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).

    Article  ADS  Google Scholar 

  45. Hesse, P. P. et al. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quat. Sci. Rev. 200, 85–105 (2018).

    Article  ADS  Google Scholar 

  46. von der Meden, J. et al. Tufas indicate prolonged periods of water availability linked to human occupation in the southern Kalahari. PLoS ONE 17, e0270104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carr, A. S. et al. Paleolakes and socioecological implications of last glacial “greening” of the South African interior. Proc. Natl Acad. Sci. USA 120, e2221082120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Novello, V. F. et al. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524, 115717 (2019).

    Article  CAS  Google Scholar 

  49. Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Cohen, T. J. et al. Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: varying moisture sources and increased continental aridity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 356–357, 89–108 (2012).

    Article  Google Scholar 

  51. Sniderman, J. M. K. et al. Vegetation and climate change in southwestern Australia during the Last Glacial Maximum. Geophys. Res. Lett. 46, 1709–1720 (2019).

    Article  ADS  Google Scholar 

  52. Prentice, I. C., Guiot, J. & Harrison, S. P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, 658–660 (1992).

    Article  ADS  Google Scholar 

  53. Zagwijn, W. H. Vegetation, climate and time-correlations in the Early Pleistocene of Europe. Geol. Mijnbouw 19, 233–244 (1957).

    Google Scholar 

  54. Byrne M. et al. in Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot (ed. Lambers, H.) 81–99 (Univ. Western Australia Press, 2014).

  55. Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeolog. Sci. 40, 4612–4625 (2013).

    Article  Google Scholar 

  56. Holdgate, G. & Gallagher, S. J. Tertiary: a period of transition to marine basin environments. Geol. Soc. Spec. Publ. 23, 289–335 (2003).

    Google Scholar 

  57. Reed, E. H. World Heritage values and conservation status of the Australian fossil mammal sites (Riversleigh/ Naracoorte). Z. Geomorphol. 62, 213–233 (2021).

    Article  Google Scholar 

  58. Playford, P. E., Cockbain, A. E. & Low, G. H. Geology of the Perth Basin, Western Australia. Geol. Surv. Western Australia Bull. 124, 1–311 (1976).

    CAS  Google Scholar 

  59. Columbu, A., Calabrò, L., Chiarini, V. & De Waele, J. Stalagmites: from science application to museumization. Geoheritage 13, 47 (2021).

    Article  Google Scholar 

  60. Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 18, 1346–1351 (2003).

    Article  CAS  Google Scholar 

  61. Weij, R. et al. Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems. Commun. Earth Environ. 3, 210 (2022).

    Article  ADS  Google Scholar 

  62. Woodhead, J. et al. Timescales of speleogenesis in an evolving syngenetic karst: the Tamala Limestone, Western Australia. Geomorphology 399, 108079 (2022).

    Article  Google Scholar 

  63. Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 1, 289–295 (2006).

    Article  Google Scholar 

  64. Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).

    Article  ADS  Google Scholar 

  65. Baker, A., Smart, P. L. & Ford, D. C. Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 100, 291–301 (1993).

    Article  Google Scholar 

  66. Markowska, M. et al. Semi-arid zone caves: evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quat. Sci. Rev. 131, 285–301 (2016).

    Article  ADS  Google Scholar 

  67. Baker, A. et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 10, 2984 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Chase, B. et al. South African speleothems reveal influence of high- and low-latitude forcing over the past 113.5 k.y. Geology 49, 1353–1357 (2021).

    Article  ADS  CAS  Google Scholar 

  69. Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).

    Article  ADS  Google Scholar 

  70. Fohlmeister, J. et al. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 279, 67–87 (2020).

    Article  ADS  CAS  Google Scholar 

  71. Treble, P. C. et al. Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Commun. Earth Environ. 3, 29 (2022).

    Article  ADS  Google Scholar 

  72. Scholz, D. & Mangini, A. Estimating the uncertainty of coral isochron U–Th ages. Quat. Geochronol. 1, 279–288 (2006).

    Article  Google Scholar 

  73. Sniderman, J. M. K. et al. Pliocene reversal of late Neogene aridification. Proc. Natl Acad. Sci. USA 113, 1999–2004 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Matley, K. A., Sniderman, J. M. K., Drinnan, A. D. & Hellstrom, J. C. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. Holocene 30, 672–681 (2020).

    Article  ADS  Google Scholar 

  75. Bennett, K. D. & Willis, K. J. in Tracking Environmental Change Using Lake Sediments Vol. 3 (eds Smol, J. P. et al.) 5–32 (Kluwer Academic, 2001).

  76. Munsterman, D. & Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 91, 417–422 (1996).

    Article  Google Scholar 

  77. Members, A. The Australasian Pollen and Spore Atlas V.1.0 (Australian National Univ., 2020).

  78. Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88 (1992).

    Article  Google Scholar 

  79. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article  ADS  Google Scholar 

  80. Mast, A. R. & Givnish, T. J. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Am. J. Bot. 89, 1311–1323 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Kron, K. A. et al. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335–423 (2002).

    Article  Google Scholar 

  82. Chao, Y.-S. & Huang, Y.-M. Spore morphology and its systematic implication in Pteris (Pteridaceae). PLoS ONE 13, e0207712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. McGlone, M. S. Pollen structure of the New Zealand members of the Styphelieae (Epacridaceae). NZ J. Bot. 16, 91–101 (1978).

    Article  Google Scholar 

  84. Martin, H. A. Monotoca-type (Epacridaceae) pollen in the Late Tertiary of southern Australia. Australian J. Bot. 41, 709–720 (1993).

    Article  Google Scholar 

  85. Taaffe, G., Brown, E. A., Crayn, D. M., Gadek, P. A. & Quinn, C. J. Generic concepts in Styphelieae: resolving the limits of Leucopogon. Australian J. Bot. 49, 107–120 (2001).

    Article  Google Scholar 

  86. Wurdack, K. J., Hoffmann, P. & Chase, M. W. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Am. J. Bot. 92, 1397–1420 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Nowicke, J. W., Takahashi, M. & Webster, G. L. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae)—Part 1. Tribes Clutieae (Clutia), Pogonophoreae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa, Neoscortechinia), Erismantheae pro parte (Erismanthus, Moultonianthus), Dicoelieae (Dicoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereae (Amperea, Monotaxis). Rev. Palaeobot. Palynol. 102, 115–152 (1998).

    Article  Google Scholar 

  88. Robbrecht, E. Pollen morphology of the tribes Anthospermeae and Paederieae (Rubiaceae) in relation to taxonomy. Bull. Jard. Bot. Natl Belg. 52, 349–366 (1982).

    Article  Google Scholar 

  89. R Core Group R: A Language and Environment for Statistical Computing (Foundation for Statistical Computing, 2022).

  90. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  91. Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2 (CGIAR-CSI, 2018).

  92. Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Article  ADS  Google Scholar 

  93. raster: Geographic Data Analysis and Modeling. R package version 3.5-21 (2022).

  94. Atkinson, T. C., Briffa, K. R. & Coope, G. R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, 587–592 (1987).

    Article  ADS  Google Scholar 

  95. Thompson, R. S. et al. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quat. Sci. Rev. 51, 18–39 (2012).

    Article  ADS  Google Scholar 

  96. Chevalier, M. et al. Pollen-based climate reconstruction techniques for Late Quaternary studies. Earth Sci. Rev. 210, 103384 (2020).

    Article  Google Scholar 

  97. Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  98. Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article  ADS  Google Scholar 

  99. Campos, M. C. et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quat. Sci. Rev. 225, 105990 (2019).

    Article  Google Scholar 

  100. Govin, A. et al. Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka. Clim. Past 10, 843–862 (2014).

    Article  Google Scholar 

  101. geoChronR: Tools to Analyze and Visualize Time-Uncertain Data. R package version 1.1.7 (2021).

  102. Meyers, S.R. astrochron: An R Package for Astrochronology https://cran.r-project.org/package=astrochron (2014).

  103. Thompson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  ADS  Google Scholar 

  104. Vaughan, S., Bailey, R. J. & Smith, D. G. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography https://doi.org/10.1029/2011PA002195 (2011).

  105. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. EOS Trans. 77, 379 (1996).

    Article  ADS  Google Scholar 

  106. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden Day, 1968).

  107. Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman & Hall, 2017).

  108. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article  MathSciNet  Google Scholar 

  109. Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

  110. Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  111. Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. qgam: Bayesian nonparametric quantile regression modeling in R. J. Stat. Softw. 100, 1–31 (2021).

    Article  Google Scholar 

  112. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R package version 1.8-40 (2021).

  113. Hu, J., Emile-Geay, J. & Partin, J. Correlation-based interpretations of paleoclimate data—where statistics meet past climates. Earth Planet. Sci. Lett. 459, 362–371 (2017).

    Article  ADS  CAS  Google Scholar 

  114. Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.3.3 https://CRAN.R-project.org/package=rnaturalearth (2023).

Download references

Acknowledgements

We acknowledge the Traditional Owners and ongoing Custodians of the Ancestral Lands of the South East and South West regions. In relation to Naracoorte caves, we acknowledge the Potaruwutij, Jardwadjali, Boandik and Meintangk Peoples. For assistance with permits, cave information and guidance in the field we thank the South Australian Department of Environment and Water (DEW), Australian Research Council (ARC) grant research partners at Naracoorte (Naracoorte Lucindale Council, DEW, Terre à Terre, Wrattonbully Wine Industries Association, South Australian Museum and the Defence Science and Technology Group), the Western Australian Government Department of Biodiversity, Conservation and Attractions and the Margaret River Busselton Tourist Association. We thank P. Valdes (Bristol) for access to HadCM3 simulations and P. Bajo, S. Paul and R. Maas for laboratory and data processing assistance. R.W. thanks R. Pickering for her support. At Naracoorte, speleothem rubble samples used in this study were collected under permit nos. M26647, E26667 and U26922. For the LN caves, samples were collected under permits from the Western Australian Government Department of Biodiversity, Conservation and Attractions and/or with permission from the Margaret River Busselton Tourist Association. This work was facilitated by ARC grants FL160100028 to J.D.W., FT130100801 to J.C.H. and LP160101249 to E.R., R.N.D. and J.C.H. R.W. acknowledges the Postgraduate Writing-Up Award supported by the Albert Shimmins Fund and the Oppenheimer Memorial Trust and VC2030 Scholar Postdoctoral Fellowship awards. J.R.B. is supported by the ARC Centre of Excellence for Climate Extremes (CE170100023).

Author information

Authors and Affiliations

Authors

Contributions

R.W., J.D.W., J.M.K.S., J.C.H., R.N.D. and E.R. conceived and designed the study. R.W., J.D.W., J.M.K.S., J.C.H., E.R., R.N.D., J.G. and S.B. conducted the fieldwork. R.W. and J.C.H. performed and/or contributed to the U–Th analysis and postprocessing. J.M.K.S. performed the pollen analyses. J.R.B. and J.M.K.S. analysed the climate simulations. R.W. and J.M.K.S. performed statistical analyses, wrote the manuscript and created the figures, with contributions from the other authors. All authors contributed comments and/or revisions to the manuscript.

Corresponding authors

Correspondence to Rieneke Weij or J. M. Kale Sniderman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spectral analyses shows coherence and typically small phase lags with Southern Hemisphere summer insolation.

a, Coherence spectra of the Naracoorte KDE, the Leeuwin-Naturaliste KDE and the seven other high-resolution Southern Hemisphere subtropical hydroclimate proxy records relative to summer insolation (21 Dec, 30°S). Thick black line is the 50th percentile of the nine coherence spectra; dark shading corresponds to the 15.9 and 84.1 percentiles, lighter shading to the 2.5 and 97.5 percentiles. Stippled line indicates non-zero coherence level at 95% confidence. Yellow bars highlight the eccentricity, obliquity and precession orbital bands. b, Coherence spectra of average HadCM3 seasonal precipitation with each spatial domain, relative to SH summer insolation. Note that only the HadCM3 precipitation simulations with the highest correlations with each record (see asterisks in Extended Data Fig. 5) are used. Thick black line is the 50th percentile of the eight coherence spectra; dark shading corresponds to the 15.9 and 84.1 percentiles, lighter shading to the 2.5 and 97.5 percentiles. Stippled line indicates non-zero coherence level at 95% confidence. Yellow bars highlight the eccentricity, obliquity and precession orbital bands. c. Phase wheels showing the phase differences in kyr between the hydroclimate proxy records and summer insolation (left wheel) and HadCM3 precipitation per region and summer insolation (right wheel). See Methods for details.

Source Data

Extended Data Fig. 2 Pollen-based quantitative climate reconstructions for Naracoorte.

1-99 percentile reconstruction envelopes for annual, summer (DJF) and winter (JJA) (a) CMI and (b) precipitation. Modern values for Naracoorte Caves shown as horizontal dashed red lines.

Source Data

Extended Data Fig. 3 Climatically sensitive plant taxa’s geographic ranges within eastern Australia.

Species occurrence data for each climatically sensitive plant taxon used for palaeoclimatic reconstruction, derived from the Atlas of Living Australia (https://ror.org/018n2ja79, see Supplementary Table 4). Filled purple circles, species occurrence data. Red diamond, location of Naracoorte Caves. Contour lines correspond to the annual CMI. Base maps created with the R package rnaturalearth114.

Source Data

Extended Data Fig. 4 Climatically sensitive plant taxa’s climatic ranges in summer and winter seasons.

Ranges of climatically sensitive plant taxa observed as fossil pollen within Naracoorte speleothems, along summer (DJF) and winter (JJA) Climatic Moisture Index axes (see Methods). Filled purple circles, species occurrence data; red diamond, modern Naracoorte Caves climate.

Source Data

Extended Data Fig. 5 Correlation plots of HadCM3 simulations vs. proxy records.

Linear correlations between simulated 0-120 ka HadCM3 DJF and JJA regional subtropical Southern Hemisphere seasonal precipitation and standardized, detrended hydroclimate proxy records within the same regions. Shaded intervals correspond to the 95% confidence interval of the linear regression lines. Records with significant (p < 0.05), or, in the case of MD96-2048 % Podocarpus, near significant (p = 0.06) positive correlations marked with an asterisk and used in Extended Data Fig. 1.

Source Data

Extended Data Fig. 6 Three subtropical lake basin hydroclimate records show a cool-moist pattern.

a, Kati Thanda/Lake Eyre Basin KDE (bandwidth = 15 kyr) based on palaeo-shoreline luminescence ages33; b, Tswaing Crater total inorganic carbon35, with reversed y-axis; and c, Salar de Uyuni natural gamma variation34. Dark and light-shaded intervals correspond to the 1 and 2 s.e.m. uncertainty envelopes on the KDE, respectively.

Source Data

Extended Data Fig. 7 Hydroclimate proxy records demonstrating the equatorward and poleward limits of the subtropical cool-wet pattern.

a, The Antarctic temperature reconstruction32; b, FR1/94-GC3 Fe/Ca37; c. U1460 Ti/Ca38; d, MD00-2361 Fe/Ca39; e, SO257-18548 terrigenous/Ca40; f, GeoB-9311 Fe/Ca41; g, Lake Malawi MAL05-1b lake level43; h, MAL05-1B % Podocarpus pollen42; i, Tanganyika KH3/4 δD44.

Source Data

Extended Data Fig. 8 Power spectra with red noise threshold reveal significant precessional frequencies.

Individual power spectra (multitaper method) of ten subtropical hydroclimate proxy time series, Southern Hemisphere summer insolation (21 Dec, 30°S) and the Antarctic temperature reconstruction32. See Methods for details.

Source Data

Extended Data Fig. 9 Naracoorte speleothem sample thickness/diameter versus sample age confirms there is no size-based preservation bias.

The thickness (flowstones) or diameter (stalagmites and stalactites) were measured for 70 individual speleothems. Note the low r2 value of the linear regression line, suggesting that there is no size-based preservation bias in our sampling at Naracoorte.

Source Data

Extended Data Fig. 10 Southern Hemisphere subtropical DJF and JJA precipitation (mm).

Data derived from Worldclim90; hydroclimate proxy sites discussed in this paper; and the six spatial domains (southwestern and southeastern South America, southwestern and southeastern Africa and southwestern and southeastern Australia) used to calculate area-averaged HadCM3 precipitation, 0-120 ka. Base maps created with the R package rnaturalearth114.

Extended Data Fig. 11 Micrographs of selected pollen and spores from Naracoorte speleothems.

a–b, Eucalyptus (Myrtaceae). c, Leptospermeae (Myrtaceae); d, Casuarinaceae; e, Asteraceae; f, Poaceae; g, Asteraceae short-spined; h, Amaranthaceae; i, Plantago (Plantaginaceae); j, Ericaceae; k-l, Banksia marginata-type (Proteaceae); m, Banksia ornata (Proteaceae); n, Pimelea (Thymelaeaceae); o, Bursaria (Pittosporaceae); p, Asparagales; q. Cichorioideae (Asteraceae); r-s, Leucopogon-type (Ericaceae); t-u, Opercularia (Anthospermeae:Rubiaceae); v, Pteris (Pteridaceae); w, Restionaceae; x-z, Monotoca-type (Ericaceae); aa, Acaena (Rosaceae); ab, Amperea (Euphorbiaceae); ac, Nertera (Anthospermeae:Rubiaceae); ad, Muehlenbeckia (Polygonaceae); ae, Grevillea/Hakea-type (Proteaceae); af, Gyrostemonaceae; ag, Myriophyllum (Haloragaceae).

Extended Data Table 1 Modern climatic data for the Naracoorte Cave Complex and the Leeuwin-Naturaliste caves in southern Australia

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weij, R., Sniderman, J.M.K., Woodhead, J.D. et al. Elevated Southern Hemisphere moisture availability during glacial periods. Nature 626, 319–326 (2024). https://doi.org/10.1038/s41586-023-06989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06989-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing