Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms, detection and impacts of species redistributions under climate change

Abstract

Shifts in species distributions are a common ecological response to climate change, and global temperature rise is often hypothesized as the primary driver. However, the directions and rates of distribution shifts are highly variable across species, systems, and studies, complicating efforts to manage and anticipate biodiversity responses to anthropogenic change. In this Review, we summarize approaches to documenting species range shifts, discuss why observed range shifts often do not match our expectations, and explore the impacts of species range shifts on nature and society. The majority (59%) of documented range shifts are directionally consistent with climate change, based on the BioShifts database of range shift observations. However, many observed species have not shifted or have shifted in directions opposite to temperature-based expectations. These lagging or expectation-contrary shifts might be explained by additional biotic or abiotic factors driving range shifts, including additional non-temperature climatic drivers, habitat characteristics, and species interactions, which are not normally considered in range shift documentations. Understanding and managing range shifts will require increasing and connecting observational biological data, generalizing range shift patterns across systems, and predicting shifts at management-relevant timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic and taxonomic biases in range shift detections.
Fig. 2: Proportion of elevational range shifts (a) and latitudinal range shifts (terrestrial and marine) (b) consistent with climate expectations (that is, direction of isotherm shifts) in the BioShifts database22.
Fig. 3: Factors driving range shifts.
Fig. 4: Mismatch between isotherm shifts and range edge shifts across study durations in the BioShifts database22 for elevational shifts (a) and latitudinal shifts (terrestrial and marine) (b).

Similar content being viewed by others

References

  1. Grinnell, J. Field tests of theories concerning distributional control. Am. Nat. 51, 115–128 (1917).

    Article  Google Scholar 

  2. Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).

    Article  CAS  Google Scholar 

  3. Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    Article  Google Scholar 

  4. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).

    Article  Google Scholar 

  5. Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).

    Article  Google Scholar 

  6. Anderson, B. J. et al. Dynamics of range margins for metapopulations under climate change. Proc. R. Soc. B Biol. Sci. 276, 1415–1420 (2009).

    Article  CAS  Google Scholar 

  7. Lenoir, J. & Svenning, J.-C. in Encyclopedia of Biodiversity 599–611 (Elsevier, 2013).

  8. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  9. Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).

    Article  Google Scholar 

  10. Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).

    Article  Google Scholar 

  11. Parmesan, C. Climate and species’ range. Nature 382, 765–766 (1996).

    Article  CAS  Google Scholar 

  12. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  13. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  14. Sorte, C. J. B., Williams, S. L. & Carlton, J. T. Marine range shifts and species introductions: comparative spread rates and community impacts: range shifts and non-native species introductions. Glob. Ecol. Biogeogr. 19, 303–316 (2010).

    Article  Google Scholar 

  15. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article  Google Scholar 

  16. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  17. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    Article  CAS  Google Scholar 

  18. Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).

    Article  Google Scholar 

  19. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  20. Melbourne-Thomas, J. et al. Poleward bound: adapting to climate-driven species redistribution. Rev. Fish Biol. Fish. 32, 231–251 (2022).

    Article  Google Scholar 

  21. Alexander, K. A. et al. Equity of our future oceans: practices and outcomes in marine science research. Rev. Fish Biol. Fish. 32, 297–311 (2022).

    Article  Google Scholar 

  22. Comte, L. et al. BioShifts: a global geodatabase of climate-induced species redistribution over land and sea. figshare https://doi.org/10.6084/m9.figshare.7413365.v1 (2020).

  23. von Humboldt, A. & Bonpland, A. Essai sur la géographie des plantes: accompagné d’un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu’au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803 (Chez Levrault, Schoell et compagnie, libraires, 1805).

  24. Merriam, C. H. Laws of Temperature Control of the Geographic Distribution of Terrestrial Animals and Plants. Natl. Geogr. Mag. 6, 229–238 (1894).

    Google Scholar 

  25. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  26. Odum, E. P. The concept of the biome as applied to the distribution of North American birds. Wilson Bull. 57, 191–201 (1945).

    Google Scholar 

  27. Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Article  Google Scholar 

  28. Gonzalez, P. Desertification and a shift of forest species in the West African Sahel. Clim. Res. 17, 217–228 (2001).

    Article  CAS  Google Scholar 

  29. Hersteinsson, P. & MacDonald, D. W. Interspecific competition and the geographical distribution of red and arctic foxes Vulpes vulpes and Alopex lagopus. Oikos 64, 505 (1992).

    Article  Google Scholar 

  30. Service, C. N. et al. Indigenous knowledge and science unite to reveal spatial and temporal dimensions of distributional shift in wildlife of conservation concern. PLoS ONE 9, e101595 (2014).

    Article  Google Scholar 

  31. Barry, J. P., Baxter, C. H., Sagarin, R. D. & Gilman, S. E. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267, 672–675 (1995).

    Article  CAS  Google Scholar 

  32. Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).

    Article  CAS  Google Scholar 

  33. Fredston‐Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).

    Article  Google Scholar 

  34. Nye, J., Link, J., Hare, J. & Overholtz, W. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    Article  Google Scholar 

  35. La Sorte, F. A. & Thompson, F. R. III Poleward shifts in winter ranges of North American birds. Ecology 88, 1803–1812 (2007).

    Article  Google Scholar 

  36. Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012 (2011).

    Article  Google Scholar 

  37. Shaffer, H. B., Fisher, R. N. & Davidson, C. The role of natural history collections in documenting species declines. Trends Ecol. Evol. 13, 27–30 (1998).

    Article  CAS  Google Scholar 

  38. Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol. 24, 625–633 (2009).

    Article  Google Scholar 

  39. Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    Article  CAS  Google Scholar 

  40. Poloczanska, E. S. et al. Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. J. Exp. Mar. Biol. Ecol. 400, 145–154 (2011).

    Article  Google Scholar 

  41. Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article  Google Scholar 

  42. Lenoir, J., Gégout, J.-C., Pierrat, J.-C., Bontemps, J.-D. & Dhôte, J.-F. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography 32, 765–777 (2009).

    Article  Google Scholar 

  43. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Article  Google Scholar 

  44. Monleon, V. J. & Lintz, H. E. Evidence of tree species’ range shifts in a complex landscape. PLoS ONE 10, e0118069 (2015).

    Article  Google Scholar 

  45. Hammerschlag, N. et al. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). Glob. Change Biol. 28, 1990–2005 (2022).

    Article  Google Scholar 

  46. Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).

    Article  Google Scholar 

  47. García Molinos, J. et al. Climate, currents and species traits contribute to early stages of marine species redistribution. Commun. Biol. 5, 1–10 (2022).

    Article  Google Scholar 

  48. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    Article  CAS  Google Scholar 

  49. Rubenstein, M. A. et al. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. Environ. Evid. 12, 7 (2023).

    Article  Google Scholar 

  50. Amano, T. et al. Tapping into non-English-language science for the conservation of global biodiversity. PLoS Biol. 19, e3001296 (2021).

    Article  CAS  Google Scholar 

  51. Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).

    Article  Google Scholar 

  52. Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217 (2021).

    Article  Google Scholar 

  53. Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416 (2006).

    Article  Google Scholar 

  54. Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).

    Article  CAS  Google Scholar 

  55. Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, art83 (2014).

    Article  Google Scholar 

  56. Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article  Google Scholar 

  57. Comte, L., Buisson, L., Daufresne, M. & Grenouillet, G. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw. Biol. 58, 625–639 (2013).

    Article  Google Scholar 

  58. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  59. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article  CAS  Google Scholar 

  60. Myers, A. A. Biogeographic barriers and the development of marine biodiversity. Estuar. Coast. Shelf Sci. 44, 241–248 (1997).

    Article  Google Scholar 

  61. Huang, Q. et al. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Sci. Total Environ. 857, 159603 (2023).

    Article  CAS  Google Scholar 

  62. Lembrechts, J. J. & Lenoir, J. Microclimatic conditions anywhere at any time! Glob. Change Biol. 26, 337–339 (2020).

    Article  Google Scholar 

  63. Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40, 253–266 (2017).

    Article  Google Scholar 

  64. Maclean, I. M. D. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2020).

    Article  Google Scholar 

  65. Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).

    Article  Google Scholar 

  66. Haesen, S. et al. ForestTemp — sub-canopy microclimate temperatures of European forests. Glob. Change Biol. 27, 6307–6319 (2021).

    Article  CAS  Google Scholar 

  67. Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2022).

    Article  CAS  Google Scholar 

  68. Maclean, I. M. D. & Early, R. Macroclimate data overestimate range shifts of plants in response to climate change. Nat. Clim. Change 13, 1–5 (2023).

    Article  Google Scholar 

  69. Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    Article  Google Scholar 

  70. Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    Article  CAS  Google Scholar 

  71. Hordley, L. A., Fox, R., Suggitt, A. J. & Bourn, N. A. D. Precipitation buffers temperature-driven local extinctions of moths at warm range margins. Ecol. Lett. 00, 1–11 (2023).

    Google Scholar 

  72. Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    Article  CAS  Google Scholar 

  73. McHenry, J., Welch, H., Lester, S. E. & Saba, V. Projecting marine species range shifts from only temperature can mask climate vulnerability. Glob. Change Biol. 25, 4208–4221 (2019).

    Article  Google Scholar 

  74. Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).

    Article  Google Scholar 

  75. Huffeldt, N. P. Photic barriers to poleward range-shifts. Trends Ecol. Evol. 35, 652–655 (2020).

    Article  Google Scholar 

  76. Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).

    Article  CAS  Google Scholar 

  77. Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).

    Article  Google Scholar 

  78. Sunday, J. M. et al. Biological sensitivities to high-resolution climate change projections in the California current marine ecosystem. Glob. Change Biol. 28, 5726–5740 (2022).

    Article  CAS  Google Scholar 

  79. Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).

    Article  Google Scholar 

  80. Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  Google Scholar 

  81. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  82. Twiname, S. et al. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Sci Rep, 10, 21235 (2020).

  83. Edgar, G. J. et al. Continent-wide declines in shallow reef life over a decade of ocean warming. Nature 615, 858–865 (2023).

    Article  CAS  Google Scholar 

  84. Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).

    Article  Google Scholar 

  85. Carvajal-Quintero, J. et al. Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size. Proc. Natl Acad. Sci. USA 116, 13434–13439 (2019).

    Article  CAS  Google Scholar 

  86. Matthews, W. J. & Zimmerman, E. G. Potential effects of global warming on native fishes of the southern Great Plains and the Southwest. Fisheries 15, 26–32 (1990).

    Article  Google Scholar 

  87. Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    Article  Google Scholar 

  88. Hill, J. K., Thomas, C. D. & Huntley, B. Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc. R. Soc. Lond. B Biol. Sci. 266, 1197–1206 (1999).

    Article  Google Scholar 

  89. Morelli, T. L. et al. Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge. Proc. R. Soc. B Biol. Sci. 279, 4279–4286 (2012).

    Article  Google Scholar 

  90. Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).

    Article  Google Scholar 

  91. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    Article  CAS  Google Scholar 

  92. Hodgson, J. A., Randle, Z., Shortall, C. R. & Oliver, T. H. Where and why are species’ range shifts hampered by unsuitable landscapes? Glob. Change Biol. 28, 4765–4774 (2022).

    Article  Google Scholar 

  93. Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).

    Article  CAS  Google Scholar 

  94. Coolen, J. W. P. et al. Marine stepping-stones: connectivity of Mytilus edulis populations between offshore energy installations. Mol. Ecol. 29, 686–703 (2020).

    Article  CAS  Google Scholar 

  95. Reino, L. et al. Modelling landscape constraints on farmland bird species range shifts under climate change. Sci. Total Environ. 625, 1596–1605 (2018).

    Article  CAS  Google Scholar 

  96. Lawler, J. J., Ruesch, A. S., Olden, J. D. & McRae, B. H. Projected climate-driven faunal movement routes. Ecol. Lett. 16, 1014–1022 (2013).

    Article  CAS  Google Scholar 

  97. Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).

    Article  Google Scholar 

  98. García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).

    Article  Google Scholar 

  99. Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).

    Article  Google Scholar 

  100. Copeland, S. M., Bradford, J. B., Duniway, M. C. & Butterfield, B. J. Life history characteristics may be as important as climate projections for defining range shifts: an example for common tree species in the intermountain western US. Divers. Distrib. 24, 1844–1859 (2018).

    Article  Google Scholar 

  101. Naoe, S. et al. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Sci. Rep. 9, 14932 (2019).

    Article  Google Scholar 

  102. Ramos, J. E. et al. Population genetic signatures of a climate change driven marine range extension. Sci. Rep. 8, 9558 (2018).

    Article  Google Scholar 

  103. MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).

    Article  Google Scholar 

  104. Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  Google Scholar 

  105. Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? traits and range shifts. Ecol. Lett. 14, 677–689 (2011).

    Article  Google Scholar 

  106. Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

    Article  Google Scholar 

  107. Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).

    Article  Google Scholar 

  108. HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).

    Article  Google Scholar 

  109. Kerner, J. M., Krauss, J., Maihoff, F., Bofinger, L. & Classen, A. Alpine butterflies want to fly high: species and communities shift upwards faster than their host plants. Ecology 104, e3848 (2023).

    Article  Google Scholar 

  110. Merrill, R. M. et al. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 77, 145–155 (2008).

    Article  Google Scholar 

  111. Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist‐mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).

    Article  Google Scholar 

  112. Lankau, R. A., Zhu, K. & Ordonez, A. Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96, 1451–1458 (2015).

    Article  Google Scholar 

  113. Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, (2017).

  114. Pokallus, J. W. & Pauli, J. N. Population dynamics of a northern-adapted mammal: disentangling the influence of predation and climate change. Ecol. Appl. 25, 1546–1556 (2015).

    Article  Google Scholar 

  115. Wallingford, P. D. et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Change 10, 398–405 (2020).

    Article  Google Scholar 

  116. Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

    Article  CAS  Google Scholar 

  117. Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).

    Article  Google Scholar 

  118. Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Methods Ecol. Evol. 5, 397–406 (2014).

    Article  Google Scholar 

  119. Devarajan, K., Morelli, T. L. & Tenan, S. Multi-species occupancy models: review, roadmap, and recommendations. Ecography 43, 1612–1624 (2020).

    Article  Google Scholar 

  120. Zhang, C., Chen, Y., Xu, B., Xue, Y. & Ren, Y. Improving prediction of rare species’ distribution from community data. Sci. Rep. 10, 12230 (2020).

    Article  CAS  Google Scholar 

  121. Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).

    Article  Google Scholar 

  122. Diamond, S. E. Contemporary climate-driven range shifts: putting evolution back on the table. Funct. Ecol. 32, 1652–1665 (2018).

    Article  Google Scholar 

  123. Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol. Evol. 22, 140–147 (2007).

    Article  Google Scholar 

  124. Nadeau, C. P. & Urban, M. C. Eco‐evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).

    Article  Google Scholar 

  125. Dudaniec, R. Y. et al. Latitudinal clines in sexual selection, sexual size dimorphism and sex-specific genetic dispersal during a poleward range expansion. J. Anim. Ecol. 91, 1104–1118 (2022).

    Article  Google Scholar 

  126. Krause, J. S. et al. Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel’s white-crowned sparrow. Oecologia 180, 33–44 (2016).

    Article  Google Scholar 

  127. Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).

    Article  Google Scholar 

  128. Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linn. Soc. 121, 248–257 (2017).

    Article  Google Scholar 

  129. Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180186 (2019).

    Article  Google Scholar 

  130. Shoo, L. P., Williams, S. E. & Hero, J.-M. Detecting climate change induced range shifts: where and how should we be looking? Austral Ecol. 31, 22–29 (2006).

    Article  Google Scholar 

  131. Guo, Q., Taper, M., Schoenberger, M. & Brandle, J. Spatial-temporal population dynamics across species range: from centre to margin. Oikos 108, 47–57 (2005).

    Article  Google Scholar 

  132. Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).

    Article  Google Scholar 

  133. Iseli, E. et al. Rapid upwards spread of non-native plants in mountains across continents. Nat. Ecol. Evol. 7, 405–413 (2023).

    Article  Google Scholar 

  134. Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J. Veg. Sci. 33, e13117 (2022).

    Article  Google Scholar 

  135. Bates, A. E. et al. Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Divers. Distrib. 21, 13–22 (2015).

    Article  Google Scholar 

  136. Davis, A. et al. Tools for predicting wildlife species distribution response to ecological shifts. Engineer Research and Development Center https://doi.org/10.21079/11681/33482 (2019).

  137. Lindsay, K. Wildlife conservation, protected areas and climate change in Canada: implications of projected species range shifts. Canadian Council on Ecological Areas (2016).

  138. Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).

    Article  CAS  Google Scholar 

  139. Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).

    Article  CAS  Google Scholar 

  140. Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).

    Article  Google Scholar 

  141. Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article  Google Scholar 

  142. Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).

    Article  CAS  Google Scholar 

  143. Kuhn, E. & Gégout, J.-C. Highlighting declines of cold-demanding plant species in lowlands under climate warming. Ecography 42, 36–44 (2019).

    Article  Google Scholar 

  144. Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl Acad. Sci. USA 115, 8990–8995 (2018).

    Article  CAS  Google Scholar 

  145. Zarzyczny, K. M., Rius, M., Williams, S. T. & Fenberg, P. B. The ecological and evolutionary consequences of tropicalisation. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2023.10.006 (2023).

  146. Balik, J. A., Greig, H. S., Taylor, B. W. & Wissinger, S. A. Consequences of climate-induced range expansions on multiple ecosystem functions. Commun. Biol. 6, 390 (2023).

    Article  CAS  Google Scholar 

  147. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  Google Scholar 

  148. Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).

    Article  Google Scholar 

  149. Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    Article  CAS  Google Scholar 

  150. Davis, T. R., Knott, N. A., Champion, C. & Przeslawski, R. Impacts of climate change on densities of the urchin Centrostephanus rodgersii vary among marine regions in eastern Australia. Diversity 15, 419 (2023).

    Article  Google Scholar 

  151. Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).

    Article  CAS  Google Scholar 

  152. Ling, S. & Johnson, C. Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens. Mar. Ecol. Prog. Ser. 374, 113–125 (2009).

    Article  Google Scholar 

  153. Johnson, C., Ling, S., Ross, J., Shepherd, S. & Miller, K. Establishment of the Long-Spined Sea Urchin Centrostephanus rodgersii in Tasmania: First Assessment of Potential Threats to Fisheries. FRDC Project No. 2001/044 (Fisheries Research and Development Corporation, 2005).

  154. Fazlioglu, F., Wan, J. S. H. & Chen, L. Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia 847, 4111–4123 (2020).

    Article  Google Scholar 

  155. Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89, 155–185 (2008).

    Article  Google Scholar 

  156. Descombes, P. et al. Novel trophic interactions under climate change promote alpine plant coexistence. Science 370, 1469–1473 (2020).

    Article  CAS  Google Scholar 

  157. Pecl, G. T. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019).

    Article  Google Scholar 

  158. Oremus, K. L. Climate variability reduces employment in New England fisheries. Proc. Natl Acad. Sci. USA 116, 26444–26449 (2019).

    Article  CAS  Google Scholar 

  159. Young, T. et al. Adaptation strategies of coastal fishing communities as species shift poleward. ICES J. Mar. Sci. 76, 93–103 (2019).

    Article  Google Scholar 

  160. Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).

    Article  CAS  Google Scholar 

  161. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  162. Blackfeet Nation. Blackfeet climate change adaptation plan. Blackfeet Country and Climate Change https://blackfeetclimatechange.com/our-environment/climate-change-adaptation-plan/ (2018).

  163. Sweet, L. C. et al. Congruence between future distribution models and empirical data for an iconic species at Joshua Tree National Park. Ecosphere 10, e02763 (2019).

    Article  Google Scholar 

  164. Carlson, C. J., Bannon, E., Mendenhall, E., Newfield, T. & Bansal, S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19, 20220365 (2023).

    Article  Google Scholar 

  165. Clow, K. M. et al. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLoS ONE 12, e0189393 (2017).

    Article  Google Scholar 

  166. McCracken, G. F. et al. Rapid range expansion of the Brazilian free-tailed bat in the southeastern United States, 2008–2016. J. Mammal. 99, 312–320 (2018).

    Article  Google Scholar 

  167. Siraj, A. S. et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158 (2014).

    Article  CAS  Google Scholar 

  168. Alkishe, A., Raghavan, R. K. & Peterson, A. T. Likely geographic distributional shifts among medically important tick species and tick-associated diseases under climate change in North America: a review. Insects 12, 225 (2021).

    Article  Google Scholar 

  169. Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).

    Article  Google Scholar 

  170. Chinain, M., Gatti, C. M. I., Darius, H. T., Quod, J.-P. & Tester, P. A. Ciguatera poisonings: a global review of occurrences and trends. Harmful Algae 102, 101873 (2021).

    Article  CAS  Google Scholar 

  171. Kulkarni, M. A. et al. 10 years of environmental change on the slopes of Mount Kilimanjaro and its associated shift in malaria vector distributions. Front. Public Health 4, 281 (2016).

    Article  Google Scholar 

  172. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    Article  Google Scholar 

  173. Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article  CAS  Google Scholar 

  174. Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    Article  CAS  Google Scholar 

  175. Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).

    Article  Google Scholar 

  176. Lewis, S. A., Stortini, C. H., Boyce, D. G. & Stanley, R. R. E. Climate change, species thermal emergence, and conservation design: a case study in the Canadian Northwest Atlantic. FACETS 8, 1–16 (2023).

    Article  Google Scholar 

  177. Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

    Article  CAS  Google Scholar 

  178. D’Aloia, C. C. et al. Coupled networks of permanent protected areas and dynamic conservation areas for biodiversity conservation under climate change. Front. Ecol. Evol. 7, 27 (2019).

    Article  Google Scholar 

  179. Cashion, T. et al. Shifting seas, shifting boundaries: dynamic marine protected area designs for a changing climate. PLoS ONE 15, e0241771 (2020).

    Article  CAS  Google Scholar 

  180. Pinsky, M. L., Rogers, L. A., Morley, J. W. & Frölicher, T. L. Ocean planning for species on the move provides substantial benefits and requires few trade-offs. Sci. Adv. 6, eabb8428 (2020).

    Article  Google Scholar 

  181. Lewison, R. et al. Dynamic ocean management: identifying the critical ingredients of dynamic approaches to ocean resource management. BioScience 65, 486–498 (2015).

    Article  Google Scholar 

  182. Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).

    Article  Google Scholar 

  183. Golet, G. H. et al. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 28, 409–426 (2018).

    Article  Google Scholar 

  184. Reynolds, M. D. et al. Dynamic conservation for migratory species. Sci. Adv. 3, e1700707 (2017).

    Article  Google Scholar 

  185. Bloom, A. The Cumberland Forest Project: 253,000 acres of preserved land. The Nature Conservancy https://www.nature.org/en-us/what-we-do/our-priorities/protect-water-and-land/land-and-water-stories/cumberland-forest-project (2019).

  186. Bentrup, G. Conservation buffers — design guidelines for buffers, corridors, and greenways. USDA Forest Service https://doi.org/10.2737/SRS-GTR-109 (2008).

  187. Handler, S., Pike, C., St. Clair, B., Abbotts, H. & Janowiak, M. Assisted migration. USDA Forest Service Climate Change Resource Center https://www.fs.usda.gov/ccrc/topics/assisted-migration (2018).

  188. Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).

    Article  Google Scholar 

  189. Carbajal-Navarro, A. et al. Ecological restoration of Abies religiosa forests using nurse plants and assisted migration in the monarch butterfly biosphere reserve, Mexico. Front. Ecol. Evol. 7, 421 (2019).

    Article  Google Scholar 

  190. Widhalm, T., Fourcade, Y., Frank, T. & Öckinger, E. Population dynamics of the butterfly Pyrgus armoricanus after translocation beyond its northern range margin. Insect Conserv. Divers. 13, 617–629 (2020).

    Article  Google Scholar 

  191. Liu, H. et al. Overcoming extreme weather challenges: successful but variable assisted colonization of wild orchids in southwestern China. Biol. Conserv. 150, 68–75 (2012).

    Article  Google Scholar 

  192. Twardek, W. M. et al. The application of assisted migration as a climate change adaptation tactic: an evidence map and synthesis. Biol. Conserv. 280, 109932 (2023).

    Article  Google Scholar 

  193. Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article  Google Scholar 

  194. Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article  Google Scholar 

  195. Palacios-Abrantes, J. et al. Quantifying fish range shifts across poorly defined management boundaries. PLoS ONE 18, e0279025 (2023).

    Article  CAS  Google Scholar 

  196. Spijkers, J. & Boonstra, W. J. Environmental change and social conflict: the northeast Atlantic mackerel dispute. Reg. Environ. Change 17, 1835–1851 (2017).

    Article  Google Scholar 

  197. Parks, S. A. et al. Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environ. Res. Lett. 17, 054016 (2022).

    Article  Google Scholar 

  198. Palacios-Abrantes, J. et al. Timing and magnitude of climate-driven range shifts in transboundary fish stocks challenge their management. Glob. Change Biol. 28, 2312–2326 (2022).

    Article  CAS  Google Scholar 

  199. Titley, M. A., Butchart, S. H. M., Jones, V. R., Whittingham, M. J. & Willis, S. G. Global inequities and political borders challenge nature conservation under climate change. Proc. Natl Acad. Sci. USA 118, e2011204118 (2021).

    Article  CAS  Google Scholar 

  200. Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).

    Article  Google Scholar 

  201. Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2023).

  202. Lindenmayer, D. B., Lavery, T. & Scheele, B. C. Why we need to invest in large-scale, long-term monitoring programs in landscape ecology and conservation biology. Curr. Landsc. Ecol. Rep. 7, 137–146 (2022).

    Article  Google Scholar 

  203. Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

    Article  CAS  Google Scholar 

  204. Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    Article  Google Scholar 

  205. Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).

    Article  Google Scholar 

  206. Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).

    Article  Google Scholar 

  207. Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 6, 349 (2019).

    Article  Google Scholar 

  208. Middleton, I. et al. Introduced alien, range extension or just visiting? Combining citizen science observations and expert knowledge to classify range dynamics of marine fishes. Divers. Distrib. 27, 1278–1293 (2021).

    Article  Google Scholar 

  209. Fraisl, D. et al. Citizen science in environmental and ecological sciences. Nat. Rev. Methods Primer 2, 64 (2022).

    Article  CAS  Google Scholar 

  210. Paprocki, N., Heath, J. A. & Novak, S. J. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends. PLoS ONE 9, 9 (2014).

    Article  Google Scholar 

  211. Wilson, S., Anderson, E. M., Wilson, A. S. G., Bertram, D. F. & Arcese, P. Citizen science reveals an extensive shift in the winter distribution of migratory western grebes. PLoS ONE 8, e65408 (2013).

    Article  CAS  Google Scholar 

  212. Kirchman, J. J. & Van Keuren, A. E. Altitudinal range shifts of birds at the southern periphery of the boreal forest: 40 years of change in the Adirondack Mountains. Wilson J. Ornithol. 129, 742–753 (2017).

    Article  Google Scholar 

  213. Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014).

    Article  Google Scholar 

  214. Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).

    Article  Google Scholar 

  215. Green, S. J., Brookson, C. B., Hardy, N. A. & Crowder, L. B. Trait-based approaches to global change ecology: moving from description to prediction. Proc. R. Soc. B Biol. Sci. 289, 20220071 (2022).

    Article  Google Scholar 

  216. Couet, J. et al. Short-lived species move uphill faster under climate change. Oecologia 198, 877–888 (2022).

    Article  Google Scholar 

  217. Tekwa, E. W., Watson, J. R. & Pinsky, M. L. Body size and food–web interactions mediate species range shifts under warming. Proc. R. Soc. B Biol. Sci. 289, 20212755 (2022).

    Article  CAS  Google Scholar 

  218. Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article  Google Scholar 

  219. McRae, B. H., Viral B. Shah & Edelman, A. Circuitscape: modeling landscape connectivity to promote conservation and human health. https://doi.org/10.13140/RG.2.1.4265.1126 (2016).

  220. Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).

    Article  Google Scholar 

  221. Cotto, O., Schmid, M. & Guillaume, F. Nemo-age: spatially explicit simulations of eco-evolutionary dynamics in stage-structured populations under changing environments. Methods Ecol. Evol. 11, 1227–1236 (2020).

    Article  Google Scholar 

  222. Kearney, M. R. & Porter, W. P. NicheMapR — an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85–96 (2020).

    Article  Google Scholar 

  223. Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

    Article  Google Scholar 

  224. Engler, R., Hordijk, W. & Guisan, A. The MIGCLIM R package — seamless integration of dispersal constraints into projections of species distribution models. Ecography 35, 872–878 (2012).

    Article  Google Scholar 

  225. Evans, M. E. K., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).

    Article  Google Scholar 

  226. Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Article  Google Scholar 

  227. Bleyhl, B. et al. Reducing persecution is more effective for restoring large carnivores than restoring their prey. Ecol. Appl. 31, e02338 (2021).

    Article  Google Scholar 

  228. Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    Article  CAS  Google Scholar 

  229. Halpern, B. S. et al. Priorities for synthesis research in ecology and environmental science. Ecosphere 14, (2023).

  230. Eveson, J. P., Hobday, A. J., Hartog, J. R., Spillman, C. M. & Rough, K. M. Seasonal forecasting of tuna habitat in the Great Australian Bight. Fish. Res. 170, 39–49 (2015).

    Article  Google Scholar 

  231. Howell, E. A. et al. Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based management. Fish. Oceanogr. 24, 57–68 (2015).

    Article  Google Scholar 

  232. Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016).

    Article  Google Scholar 

  233. Hobday, A. J., Hartog, J. R., Spillman, C. M. & Alves, O. Seasonal forecasting of tuna habitat for dynamic spatial management. Can. J. Fish. Aquat. Sci. 68, 898–911 (2011).

    Article  Google Scholar 

  234. Horton, K. G., Van Doren, B. M., Albers, H. J., Farnsworth, A. & Sheldon, D. Near-term ecological forecasting for dynamic aeroconservation of migratory birds. Conserv. Biol. 35, 1777–1786 (2021).

    Article  Google Scholar 

  235. Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).

    Article  Google Scholar 

  236. Fortin, M.-J. et al. Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108, 7–17 (2005).

    Article  Google Scholar 

  237. Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).

    Article  Google Scholar 

  238. Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).

  239. Yalcin, S. & Leroux, S. J. Diversity and suitability of existing methods and metrics for quantifying species range shifts. Glob. Ecol. Biogeogr. 26, 609–624 (2017).

    Article  Google Scholar 

  240. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article  CAS  Google Scholar 

  241. Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).

    Article  Google Scholar 

  242. Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 1–14 (2017).

    Article  Google Scholar 

  243. Pham, Y., Reardon-Smith, K., Mushtaq, S. & Cockfield, G. The impact of climate change and variability on coffee production: a systematic review. Clim. Change 156, 609–630 (2019).

    Article  CAS  Google Scholar 

  244. Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE 5, e15143 (2010).

    Article  CAS  Google Scholar 

  245. Cao, Y. et al. Trans-Arctic shipping routes expanding faster than the model projections. Glob. Environ. Change 73, 102488 (2022).

    Article  Google Scholar 

  246. Paglia, E. A higher level of civilisation? The transformation of Ny-Ålesund from Arctic coalmining settlement in Svalbard to global environmental knowledge center at 79° north. Polar Rec. 56, e15 (2020).

    Article  Google Scholar 

  247. Sokolickova, Z., Meyer, A. & Vlakhov, A. V. Changing Svalbard: tracing interrelated socio-economic and environmental change in remote Arctic settlements. Polar Rec. 58, e23 (2022).

    Article  Google Scholar 

  248. Organisation for Economic Co-operation and Development (OECD). Climate change in the European Alps: adapting winter tourism and natural hazards management (2007).

  249. Ma, S., Craig, C. A. & Feng, S. The Camping Climate Index (CCI): the development, validation, and application of a camping-sector tourism climate index. Tour. Manag. 80, 104105 (2020).

    Article  Google Scholar 

  250. Fisichelli, N. A., Schuurman, G. W., Monahan, W. B. & Ziesler, P. S. Protected area tourism in a changing climate: will visitation at US national parks warm up or overheat? PLoS ONE 10, e0128226 (2015).

    Article  Google Scholar 

  251. Grillakis, M. G., Koutroulis, A. G., Seiradakis, K. D. & Tsanis, I. K. Implications of 2°C global warming in European summer tourism. Clim. Serv. 1, 30–38 (2016).

    Article  Google Scholar 

  252. World Tourism Organization, UNEP. Climate change and tourism: responding to global challenges (2008).

  253. Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research is a product of the BIOSHIFTS group funded by the Centre for the Synthesis and Analysis of Biodiversity (CESAB), a key program of the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr). J.R. received funding from the Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25– 01; TULIP: ANR-10-LABX-0041, JCJC: ANR-23-CE02-0005-01).

Author information

Authors and Affiliations

Authors

Contributions

J.A.L., L.C., G.G., J.L., B.v.A. and J.S. researched data for the article. J.A.L. and J.S. reviewed the manuscript before submission, and all authors made a substantial contribution to the discussion of content and contributed to writing the article.

Corresponding author

Correspondence to Jake A. Lawlor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Janet Franklin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawlor, J.A., Comte, L., Grenouillet, G. et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat Rev Earth Environ (2024). https://doi.org/10.1038/s43017-024-00527-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-024-00527-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing