Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A LaCl3-based lithium superionic conductor compatible with lithium metal

Abstract

Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries1,2. Here we report a LaCl3-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a Li3MCl6 (M = Y, In, Sc and Ho) electrolyte lattice3,4,5,6, the UCl3-type LaCl3 lattice has large, one-dimensional channels for rapid Li+ conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li+ migration network. The optimized Li0.388Ta0.238La0.475Cl3 electrolyte exhibits Li+ conductivity of 3.02 mS cm−1 at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li–Li symmetric cell (1 mAh cm−2) for more than 5,000 h. When directly coupled with an uncoated LiNi0.5Co0.2Mn0.3O2 cathode and bare Li metal anode, the Li0.388Ta0.238La0.475Cl3 electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm−2. We also demonstrate rapid Li+ conduction in lanthanide metal chlorides (LnCl3; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl3 solid electrolyte system could provide further developments in conductivity and utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed structural model of a LaCl3 lattice-based Li+ superionic conductor and corresponding Li+ migration mechanism.
Fig. 2: Li+ conductivity and identification of Li+ chemical environments in LixTayLazCl3.
Fig. 3: Interfacial stability of Li0.388Ta0.238La0.475Cl3 SE against Li metal electrode.
Fig. 4: Electrochemical performance of Li/Li0.388Ta0.238La0.475Cl3/NCM523 ASSLMB.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

  3. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  Google Scholar 

  4. Li, X. N. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article  CAS  Google Scholar 

  5. Liang, J. W. et al. Site-occupation-tuned superionic Li(x)ScCl(3+x) halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Liang, J. W. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12, 2103921 (2022).

    Article  CAS  Google Scholar 

  7. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Inaguma, Y. et al. High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Morosin, B. Crystal structures of anhydrous rare-earth chlorides. J. Chem. Phys. 49, 3007–3012 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. He, X. F. et al. Crystal structural framework of lithium super-ionic conductors. Adv. Energy Mater. 9, 1902078 (2019).

    Article  CAS  Google Scholar 

  15. Li, Y. T., Han, J. T., Wang, C. A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article  CAS  Google Scholar 

  16. Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article  CAS  Google Scholar 

  17. Kim, S. Y. et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater. Lett. 3, 930–938 (2021).

    Article  CAS  Google Scholar 

  18. Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).

    Article  CAS  Google Scholar 

  19. Zhou, L. D. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article  CAS  Google Scholar 

  20. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  ADS  CAS  Google Scholar 

  21. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 46, 7778–7781 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, L. D., Assoud, A., Zhang, Q., Wu, X. H. & Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. Engl. 58, 8681–8686 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Stallworth, P. E., Fontanella, J. J., Wintersgill, M., Scheidler, C. D. & Immel, J. J. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81–82, 739–747 (1999).

    Article  Google Scholar 

  25. Cahill, L. S., Chapman, R. P., Britten, J. F. & Goward, G. R. Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3. J. Phys. Chem. B 110, 7171–7177 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Davis, L. J. M., Heinmaa, I. & Goward, G. R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using Li-6 VT and 2D exchange MAS NMR spectroscopy. Chem. Mater. 22, 769–775 (2010).

    Article  CAS  Google Scholar 

  27. Wang, D. W. et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 27, 6650–6659 (2015).

    Article  CAS  Google Scholar 

  28. Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chen, H. M., Wong, L. L. & Adams, S. SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallographica B Struct. Sci. Cryst. Eng. Mater. 75, 18–33 (2019).

    Article  CAS  Google Scholar 

  30. Wong, L. L. et al. Bond valence pathway analyzer-an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 33, 625–641 (2021).

    Article  CAS  Google Scholar 

  31. Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. Engl. 60, 6718–6723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han, X. G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Luo, W. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, W. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017).

    Article  Google Scholar 

  35. Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, C. W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ye, L. H. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Jiang, Z. et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces 12, 54662–54670 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. Engl. 58, 8039–8043 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, Y. Z., He, X. F. & Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, Y. C. et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun. 11, 1761 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  ADS  CAS  Google Scholar 

  44. Lu, Y. et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31, 2009925 (2021).

    Article  CAS  Google Scholar 

  45. Li, X. et al. Highly stable halide‐electrolyte‐based all‐solid‐state Li–Se batteries. Adv. Mater. 34, 2200856 (2022).

    Article  CAS  Google Scholar 

  46. Zhou, L. D. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  ADS  CAS  Google Scholar 

  47. Chen, S. J. et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–74 (2018).

    Article  Google Scholar 

  48. Wang, C. W. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Y. et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J. Mater. Chem. A 10, 4517–4532 (2022).

    Article  CAS  Google Scholar 

  50. Kresse, G. G. & Furthmüller, J. J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  52. Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  54. Verlet, L. Computer experiments on classical fluids I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article  ADS  CAS  Google Scholar 

  55. Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  CAS  Google Scholar 

  56. Hoover, W. G. Canonical dynamics – equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  57. He, X. F., Zhu, Y. Z., Epstein, A. & Mo, Y. F. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4, 18 (2018).

    Article  ADS  Google Scholar 

  58. Zhu, Z. Y., Chu, I. H., Deng, Z. & Ong, S. P. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015).

    Article  CAS  Google Scholar 

  59. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  60. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Rodriguezcarvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the Strategic Priority Research Programme of the Chinese Academy of Sciences (grant no. XDB0450000), the National Natural Science Foundation of China (grant nos. 52073271, 22161142004, 52225208 and 21825302), the USTC Research Funds of the Double First-Class Initiative (no. YD2060002034) and the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (no. RERU2022003). All theoretical simulations and calculations in this paper were performed at Hefei Advanced Computing Centre. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. Y.-C.Y. thanks L.-J. Wang for assistance with FIB processing. We thank the Shanghai Synchrotron Radiation Facility for providing the BL14B1 beamtime. We also thank W. Yin, H.-C. Chen and J.-P. Xu for beamtime support at MPI.

Author information

Authors and Affiliations

Authors

Contributions

H.-B.Y. and Y.-C.Y. conceived the concept of the LaCl3 lattice as a Li+ conduction framework and directed the project. Y.-C.Y., J.-T.Y., J.-P.W. and T.M. designed experiments and conducted material synthesis and electrochemical tests. J.-D.L., Z.L. and P.L. carried out DFT and AIMD simulations. X.T., G.-X.L., Y.-H.S. and J.-N.Y. collected and analysed HRTEM images and STEM-EDX data. K.G. and J.-T.Y. carried out 1D and 2D NMR tests and analyses. H.-X.J. and Y.-C.Y. collected and analysed XPS data. Y.-C.Y. and L.-Z.F. collected SEM images. W.W., Y.-F.M., J.-T.Y. and Y.-C.Y. collected PXRD data and conducted XRD refinement. Y.X. and Z.H. collected NPD data and conducted NPD refinement. Y.-C.W., F.L. and H.-S.M. prepared the NCM523 cathode and carried out electrochemical tests. L.-J.W. and Y.-C.Y. conducted FIB processing. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhenyu Li, Xinyong Tao or Hong-Bin Yao.

Ethics declarations

Competing interests

H.-B.Y., Y.-C.Y., J.-T.Y. and J.-D.L. are named as inventors on CN patent no. 202111056096.X, held by the University of Science and Technology of China, that covers the synthesis and applications of UCl3-type ion conductors in all-solid-state batteries.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 PXRD patterns of ball milled LixTayLazCl3 powders.

a, Schematic of the PXRD testing device with quartz cell and Kapton polyimide (PI) film (left figure) and the background XRD pattern of the testing device and the standard XRD peaks of LaCl3 (right figure). b-e, PXRD patterns of LixTayLazCl3 with different Li contents at different Ta/La ratio of 1/1.50 (b), 1/1.75 (c), 1/2.00 (d) and 1/2.25 (e).

Extended Data Fig. 2 Comparison of ionic conductivity near room temperature and activation energy among typical inorganic oxide (grey ellipse), sulfide (yellow ellipse) and chloride (blue ellipse) solid electrolytes3,4,5,10,11,16,18,19,20,21.

The obtained Li0.388Ta0.238La0.475Cl3 SE exhibits a comparable room temperature σ but lower Ea among oxide and chloride SEs. But, in comparison to sulfide SEs, the σ of Li0.388Ta0.238La0.475Cl3 is lower despite its low Ea.

Extended Data Fig. 3 Structure of Li0.388Ta0.238La0.475Cl3 obtained from combined refinement of X-ray and Neutron diffraction.

a-b, Combined refinement results of the SRXRD (a) and NPD patterns (b). c, Structure of Li0.388Ta0.238La0.475Cl3 obtained from combined refinement. d-e, Coordination conditions of Li1 (2b) (d) and Li2 (6h1) (e) from combined refinement results. The red polyhedrons stand for [LiCl6] polyhedron in d and [LiCl5] polyhedron in e, and red-green sticks stand for Li-Cl coordination. It should be noted that the site positions in the lattice are represented by the average occupancy probability of ions not meaning the real existence of ions. The synchrotron diffraction wavelength is 0.687 Å. Due to insufficient sensitivity of X-ray to Li atom and low amount of LiCl in our sample, the diffraction pattern belonging to LiCl possesses too weak the intensity for quantitative analysis, thus the SRXRD pattern in a only confirms the existence of trace-amount LiCl but cannot give the exact content as determined by the NPD pattern.

Extended Data Fig. 4 The structural model and Li+ migration mechanism of the Li0.388Ta0.238La0.475Cl3.

a, Normalized electrostatic energy of 100 Li-free configurations in Li0.388Ta0.238La0.475Cl3 supercell model with representative high-energy (upper) and low-energy (lower), and corresponding radial distribution functions g(r) of Ta-Ta pair as well as vacancy-vacancy (2c site) pair are plotted. For the low-energy structure, Ta and vacancy are evenly distributed in the LaCl3 framework, shown by fewer peaks at short distances. b, Li0.388Ta0.238La0.475Cl3 model (upper panel) and Li3La51Cl18 model (lower panel) obtained after 500 K AIMD simulation for 20 ps (Li ions were removed for clearer exhibition). Compared with the vacancy-contained LaCl3 framework, the vibration of Ta doped framework ions is very severe, leading to the collapse of the framework. c, Side view and top view of three-dimensional Li+ migration pathway in a low-energy Li0.388Ta0.238La0.475Cl3 model calculated by BVSE method, viewed as the white isosurface of constant EBVSE (Li). d, Corresponding energy profile of the migration pathways in panel c, and the red and blue line corresponds to the path in the same color. e, BVSE energy barrier statistics for all 100 structures with different cation arrangements from panel a (after adding Li+). In the BVSE model, the 1D energy barrier is the lowest energy required for Li+ migration along the [001] direction and the 2D energy barriers are the energy corresponding to all possible paths for Li+ to migrate from one channel to another (like the [Li1-Li3-Li4] chain in panel c). The corresponding energy barriers for the structure shown in panel c-d have been marked in this panel using a red pentagram.

Extended Data Fig. 5 Depth-dependent XPS analysis of Ta on the Li0.388Ta0.238La0.475Cl3 surface at the Li/SE interface.

a, Depth-dependent XPS analysis of Ta on the pristine Li0.388Ta0.238La0.475Cl3 pellet to distinguish electrochemically reduced Ta (orange peaks in Fig. 4c) from etching-caused reduced Ta (purple peaks). b, Depth-dependent chemical state changes of Ta on the Li0.388Ta0.238La0.475Cl3 after 50 h cycling in the Li/Li0.388Ta0.238La0.475Cl3/Li symmetric cell. Please see Methods for detailed description of sample preparation.

Extended Data Fig. 6 Morphologies of interface during cycling.

SEM images of Li/SE interface (1st row), SE surface (2nd row) and Li surface (3rd row) after cycling for 50 h (1st column), 100 h (2nd column) and 150 h (3rd column).

Extended Data Fig. 7 Galvanostatic cycling performance of Li/Li0.495Zr0.259Ca0.086La0.432Cl3/Li symmetric cell.

Voltage profile of Li/Li0.495Zr0.259Ca0.086La0.432Cl3/Li symmetric cell cycled under a current density of 2 mA cm−2 with the capacity of 2 mAh cm−2 at 30 °C. The insets show corresponding magnified voltage profiles, indicating the steady Li plating/stripping voltages.

Extended Data Table 1 Structural information of Li0.388Ta0.238La0.475Cl3 from the combined refinement of the SRXRD and NPD data collected at room temperature (~298 K)
Extended Data Table 2 Comparison of all-solid-state lithium batteries using recently reported Li3MCl6 system electrolytes or our LaCl3-based electrolyte. The traditional Li-M-Cl electrolytes includes Li3YCl6 ref. 3, Li3InCl6 ref. 4, Li3ScCl6 ref. 5, Li3HoCl6 ref. 45, Li2ZrCl6 ref. 39, Li2In1/3Sc1/3Cl4 ref. 46 and Li2.7Yb0.7Zr0.3Cl6 ref. 17

Supplementary information

Supplementary Information

This file contains Supplementary figures, tables, discussion and additional references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, YC., Yang, JT., Luo, JD. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023). https://doi.org/10.1038/s41586-023-05899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05899-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing