Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling

Abstract

Cross-coupling between two similar or identical functional groups to form a new C–C bond is a powerful tool to rapidly assemble complex molecules from readily available building units, as seen with olefin cross-metathesis or various types of cross-electrophile coupling1,2. The Kolbe electrolysis involves the oxidative electrochemical decarboxylation of alkyl carboxylic acids to their corresponding radical species followed by recombination to generate a new C–C bond3,4,5,6,7,8,9,10,11,12. As one of the oldest known Csp3–Csp3 bond-forming reactions, it holds incredible promise for organic synthesis, yet its use has been almost non-existent. From the perspective of synthesis design, this transformation could allow one to agnostically execute syntheses without regard to polarity or neighbouring functionality just by coupling ubiquitous carboxylates13. In practice, this promise is undermined by the strongly oxidative electrolytic protocol used traditionally since the nineteenth century5, thereby severely limiting its scope. Here, we show how a mildly reductive Ni-electrocatalytic system can couple two different carboxylates by means of in situ generated redox-active esters, termed doubly decarboxylative cross-coupling. This operationally simple method can be used to heterocouple primary, secondary and even certain tertiary redox-active esters, thereby opening up a powerful new approach for synthesis. The reaction, which cannot be mimicked using stoichiometric metal reductants or photochemical conditions, tolerates a range of functional groups, is scalable and is used for the synthesis of 32 known compounds, reducing overall step counts by 73%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kolbe heterocoupling simplifies synthesis.
Fig. 2: Reaction detail.
Fig. 3: Control studies and ligand analysis.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available within the paper and Supplementary Information.

References

  1. Goldfogel, M. J., Huang, L. & Weix, D. J. in Nickel Catalysis in Organic Synthesis: Methods and Reactions 183–222 (Wiley, 2019).

  2. Chatterjee, A. K., Choi, T.-L., Sanders, D. P. & Grubbs, R. H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 125, 11360–11370 (2003).

    Article  CAS  Google Scholar 

  3. Schäfer, H. J. Anodic and cathodic CC-bond formation. Angew. Chem. Int. Ed. 20, 911–934 (1981).

    Article  Google Scholar 

  4. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  5. Schäfer, H.-J. in Electrochemistry IV (ed. Steckhan, E.) 91–151 (Springer 2005).

  6. Svadkovskaya, G. E. & Voitkevich, S. A. Electrolytic condensation of carboxylic acids. Russ. Chem. Rev. 29, 161–180 (1960).

    Article  ADS  Google Scholar 

  7. Leech, M. C. & Lam, K. Electrosynthesis using carboxylic acid derivatives: new tricks for old reactions. Acc. Chem. Res. 53, 121–134 (2020).

    Article  CAS  Google Scholar 

  8. Chen, N., Ye, Z. & Zhang, F. Recent progress on electrochemical synthesis involving carboxylic acids. Org. Biomol. Chem. 19, 5501–5520 (2021).

    Article  CAS  Google Scholar 

  9. Schäfer, H. J. Recent synthetic applications of the Kolbe electrolysis. Chem. Phys. Lipids 24, 321–333 (1979).

    Article  Google Scholar 

  10. Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).

    Article  CAS  Google Scholar 

  11. Utley, J. Trends in organic electrosynthesis. Chem. Soc. Rev. 26, 157–167 (1997).

    Article  CAS  Google Scholar 

  12. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  Google Scholar 

  13. Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

    Article  CAS  Google Scholar 

  14. Corey, E. J. & Sauers, R. R. The synthesis of pentacyclosqualene (8,8ʹ-cycloönocerene) and the α- and β-onoceradienes. J. Am. Chem. Soc. 81, 1739–1743 (1959).

    Article  CAS  Google Scholar 

  15. Ho, C. K., McAuley, K. B. & Peppley, B. A. Biolubricants through renewable hydrocarbons: a perspective for new opportunities. Renew. Sustain. Energy Rev. 113, 109261 (2019).

    Article  CAS  Google Scholar 

  16. Schäfer, H. J., Harenbrock, M., Klocke, E., Plate, M. & Weiper-Idelmann, A. Electrolysis for the benign conversion of renewable feedstocks. Pure Appl. Chem. 79, 2047–2057 (2007).

    Article  Google Scholar 

  17. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  Google Scholar 

  18. Becking, L. & Schäfer, H. J. Synthesis of a prostaglandine precursor by mixed Kolbe electrolysis of 3-(cyclopent-2-enyloxy)propionate. Tetrahedron Lett. 29, 2801–2802 (1988).

    Article  CAS  Google Scholar 

  19. Weiguny, J. & Schäfer, H. J. Electroorganic synthesis, 57. synthesis of advanced prostaglandin precursors by Kolbe electrolysis, II. – preparation of coacids and anodic initiated tandem radical-addition/radical-coupling reaction with (1′R,4′S,3R/S)-3-(cis-4-acetoxycyclopent-2-enyloxy)-3-ethoxypropionic acid. Liebigs Ann. Chem. 235–242 (1994).

  20. Schierle, K., Hopke, J., Niedt, M.-L., Boland, W. & Steckhan, E. Homologues of dihydro-12-oxo-phytodienoic acid and jasmonic acid by mixed Kolbe electrolysis. Tetrahedron Lett. 37, 8715–8718 (1996).

    Article  CAS  Google Scholar 

  21. Harenbrock, M., Matzeit, A. & Schäfer, H. J. Anodic heterocoupling (mixed Kolbe electrolysis) of carbohydrate carboxylic acids with alkanoic acids to C-glycosides. Liebigs Ann. 55–62 (1996).

  22. Quertenmont, M., Goodall, I., Lam, K., Markó, I. & Riant, O. Kolbe anodic decarboxylation as a green way to access 2-pyrrolidinones. Org. Lett. 22, 1771–1775 (2020).

    Article  CAS  Google Scholar 

  23. Parida, S. K. et al. Single electron transfer-induced redox processes involving N-(acyloxy)phthalimides. ACS Catal. 11, 1640–1683 (2021).

    Article  CAS  Google Scholar 

  24. Murarka, S. N-(Acyloxy)phthalimides as redox-active esters in cross-coupling reactions. Adv. Synth. Catal. 360, 1735–1753 (2018).

    Article  CAS  Google Scholar 

  25. Niu, P., Li, J., Zhang, Y. & Huo, C. One-electron reduction of redox-active esters to generate carbon-centered radicals. Eur. J. Org. Chem. 36, 5801–5814 (2020).

    Article  Google Scholar 

  26. Chan, L. K. M., Gemmell, P. A., Gray, G. W., Lacey, D. & Toyne, K. J. Synthesis and liquid crystal properties of dimethylene linked compounds incorporating the cyclobutane or spiro[3.3]heptane rings. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 168, 229–245 (1989).

    Article  CAS  Google Scholar 

  27. Jones, P. et al. A novel series of potent and selective ketone histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem. 51, 2350–2353 (2008).

    Article  CAS  Google Scholar 

  28. Xu, H., Zhao, C., Qian, Q., Deng, W. & Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. Chem. Sci. 4, 4022–4029 (2013).

    Article  CAS  Google Scholar 

  29. Yu, X., Yang, T., Wang, S., Xu, H. & Gong, H. et al. Nickel-catalyzed reductive cross-coupling of unactivated alkyl halides. Org. Lett. 13, 2138–2141 (2011).

    Article  CAS  Google Scholar 

  30. Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).

    Article  CAS  Google Scholar 

  31. Goldup, S. M., Leigh, D. A., McBurney, R. T., McGonigal, P. R. & Plant, A. Ligand-assisted nickel-catalysed sp3-sp3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes. Chem. Sci. 1, 383–386 (2010).

    Article  CAS  Google Scholar 

  32. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    Article  CAS  Google Scholar 

  33. Liang, Z., Xue, W., Lin, K. & Gong, H. Nickel-catalyzed reductive methylation of alkyl halides and acid chlorides with methyl p-tosylate. Org. Lett. 16, 5620–5623 (2014).

    Article  CAS  Google Scholar 

  34. Kim, S., Goldfogel, M. J., Gilbert, M. M. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling of aryl chlorides with primary alkyl chlorides. J. Am. Chem. Soc. 142, 9902–9907 (2020).

    Article  CAS  Google Scholar 

  35. Prinsell, M. R., Everson, D. A. & Weix, D. J. Nickel-catalyzed, sodium iodide-promoted reductive dimerization of alkyl halides, alkyl pseudohalides, and allylic acetates. Chem. Commun. 46, 5743–5745 (2010).

    Article  CAS  Google Scholar 

  36. Yang, Z.-P., Freas, D. J. & Fu, G. C. Asymmetric synthesis of protected unnatural α-amino acids via enantioconvergent nickel-catalyzed cross-coupling. J. Am. Chem. Soc. 143, 8614–8618 (2021).

    Article  CAS  Google Scholar 

  37. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 4657–4673 (2010).

    Article  CAS  Google Scholar 

  38. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  Google Scholar 

  39. Breitenfeld, J., Ruiz, J., Wodrich, M. D. & Hu, X. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl–alkyl kumada coupling reactions. J. Am. Chem. Soc. 135, 12004–12012 (2013).

    Article  CAS  Google Scholar 

  40. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  Google Scholar 

  41. Zhao, C., Jia, X., Wang, X. & Gong, H. Ni-catalyzed reductive coupling of alkyl acids with unactivated tertiary alkyl and glycosyl halides. J. Am. Chem. Soc. 136, 17645–17651 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D.-H. Huang and L. Pasternack (Scripps Research) for nuclear magnetic resonance spectroscopic assistance. Financial support for this work was provided by National Science Foundation Center for Synthetic Organic Electrochemistry (CHE-2002158), and the National Institutes of Health (grant number GM-118176).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by B.Z., Y.K. and P.S.B. Experimental investigation was carried out by B.Z., Y.G., Y.H., M.S.O., J.X.Q., K.X.R., H.-J.Z. and Y.K. Data analysis was done by B.Z., Y.G., Y.H., M.S.O., J.X.Q., K.X.R., H.-J.Z., Y.K. and P.S.B. The manuscript was written by B.Z., Y.G., Y.K. and P.S.B. Finance was acquired by P.S.B. Project administration was done by Y.K. and P.S.B. Supervision was carried out by P.S.B.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Scott Bagley, Kevin Lam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Material, Compounds and References.

Supplementary Data

Source data for radical clock study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gao, Y., Hioki, Y. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022). https://doi.org/10.1038/s41586-022-04691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04691-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing