Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TYK2: an emerging therapeutic target in rheumatic disease

Abstract

Tyrosine kinase 2 (TYK2) is a member of the JAK kinase family of intracellular signalling molecules. By participating in signalling pathways downstream of type I interferons, IL-12, IL-23 and IL-10, TYK2 elicits a distinct set of immune events to JAK1, JAK2 and JAK3. TYK2 polymorphisms have been associated with susceptibility to various rheumatic diseases including systemic lupus erythematosus and dermatomyositis. In vitro and animal studies substantiate these findings, highlighting a role for TYK2 in diseases currently managed by antagonists of cytokines that signal through TYK2. Various inhibitors of TYK2 have now been studied in human disease, and one of these inhibitors, deucravacitinib, has now been approved for the treatment of psoriasis. Phase II trials of deucravacitinib have also reported positive results in the treatment of psoriatic arthritis and systemic lupus erythematosus, with a preliminary safety profile that seems to differ from that of the JAK1, JAK2 and JAK3 inhibitors. Two other inhibitors of TYK2, brepocitinib and ropsacitinib, are also in earlier stages of clinical trials. Overall, TYK2 inhibitors hold promise for the treatment of a distinct spectrum of autoimmune diseases and could potentially have a safety profile that differs from other JAK inhibitors.

Key points

  • Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in signalling downstream of a distinct set of cytokines, including IL-12, IL-23, type I interferons and IL-10.

  • TYK2 has a potential role in diseases in which these cytokines are pathogenic; given its limited cytokine profile, inhibitors of TYK2 could have a different safety profile from other JAK inhibitors.

  • The selective TYK2 inhibitor deucravacitinib has a unique mode of action that involves allosteric inhibition of TYK2 via binding to a pseudokinase domain.

  • Other known inhibitors of TYK2, including brepocitinib and ropsacitinib, bind to the kinase domain of TYK2, and have inhibitory activity against other JAK kinases.

  • Phase III clinical trials of deucravacitinib have resulted in its approval for the treatment of plaque psoriasis, and phase II trials in psoriatic arthritis and systemic lupus erythematosus were positive.

  • Preliminary safety data to date suggest that deucravacitinib has a distinct safety profile compared with other JAK inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytokine signalling through TYK2 and other JAKs.
Fig. 2: Potential indications for TYK2 blockade.

Similar content being viewed by others

References

  1. Conn, D. L. The story behind the use of glucocorticoids in the treatment of rheumatoid arthritis. Semin. Arthritis Rheum. 51, 15–19 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McLornan, D. P., Pope, J. E., Gotlib, J. & Harrison, C. N. Current and future status of JAK inhibitors. Lancet 398, 803–816 (2021).

    Article  PubMed  Google Scholar 

  4. O’Shea, J. J. & Gadina, M. Selective Janus kinase inhibitors come of age. Nat. Rev. Rheumatol. 15, 74–75 (2019).

    Article  PubMed  Google Scholar 

  5. Liu, C., Kieltyka, J., Fleischmann, R., Gadina, M. & O’Shea, J. J. A decade of JAK inhibitors: what have we learned and what may be the future? Arthritis Rheumatol. 73, 2166–2178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Strobl, B., Stoiber, D., Sexl, V. & Mueller, M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front. Biosci. 16, 3214–3232 (2011).

    Article  Google Scholar 

  8. Burke, J. R. et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci. Transl. Med. 11 (2019).

  9. Fuchs, S. et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur. J. Immunol. 46, 2639–2649 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, K., Oak, A. S. W. & Elewski, B. E. Use of IL-23 inhibitors for the treatment of plaque psoriasis and psoriatic arthritis: a comprehensive review. Am. J. Clin. Dermatol. 22, 173–192 (2021).

    Article  PubMed  Google Scholar 

  12. Singh, J. A. et al. 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the Treatment of Psoriatic Arthritis. Arthritis Rheumatol. 71, 5–32 (2019).

    Article  PubMed  Google Scholar 

  13. Gossec, L. et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 79, 700–712 (2020).

    Article  PubMed  Google Scholar 

  14. Menter, A. et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 80, 1029–1072 (2019).

    Article  PubMed  Google Scholar 

  15. Sarabia, S., Ranjith, B., Koppikar, S. & Wijeratne, D. T. Efficacy and safety of JAK inhibitors in the treatment of psoriasis and psoriatic arthritis: a systematic review and meta-analysis. BMC Rheumatol. 6, 71 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, e208–e219 (2019).

    Article  PubMed  Google Scholar 

  18. Kalunian, K. C. et al. A randomized, placebo-controlled phase III extension trial of the long-term safety and tolerability of anifrolumab in active systemic lupus erythematosus. Arthritis Rheumatol. 75, 253–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Hagberg, N. et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE. Ann. Rheum. Dis. 77, 1070–1077 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76, 528–537 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cunninghame Graham, D. S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7, e1002341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin, Q. et al. Comprehensive assessment of the association between genes on JAK-STAT pathway (IFIH1, TYK2, IL-10) and systemic lupus erythematosus: a meta-analysis. Arch. Dermatol. Res. 310, 711–728 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One 10, e0122271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lopez-Isac, E. et al. Influence of TYK2 in systemic sclerosis susceptibility: a new locus in the IL-12 pathway. Ann. Rheum. Dis. 75, 1521–1526 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Bossini-Castillo, L. et al. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum. Mol. Genet. 21, 926–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, L. et al. Interleukin-22 from type 3 innate lymphoid cells aggravates lupus nephritis by promoting macrophage infiltration in lupus-prone mice. Front. Immunol. 12, 584414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, X. et al. Increased interleukin-22 levels in lupus nephritis and its associated with disease severity: a study in both patients and lupus-like mice model. Clin. Exp. Rheumatol. 37, 400–407 (2018).

    PubMed  Google Scholar 

  29. Jani, M. et al. Genotyping of immune-related genetic variants identifies TYK2 as a novel associated locus for idiopathic inflammatory myopathies. Ann. Rheum. Dis. 73, 1750–1752 (2014).

    Article  PubMed  Google Scholar 

  30. Hromadova, D., Elewaut, D., Inman, R. D., Strobl, B. & Gracey, E. From science to success? targeting tyrosine kinase 2 in spondyloarthritis and related chronic inflammatory diseases. Front. Genet. 12, 685280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeda. Takeda announces positive results in phase 2b study of investigational TAK-279, an oral, once-daily TYK2 inhibitor, in people with moderate-to-severe plaque psoriasis [press release]. Takeda.com https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279/ (2023).

  32. Papp, K. et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379, 1313–1321 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong, A. W. et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J. Am. Acad. Dermatol. 88, 29–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Strober, B. et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program for Evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 88, 40–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Mease, P. J. et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann. Rheum. Dis. 81, 815–822 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Felson, D. T. et al. American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheumatol. 38, 727–735 (1995).

    Article  CAS  Google Scholar 

  37. Furie, R. A. et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheumatol. 61, 1143–1151 (2009).

    Article  CAS  Google Scholar 

  38. Morand, E. et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 75, 242–252 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Connelly, K., Golder, V., Kandane-Rathnayake, R. & Morand, E. F. Clinician-reported outcome measures in lupus trials: a problem worth solving. Lancet Rheumatol. 3, e595–e603 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, C. et al. Pharmacodynamic changes in SLE relevant gene expression induced by deucravacitinib in patients enrolled in the phase 2. Arthritis Rheumatol. 75 https://doi.org/10.1002/art.42700 (2023).

  41. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann. Rheum. Dis. 73, 183–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Klein, R. et al. Development of the CLASI as a tool to measure disease severity and responsiveness to therapy in cutaneous lupus erythematosus. Arch. Dermatol. 147, 203–208 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Golder, V. et al. Lupus low disease activity state as a treatment endpoint for systemic lupus erythematosus: a prospective validation study. Lancet Rheumatol. 1, e95–e102 (2019).

    Article  PubMed  Google Scholar 

  44. Petri, M. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). Lancet 401, 1011–1019 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Morand, E. F. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-I). Lancet 401, 1001–1010 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Dorner, T. et al. Baricitinib-associated changes in global gene expression during a 24-week phase II clinical systemic lupus erythematosus trial implicates a mechanism of action through multiple immune-related pathways. Lupus Sci. Med. 7, e000424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vogel, A. et al. JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction. Cell Rep. 38, 110420 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Morand, E. F., Fernandez-Ruiz, R., Blazer, A. & Niewold, T. B. Advances in the management of systemic lupus erythematosus. BMJ 383, e073980 (2023).

    Article  PubMed  Google Scholar 

  49. ClinicalTrials.gov, United States National Library of Medicine. Efficacy and Safety of Deucravacitinib Versus Placebo in Participants With Moderate-to-severe Scalp Psoriasis, https://clinicaltrials.gov/study/NCT05478499 (2023).

  50. ClinicalTrials.gov. United States National Library of Medicine. A Study to Assess Effectiveness and Safety of Deucravacitinib Compared With Placebo in Participants With Active Systemic Lupus Erythematosus (SLE) (POETYK SLE-1), https://clinicaltrials.gov/study/NCT05617677 (2024).

  51. ClinicalTrials.gov. United States National Library of Medicine. A Study to Determine the Efficacy and Safety of Deucravacitinib Compared With Placebo in Participants With Active Psoriatic Arthritis (PsA) Who Are Naïve to Biologic Disease-modifying Anti-rheumatic Drugs, https://clinicaltrials.gov/study/NCT04908202 (2024).

  52. ClinicalTrials.gov, United States National Library of Medicine. A Study to Evaluate Efficacy and Safety of Deucravacitinib in Participants With Active Discoid and/ or Subacute Cutaneous Lupus Erythematosus (DLE/SCLE), https://clinicaltrials.gov/study/NCT04857034 (2024).

  53. ClinicalTrials.gov, United States National Library of Medicine. A Study to Evaluate Efficacy and Safety of Deucravacitinib in Participants With Alopecia Areata https://clinicaltrials.gov/study/NCT05556265 (2024).

  54. ClinicalTrials.gov, United States National Library of Medicine. A Study to Evaluate the Long-term Safety and Efficacy of Deucravacitinib in Participants With Crohn’s Disease or Ulcerative Colitis. https://clinicaltrials.gov/study/NCT04877990 (2023).

  55. ClinicalTrials.gov, United States National Library of Medicine. A Study of the Safety, Efficacy, and Biomarker Response of BMS-986165 in Participants With Moderate to Severe Ulcerative Colitis. https://clinicaltrials.gov/study/NCT04613518 (2023).

  56. Danese, S. et al. DOP42 efficacy and safety of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor, in patients with moderately-to-severely active ulcerative colitis: 12-week results from the Phase 2 LATTICE-UC study. J. Crohn’s Colitis 16, i091–i092 (2022).

    Article  Google Scholar 

  57. Banfield, C. et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J. Clin. Pharmacol. 58, 434–447 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Singh, R. S. P. et al. Safety and pharmacokinetics of the oral TYK2 inhibitor PF-06826647: a phase I, randomized, double-blind, placebo-controlled, dose-escalation study. Clin. Transl. Sci. 14, 671–682 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Gerstenberger, B. S. et al. Discovery of tyrosine kinase 2 (TYK2) inhibitor (PF-06826647) for the treatment of autoimmune diseases. J. Med. Chem. 63, 13561–13577 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Tehlirian, C. et al. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J. Am. Acad. Dermatol. 87, 333–342 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Forman, S. B. et al. TYK2/JAK1 inhibitor PF-06700841 in patients with plaque psoriasis: phase IIa, randomized, double-blind, placebo-controlled trial. J. Invest. Dermatol. 140, 2359–2370 e2355 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Mease, P. et al. Efficacy and safety of the TYK2/JAK1 inhibitor brepocitinib for active psoriatic arthritis: a phase IIb randomized controlled trial. Arthritis Rheumatol. 75, 1370–1380 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Sandborn, W. J. et al. Oral ritlecitinib and brepocitinib for moderate-to-severe ulcerative colitis: results from a randomized, phase 2b study. Clin. Gastroenterol. Hepatol. 21, 2616–2628.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ojuawo, O., Allen, R., Hagan, G. & Piracha, S. Disseminated tuberculosis associated with deficient interleukin-23/tyrosine kinase 2 signalling. BMJ Case Rep. 15, e250479 (2022).

    Article  PubMed  Google Scholar 

  66. Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8, 363ra149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y. et al. COVID-19 and systemic lupus erythematosus genetics: a balance between autoimmune disease risk and protection against infection. PLoS Genet. 18, e1010253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nogueira, M., Puig, L. & Torres, T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs 80, 341–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Fleischmann, R. et al. Safety of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor: as assessed by laboratory parameters — results from a phase 2 trial in psoriatic arthritis and 2 phase 3 trials in psoriasis. Arthritis Rheumatol. 74 https://doi.org/10.1002/art.42355 (2022).

  71. Catlett, I. M. et al. First-in-human study of deucravacitinib: a selective, potent, allosteric small-molecule inhibitor of tyrosine kinase 2. Clin. Transl. Sci. 16, 151–164 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Hak, A. E., Karlson, E. W., Feskanich, D., Stampfer, M. J. & Costenbader, K. H. Systemic lupus erythematosus and the risk of cardiovascular disease: results from the nurses’ health study. Arthritis Rheumatol. 61, 1396–1402 (2009).

    Article  Google Scholar 

  73. Tummala, R. et al. Safety profile of anifrolumab in patients with active SLE: an integrated analysis of phase II and III trials. Lupus Sci. Med. 8, e000464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fleischmann, R. et al. Safety of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor: as assessed by laboratory parameters — results from a phase 2 trial in psoriatic arthritis and 2 phase 3 trials in psoriasis. Arthritis Rheumatol. 74 (2022).

  75. Tabata, M. M. et al. The type I interferon signature reflects multiple phenotypic and activity measures in dermatomyositis. Arthritis Rheumatol. 75, 1842–1849 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eric Morand.

Ethics declarations

Competing interests

R.F. declares that he has acted as a consultant for AbbVie, Amgen, Atomwise, BMS, Galvani, Galapagos, Gilead, GSK, Immunovant, Janssen, Eli Lilly. Novartis, Pfizer, UCB and Vyne; serves on the data safety monitoring boards for Celltrion, EMDSerano and Kiniksa; and has received clinical trial grants from AbbVie, Arthrosi, Biogen, BMS, Eli Lilly, Flexion, Galvani, Genentech, Gilead, GSK, Horizon, Janssen, Novartis, Oletec, Priovant, Scipher, Selecta, UCB and Viela. Y.T. declares that he has received speaking fees and/or honoraria from AbbVie, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers, Chugai, Daiichi-Sankyo, Eli Lilly, Eisai, Gilead, GlaxoSmithKline, Mitsubishi-Tanabe and Pfizer; and research grants from Asahi-Kasei, AbbVie, Behringer-Ingelheim, Chugai, Daiichi-Sankyo, Eisai and Takeda. D.G. declares that she has received grant support from AbbVie, Amgen, Eli Lilly, Janssen, Novartis, Pfizer and UCB; and consulting fees from AbbVie, Amgen, BMS, Eli Lilly, Galapagos, Gilead, Janssen, Novartis, Pfizer and UCB. E.M. declares that he has received research grants from AbbVie, Amgen, AstraZeneca, Biogen, Bristol Myers Squibb, Eli Lilly, EMD Serono, Genentech, GSK, Janssen, Takeda and UCB; and advisory and/or honoraria from AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Eli Lilly, EMD Serono, Genentech, GSK, Gilead, Novartis, Takeda and Zenas. J.F.M. declares that he has acted as a consultant for AbbVie, Biogen, Celgene, Dermavant, Eli Lilly, Janssen, Leo Pharma, Novartis, Pfizer and UCB.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Peter Nash and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morand, E., Merola, J.F., Tanaka, Y. et al. TYK2: an emerging therapeutic target in rheumatic disease. Nat Rev Rheumatol 20, 232–240 (2024). https://doi.org/10.1038/s41584-024-01093-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01093-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing