Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kinase inhibition in autoimmunity and inflammation

Abstract

Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current landscape of major druggable inflammatory receptors and corresponding kinases implicated in human disease.
Fig. 2: JAK1, JAK2, JAK3 and TYK2 integrate the signalling cascades of a diverse set of cytokine and growth receptors.
Fig. 3: IRAK4 is the upstream kinase that transduces TLRs and IL-1R signals.
Fig. 4: RIP kinases regulate cell death and inflammatory pathways.
Fig. 5: ITK and BTK in antigen receptor, TLR and FcR signalling.
Fig. 6: TPL2 regulatory inflammatory response downstream of TLRs, TNFR and IL-1R.
Fig. 7: IKKε and TBK1 kinases integrate signalling from nucleic acid sensors.
Fig. 8: Multiple immune receptors trigger NF-κB canonical and non-canonical pathways.

Similar content being viewed by others

References

  1. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    CAS  PubMed  Google Scholar 

  2. Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 5, 18 (2019).

    PubMed  Google Scholar 

  3. Spinelli, F. R., Conti, F. & Gadina, M. HiJAKing SARS-CoV-2? The potential role of JAK inhibitors in the management of COVID-19. Sci. Immunol. 5, eabc5367 (2020).

    CAS  PubMed  Google Scholar 

  4. Patterson, H., Nibbs, R., McInnes, I. & Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol. 176, 1–10 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, L., Wang, F. S. & Gershwin, M. E. Human autoimmune diseases: a comprehensive update. J. Intern. Med. 278, 369–395 (2015).

    CAS  PubMed  Google Scholar 

  6. Krainer, J., Siebenhandl, S. & Weinhausel, A. Systemic autoinflammatory diseases. J. Autoimmun. 109, 102421 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Paluch, C., Santos, A. M., Anzilotti, C., Cornall, R. J. & Davis, S. J. Immune checkpoints as therapeutic targets in autoimmunity. Front. Immunol. 9, 2306 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Radawski, C. et al. Patient perceptions of unmet medical need in rheumatoid arthritis: a cross-sectional survey in the USA. Rheumatol. Ther. 6, 461–471 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Ferguson, F. M. & Gray, N. S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17, 353–377 (2018). This comprehensive review on various kinases and their utility also describes the technologies that are enabling efficient generation of highly optimized kinase inhibitors.

    CAS  PubMed  Google Scholar 

  10. Cohen, P. Targeting protein kinases for the development of anti-inflammatory drugs. Curr. Opin. Cell Biol. 21, 317–324 (2009).

    CAS  PubMed  Google Scholar 

  11. Lin, W. et al. Dual B cell immunotherapy is superior to individual anti-CD20 depletion or BAFF blockade in murine models of spontaneous or accelerated lupus. Arthritis Rheumatol. 67, 215–224 (2015).

    CAS  PubMed  Google Scholar 

  12. Boleto, G., Kanagaratnam, L., Drame, M. & Salmon, J. H. Safety of combination therapy with two bDMARDs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 49, 35–42 (2018).

    PubMed  Google Scholar 

  13. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017). This review focuses on the biology of JAK family members and various inhibitors that are in the clinic.

    CAS  PubMed  Google Scholar 

  14. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    CAS  PubMed  Google Scholar 

  15. Sun, S. C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545–558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Arthur, J. S. & Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    CAS  PubMed  Google Scholar 

  17. Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol. 16, 124–128 (2016).

    CAS  PubMed  Google Scholar 

  18. Bluestone, J. A., Mackay, C. R., O’Shea, J. J. & Stockinger, B. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boothby, I. C., Cohen, J. N. & Rosenblum, M. D. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaz9631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adler, L. N. et al. The other function: class II-restricted antigen presentation by B cells. Front. Immunol. 8, 319 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    CAS  PubMed  Google Scholar 

  22. Vanamee, E. S. & Faustman, D. L. Structural principles of tumor necrosis factor superfamily signaling. Sci. Signal. https://doi.org/10.1126/scisignal.aao4910 (2018).

    Article  PubMed  Google Scholar 

  23. Boraschi, D., Italiani, P., Weil, S. & Martin, M. U. The family of the interleukin-1 receptors. Immunol. Rev. 281, 197–232 (2018).

    CAS  PubMed  Google Scholar 

  24. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 (2011).

    CAS  PubMed  Google Scholar 

  25. Wojno, E. D. & Hunter, C. A. New directions in the basic and translational biology of interleukin-27. Trends Immunol. 33, 91–97 (2012).

    CAS  PubMed  Google Scholar 

  26. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    CAS  PubMed  Google Scholar 

  27. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  28. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    CAS  PubMed  Google Scholar 

  29. Clynes, R. et al. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189, 179–185 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  31. Senger, K. et al. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Sci Signal. 10, eaah4273 (2017). This report shows that TPL2 activates both ERK and p38 signalling to impact neutrophilic inflammation.

    PubMed  Google Scholar 

  32. Kung, J. E. & Jura, N. Structural basis for the non-catalytic functions of protein kinases. Structure 24, 7–24 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rauch, J., Volinsky, N., Romano, D. & Kolch, W. The secret life of kinases: functions beyond catalysis. Cell Commun. Signal. 9, 23 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Danto, S. I. et al. Efficacy and safety of the selective interleukin-1 receptor associated kinase 4 inhibitor, PF-06650833, in patients with active rheumatoid arthritis and inadequate response to methotrexate [Abstract 2909]. Arthritis Rheumatol. 70 (Suppl. 10) (2019).

  35. Owen, C., Berinstein, N. L., Christofides, A. & Sehn, L. H. Review of Bruton tyrosine kinase inhibitors for the treatment of relapsed or refractory mantle cell lymphoma. Curr. Oncol. 26, e233–e240 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Warr, M. et al. GS-4875, a first-in-class TPL2 inhibitor suppresses MEK-ERK inflammatory signaling and proinflammatory cytokine production in primary human monocytes [Abstract 33]. Arthritis Rheumatol. 71 (Suppl. 10) (2019). This is the first report of clinical application of TPL2 inhibitors in inflammatory diseases.

  37. Mullard, A. FDA approves first-in-class SYK inhibitor. Nat. Rev. Drug Discov. 17, 385 (2018).

    PubMed  Google Scholar 

  38. Burke, J. R. et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aaw1736 (2019). This remarkable study shows that inhibiting the pseudo-kinase activity of TYK2 with the novel molecule BMS-986165 can reduce kinase activity with much greater selectivity for TYK2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mayence, A. & Vanden Eynde, J. J. Baricitinib: a 2018 novel FDA-approved small molecule inhibiting janus kinases. Pharmaceuticals https://doi.org/10.3390/ph12010037 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xu, H. et al. PF-06651600, a dual JAK3/TEC family kinase inhibitor. ACS Chem. Biol. 14, 1235–1242 (2019).

    CAS  PubMed  Google Scholar 

  41. Tarrant, J. M. et al. Filgotinib, a JAK1 inhibitor, modulates disease-related biomarkers in rheumatoid arthritis: results from two randomized, controlled phase 2b trials. Rheumatol. Ther. 7, 173–190 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    CAS  PubMed  Google Scholar 

  43. Kudlacz, E., Conklyn, M., Andresen, C., Whitney-Pickett, C. & Changelian, P. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur. J. Pharmacol. 582, 154–161 (2008).

    CAS  PubMed  Google Scholar 

  44. Kudlacz, E. et al. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am. J. Transpl. 4, 51–57 (2004).

    CAS  Google Scholar 

  45. Vainchenker, W. et al. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Research 7, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Bewersdorf, J. P., Jaszczur, S. M., Afifi, S., Zhao, J. C. & Zeidan, A. M. Beyond ruxolitinib: fedratinib and other emergent treatment options for myelofibrosis. Cancer Manag. Res. 11, 10777–10790 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corren, J. et al. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377, 936–946 (2017).

    CAS  PubMed  Google Scholar 

  48. Sandborn, W. J. et al. Development of gut-selective pan-Janus kinase inhibitor TD-1473 for ulcerative colitis: a translational medicine program. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjaa049 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jones, P. et al. Design and synthesis of a pan-Janus kinase inhibitor clinical candidate (PF-06263276) suitable for inhaled and topical delivery for the treatment of inflammatory diseases of the lungs and skin. J. Med. Chem. 60, 767–786 (2017). This paper describes the generation of the inhaled or topical JAK inhibitors with restricted exposure in specific organs, such as the lung or skin.

    CAS  PubMed  Google Scholar 

  50. Dengler, H. S. et al. Lung-restricted inhibition of Janus kinase 1 is effective in rodent models of asthma. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aao2151 (2018).

    Article  PubMed  Google Scholar 

  51. Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl Med. 8, 363ra149 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Couturier, N. et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 134, 693–703 (2011).

    PubMed  Google Scholar 

  53. Papp, K. et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379, 1313–1321 (2018). This paper shows that BMS-986165 works better than placebo to clear psoriasis over 12 weeks.

    CAS  PubMed  Google Scholar 

  54. Richardson, P. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395, e30–e31 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cantini, F. et al. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J. Infect. https://doi.org/10.1016/j.jinf.2020.04.017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Motshwene, P. G. et al. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284, 25404–25411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin, S. C., Lo, Y. C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferrao, R. et al. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol. Cell 55, 891–903 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    CAS  PubMed  Google Scholar 

  60. Li, S., Strelow, A., Fontana, E. J. & Wesche, H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl Acad. Sci. USA 99, 5567–5572 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    CAS  PubMed  Google Scholar 

  62. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. & Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell Biol. 22, 7158–7167 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wan, Y. et al. Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J. Biol. Chem. 284, 10367–10375 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    CAS  PubMed  Google Scholar 

  65. Zhou, H. et al. IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs. eLife https://doi.org/10.7554/eLife.29630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wesche, H. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J. Biol. Chem. 274, 19403–19410 (1999).

    CAS  PubMed  Google Scholar 

  67. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  68. Zhou, H. et al. IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production. EMBO J. 32, 583–596 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Su, J., Zhang, T., Tyson, J. & Li, L. The interleukin-1 receptor-associated kinase M selectively inhibits the alternative, instead of the classical NFκB pathway. J. Innate Immun. 1, 164–174 (2009).

    CAS  PubMed  Google Scholar 

  70. Chiang, C. Y. et al. Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe 11, 306–318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Negishi, H. et al. Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc. Natl Acad. Sci. USA 103, 15136–15141 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmitz, F. et al. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-β production in myeloid dendritic cells. Eur. J. Immunol. 37, 315–327 (2007).

    CAS  PubMed  Google Scholar 

  73. Ku, C. L. et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet. 44, 16–23 (2007).

    CAS  PubMed  Google Scholar 

  74. Cushing, L. et al. IRAK4 kinase activity controls Toll-like receptor-induced inflammation through the transcription factor IRF5 in primary human monocytes. J. Biol. Chem. 292, 18689–18698 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kawagoe, T. et al. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J. Exp. Med. 204, 1013–1024 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Swantek, J. L., Tsen, M. F., Cobb, M. H. & Thomas, J. A. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J. Immunol. 164, 4301–4306 (2000).

    CAS  PubMed  Google Scholar 

  77. Koziczak-Holbro, M. et al. IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and Toll-like receptor 7-mediated signaling and gene expression. J. Biol. Chem. 282, 13552–13560 (2007).

    CAS  PubMed  Google Scholar 

  78. Dudhgaonkar, S. et al. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J. Immunol. 198, 1308–1319 (2017). This paper is the first demonstration that selective IRAK4 inhibitor can dampen disease in preclinical models of lupus.

    CAS  PubMed  Google Scholar 

  79. Murphy, M., Pattabiraman, G., Manavalan, T. T. & Medvedev, A. E. Deficiency in IRAK4 activity attenuates manifestations of murine lupus. Eur. J. Immunol. 47, 880–891 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nanda, S. K., Lopez-Pelaez, M., Arthur, J. S., Marchesi, F. & Cohen, P. Suppression of IRAK1 or IRAK4 catalytic activity, but not type 1 IFN signaling, prevents lupus nephritis in mice expressing a ubiquitin binding-defective mutant of ABIN1. J. Immunol. 197, 4266–4273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, S. H. et al. The dietary flavonoid kaempferol mediates anti-inflammatory responses via the Src, Syk, IRAK1, and IRAK4 molecular targets. Mediators Inflamm. 2015, 904142 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Rekhter, M. et al. Genetic ablation of IRAK4 kinase activity inhibits vascular lesion formation. Biochem. Biophys. Res. Commun. 367, 642–648 (2008).

    CAS  PubMed  Google Scholar 

  83. Cameron, B. et al. Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 15112–15123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Thomas, J. A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984 (1999).

    CAS  PubMed  Google Scholar 

  85. Della Mina, E. et al. Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc. Natl Acad. Sci. USA 114, E514–E523 (2017). This paper reports that IRAK1 deficiency dampens the immune response, although the effect is milder than the deficiency of IRAK4.

    PubMed  PubMed Central  Google Scholar 

  86. Sun, J. et al. Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Sci. Signal. 9, ra3 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Perkins, D. J. & Vogel, S. N. Inflammation: species-specific TLR signalling — insight into human disease. Nat. Rev. Rheumatol. 12, 198–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. von Bernuth, H., Picard, C., Puel, A. & Casanova, J. L. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur. J. Immunol. 42, 3126–3135 (2012).

    Google Scholar 

  89. Pauls, E. et al. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J. Immunol. 191, 2717–2730 (2013).

    CAS  PubMed  Google Scholar 

  90. Flannery, S. M., Keating, S. E., Szymak, J. & Bowie, A. G. Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor α. J. Biol. Chem. 286, 23688–23697 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Alsina, L. et al. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol. 15, 1134–1142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Emmerich, C. H. et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA 110, 15247–15252 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. De, S. et al. Mechanism of dysfunction of human variants of the IRAK4 kinase and a role for its kinase activity in interleukin-1 receptor signaling. J. Biol. Chem. 293, 15208–15220 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. De Nardo, D. et al. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in Myddosome formation and Toll-like receptor signaling. J. Biol. Chem. 293, 15195–15207 (2018). This study shows that IRAK4 has a scaffold function in Myddosome formation and that its kinase activity is dispensable for Myddosome assembly.

    PubMed  PubMed Central  Google Scholar 

  95. Silke, J., Rickard, J. A. & Gerlic, M. The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol. 16, 689–697 (2015).

    CAS  PubMed  Google Scholar 

  96. Witt, A. & Vucic, D. Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ. 24, 1160–1171 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 25, 347–353 (2015).

    CAS  PubMed  Google Scholar 

  98. Varfolomeev, E. & Vucic, D. Intracellular regulation of TNF activity in health and disease. Cytokine 101, 26–32 (2018).

    CAS  PubMed  Google Scholar 

  99. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    CAS  PubMed  Google Scholar 

  100. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Newton, K. Multitasking kinase RIPK1 regulates cell death and inflammation. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a036368 (2019).

    Article  Google Scholar 

  103. de Almagro, M. C. et al. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ. 24, 26–37 (2017).

    PubMed  Google Scholar 

  104. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    CAS  PubMed  Google Scholar 

  105. Patel, S. et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ. 27, 161–175 (2020). This study describes the instrumental and protective role for RIP1 kinase inhibition in inflammatory disease despite its lack of relevance in tumour progression and metastasis.

    CAS  PubMed  Google Scholar 

  106. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    CAS  PubMed  Google Scholar 

  107. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3–MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Webster, J. D. et al. RIP1 kinase activity is critical for skin inflammation but not for viral propagation. J. Leukoc. Biol. (2020).

  111. Duan, X. et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 11, 134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Alevy, Y. G. et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122, 4555–4568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    CAS  PubMed  Google Scholar 

  114. Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    CAS  PubMed  Google Scholar 

  116. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    CAS  PubMed  Google Scholar 

  117. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    CAS  PubMed  Google Scholar 

  118. Matsuzawa-Ishimoto, Y. et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J. Exp. Med. 214, 3687–3705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Linkermann, A. et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81, 751–761 (2012).

    CAS  PubMed  Google Scholar 

  120. Degterev, A., Ofengeim, D. & Yuan, J. Targeting RIPK1 for the treatment of human diseases. Proc. Natl Acad. Sci. USA 116, 9714–9722 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017). This paper describes the first RIP1 inhibitor that entered clinical trials.

    CAS  PubMed  Google Scholar 

  122. Caruso, R., Warner, N., Inohara, N. & Nunez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41, 898–908 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Caso, F. et al. Autoinflammatory granulomatous diseases: from Blau syndrome and early-onset sarcoidosis to NOD2-mediated disease and Crohn’s disease. RMD Open 1, e000097 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012).

    CAS  PubMed  Google Scholar 

  125. Goncharov, T. et al. Disruption of XIAP–RIP2 association blocks NOD2-mediated inflammatory signaling. Mol. Cell 69, 551–565 (2018). This study describes a critical role for the XIAP–RIP2 interaction in NOD2 inflammatory signalling and provides a molecular basis for the design of novel therapeutic strategies based on XIAP antagonists and RIP2 kinase inhibitors.

    CAS  PubMed  Google Scholar 

  126. Hrdinka, M. et al. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J. https://doi.org/10.15252/embj.201899372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schwartzberg, P. L., Finkelstein, L. D. & Readinger, J. A. TEC-family kinases: regulators of T-helper-cell differentiation. Nat. Rev. Immunol. 5, 284–295 (2005).

    CAS  PubMed  Google Scholar 

  128. Vargas, L., Hamasy, A., Nore, B. F. & Smith, C. I. Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases. Scand. J. Immunol. 78, 130–139 (2013).

    CAS  PubMed  Google Scholar 

  129. Schaeffer, E. M. et al. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med. 192, 987–1000 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, Y. et al. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci. Signal. 8, ra122 (2015).

    PubMed  Google Scholar 

  131. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  132. Long, M. et al. Ibrutinib treatment improves T cell number and function in CLL patients. J. Clin. Invest. 127, 3052–3064 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    CAS  PubMed  Google Scholar 

  134. Luk, A. D. W. et al. Type I and III interferon productions are impaired in X-linked agammaglobulinemia patients toward poliovirus but not influenza virus. Front. Immunol. 9, 1826 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    CAS  PubMed  Google Scholar 

  136. Kawakami, Y. et al. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fcε RI cross-linking. Mol. Cell Biol. 14, 5108–5113 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hata, D. et al. Involvement of Bruton’s tyrosine kinase in FcεRI-dependent mast cell degranulation and cytokine production. J. Exp. Med. 187, 1235–1247 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Smiljkovic, D. et al. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils. Allergy 72, 1666–1676 (2017).

    CAS  PubMed  Google Scholar 

  139. Di Paolo, J. A. et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 7, 41–50 (2011).

    PubMed  Google Scholar 

  140. Katewa, A. et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis. JCI Insight 2, e90111 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Takata, M., Homma, Y. & Kurosaki, T. Requirement of phospholipase C-γ 2 activation in surface immunoglobulin M-induced B cell apoptosis. J. Exp. Med. 182, 907–914 (1995).

    CAS  PubMed  Google Scholar 

  142. Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17, 1973–1985 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    PubMed  Google Scholar 

  144. Wang, J., Lau, K. Y., Jung, J., Ravindran, P. & Barrat, F. J. Bruton’s tyrosine kinase regulates TLR9 but not TLR7 signaling in human plasmacytoid dendritic cells. Eur. J. Immunol. 44, 1130–1136 (2014).

    CAS  PubMed  Google Scholar 

  145. Bender, A. T. et al. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of fc receptor but not B-cell receptor signaling. Mol. Pharmacol. 91, 208–219 (2017).

    CAS  PubMed  Google Scholar 

  146. Gillooly, K. M. et al. Bruton’s tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLoS ONE 12, e0181782 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Chalmers, S. A. et al. Therapeutic blockade of immune complex-mediated glomerulonephritis by highly selective inhibition of Bruton’s tyrosine yinase. Sci. Rep. 6, 26164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bender, A. T. et al. Btk inhibition treats TLR7/IFN driven murine lupus. Clin. Immunol. 164, 65–77 (2016).

    CAS  PubMed  Google Scholar 

  149. Corzo, C. A. et al. The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Sci. Signal. https://doi.org/10.1126/scisignal.aaz1053 (2020). This paper compares IRAK inhibition versus BTK inhibition and shows that IRAK4 has a major role in both TLR and immune-complex signalling, therefore providing a rationale to target it in SLE.

    Article  PubMed  Google Scholar 

  150. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    CAS  PubMed  Google Scholar 

  151. Watterson, S. H. et al. Discovery of branebrutinib (BMS-986195): a strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo unactivation of Bruton’s tyrosine kinase (BTK). J. Med. Chem. 62, 3228–3250 (2019).

    CAS  PubMed  Google Scholar 

  152. Cohen, S. et al. Efficacy and safety of fenebrutinib, a BTK inhibitor, compared to placebo in rheumatoid arthritis patients with active disease despite TNF inhibitor treatment: randomized, double blind, phase 2 study [Abstract 929]. Arthritis Rheumatol. 71 (Suppl. 10) (2019).

  153. Treon, S. P. et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood https://doi.org/10.1182/blood.2020006288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mocsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gradler, U. et al. Structural and biophysical characterization of the Syk activation switch. J. Mol. Biol. 425, 309–333 (2013).

    PubMed  Google Scholar 

  156. Deindl, S. et al. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129, 735–746 (2007).

    CAS  PubMed  Google Scholar 

  157. Keshvara, L. M., Isaacson, C., Harrison, M. L. & Geahlen, R. L. Syk activation and dissociation from the B-cell antigen receptor is mediated by phosphorylation of tyrosine 130. J. Biol. Chem. 272, 10377–10381 (1997).

    CAS  PubMed  Google Scholar 

  158. Lupher, M. L. Jr et al. Cbl-mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine-binding domain binding to Syk phosphotyrosine 323. J. Biol. Chem. 273, 35273–35281 (1998).

    CAS  PubMed  Google Scholar 

  159. Yankee, T. M., Keshvara, L. M., Sawasdikosol, S., Harrison, M. L. & Geahlen, R. L. Inhibition of signaling through the B cell antigen receptor by the protooncogene product, c-Cbl, requires Syk tyrosine 317 and the c-Cbl phosphotyrosine-binding domain. J. Immunol. 163, 5827–5835 (1999).

    CAS  PubMed  Google Scholar 

  160. Geahlen, R. L. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 35, 414–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ozaki, N. et al. Syk-dependent signaling pathways in neutrophils and macrophages are indispensable in the pathogenesis of anti-collagen antibody-induced arthritis. Int. Immunol. 24, 539–550 (2012).

    CAS  PubMed  Google Scholar 

  162. Cheng, A. M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    CAS  PubMed  Google Scholar 

  163. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    CAS  PubMed  Google Scholar 

  164. Jakus, Z., Simon, E., Balazs, B. & Mocsai, A. Genetic deficiency of Syk protects mice from autoantibody-induced arthritis. Arthritis Rheum. 62, 1899–1910 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Pine, P. R. et al. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin. Immunol. 124, 244–257 (2007).

    CAS  PubMed  Google Scholar 

  166. Coffey, G. et al. Specific inhibition of spleen tyrosine kinase suppresses leukocyte immune function and inflammation in animal models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 340, 350–359 (2012).

    CAS  PubMed  Google Scholar 

  167. Genovese, M. C. et al. A phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study of 2 dosing regimens of fostamatinib in patients with rheumatoid arthritis with an inadequate response to a tumor necrosis factor-alpha antagonist. J. Rheumatol. 41, 2120–2128 (2014).

    CAS  PubMed  Google Scholar 

  168. Weinblatt, M. E. et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. 58, 3309–3318 (2008).

    CAS  PubMed  Google Scholar 

  169. Braselmann, S. et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J. Pharmacol. Exp. Ther. 319, 998–1008 (2006).

    CAS  PubMed  Google Scholar 

  170. Kunwar, S., Devkota, A. R. & Ghimire, D. K. Fostamatinib, an oral spleen tyrosine kinase inhibitor, in the treatment of rheumatoid arthritis: a meta-analysis of randomized controlled trials. Rheumatol. Int. 36, 1077–1087 (2016).

    CAS  PubMed  Google Scholar 

  171. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    CAS  PubMed  Google Scholar 

  172. Markham, A. Fostamatinib: first global approval. Drugs 78, 959–963 (2018).

    CAS  PubMed  Google Scholar 

  173. Newland, A., Lee, E. J., McDonald, V. & Bussel, J. B. Fostamatinib for persistent/chronic adult immune thrombocytopenia. Immunotherapy 10, 9–25 (2018).

    CAS  PubMed  Google Scholar 

  174. Rolf, M. G. et al. In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib. Pharmacol. Res. Perspect. 3, e00175 (2015). This paper reports the utility of various biochemical and cellular assays to identify several off-target effects of R406/fostamatinib.

    PubMed  PubMed Central  Google Scholar 

  175. Simon, M., Vanes, L., Geahlen, R. L. & Tybulewicz, V. L. Distinct roles for the linker region tyrosines of Syk in FcεRI signaling in primary mast cells. J. Biol. Chem. 280, 4510–4517 (2005).

    CAS  PubMed  Google Scholar 

  176. Chen, L. et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105, 2036–2041 (2005).

    CAS  PubMed  Google Scholar 

  177. Currie, K. S. et al. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J. Med. Chem. 57, 3856–3873 (2014). This article describes a recently developed small-molecule inhibitor, GS-9973, which is highly specific for SYK, and its clinical application in autoimmunity and oncology.

    CAS  PubMed  Google Scholar 

  178. Sharman, J. et al. An open-label phase 2 trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in chronic lymphocytic leukemia. Blood 125, 2336–2343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Barr, P. M. et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood 127, 2411–2415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Xu, D., Matsumoto, M. L., McKenzie, B. S. & Zarrin, A. A. TPL2 kinase action and control of inflammation. Pharmacol. Res. https://doi.org/10.1016/j.phrs.2017.11.031 (2017).

    Article  PubMed  Google Scholar 

  181. Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell Biol. 24, 9658–9667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lang, V. et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell Biol. 24, 5235–5248 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Beinke, S. et al. NF-κB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell Biol. 23, 4739–4752 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Dumitru, C. D. et al. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071–1083 (2000).

    CAS  PubMed  Google Scholar 

  185. Das, S. et al. Tpl2/cot signals activate ERK, JNK, and NF-κB in a cell-type and stimulus-specific manner. J. Biol. Chem. 280, 23748–23757 (2005).

    CAS  PubMed  Google Scholar 

  186. Rousseau, S. et al. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNFα in LPS-stimulated macrophages. J. Cell Sci. 121, 149–154 (2008).

    CAS  PubMed  Google Scholar 

  187. Waterfield, M. R., Zhang, M., Norman, L. P. & Sun, S. C. NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol. Cell 11, 685–694 (2003).

    CAS  PubMed  Google Scholar 

  188. Sriskantharajah, S. et al. Regulation of experimental autoimmune encephalomyelitis by TPL-2 kinase. J. Immunol. 192, 3518–3529 (2014).

    CAS  PubMed  Google Scholar 

  189. Nanda, S. K. et al. ABIN2 function is required to suppress DSS-induced colitis by a Tpl2-independent mechanism. J. Immunol. 201, 3373–3382 (2018).

    CAS  PubMed  Google Scholar 

  190. Roulis, M. et al. Intestinal myofibroblast-specific Tpl2–Cox-2–PGE2 pathway links innate sensing to epithelial homeostasis. Proc. Natl Acad. Sci. USA 111, E4658–E4667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358–1375 (2007).

    CAS  PubMed  Google Scholar 

  192. Remy, G. et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal. 22, 660–667 (2010).

    CAS  PubMed  Google Scholar 

  193. Jiang, Y. et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38δ. J. Biol. Chem. 272, 30122–30128 (1997).

    CAS  PubMed  Google Scholar 

  194. Risco, A. et al. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc. Natl Acad. Sci. USA 109, 11200–11205 (2012). This study reports the function of p38γ and p38δ isoforms in innate immunity via ERK activation and preferential distribution of expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gonzalez-Teran, B. et al. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. J. Clin. Invest. 123, 164–178 (2013).

    CAS  PubMed  Google Scholar 

  196. Menon, M. B. & Gaestel, M. TPL2 meets p38MAPK: emergence of a novel positive feedback loop in inflammation. Biochem. J. 473, 2995–2999 (2016).

    CAS  PubMed  Google Scholar 

  197. Criado, G. et al. Alternative p38 MAPKs are essential for collagen-induced arthritis. Arthritis Rheumatol. 66, 1208–1217 (2014).

    CAS  PubMed  Google Scholar 

  198. Ittner, A. et al. Regulation of PTEN activity by p38δ–PKD1 signaling in neutrophils confers inflammatory responses in the lung. J. Exp. Med. 209, 2229–2246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sumara, G. et al. Regulation of PKD by the MAPK p38δ in insulin secretion and glucose homeostasis. Cell 136, 235–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Tang, J., Qi, X., Mercola, D., Han, J. & Chen, G. Essential role of p38γ in K-Ras transformation independent of phosphorylation. J. Biol. Chem. 280, 23910–23917 (2005).

    CAS  PubMed  Google Scholar 

  201. Eyers, P. A., Craxton, M., Morrice, N., Cohen, P. & Goedert, M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 5, 321–328 (1998).

    CAS  PubMed  Google Scholar 

  202. Fitzgerald, C. E. et al. Structural basis for p38α MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat. Struct. Biol. 10, 764–769 (2003).

    CAS  PubMed  Google Scholar 

  203. Gum, R. J. et al. Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J. Biol. Chem. 273, 15605–15610 (1998).

    CAS  PubMed  Google Scholar 

  204. Gangwal, R. P., Bhadauriya, A., Damre, M. V., Dhoke, G. V. & Sangamwar, A. T. p38 mitogen-activated protein kinase inhibitors: a review on pharmacophore mapping and QSAR studies. Curr. Top. Medicinal Chem. 13, 1015–1035 (2013).

    CAS  Google Scholar 

  205. Coulthard, L. R., White, D. E., Jones, D. L., McDermott, M. F. & Burchill, S. A. p38MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 15, 369–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, C. et al. Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals. J. Exp. Med. 215, 1315–1325 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Schreiber, S. et al. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 4, 325–334 (2006).

    CAS  PubMed  Google Scholar 

  208. Charron, C. E. et al. RV568, a narrow-spectrum kinase inhibitor with p38 MAPK-α and -γ selectivity, suppresses COPD inflammation. Eur. Respir. J. https://doi.org/10.1183/13993003.00188-2017 (2017).

    Article  PubMed  Google Scholar 

  209. Armendariz-Borunda, J. et al. A controlled clinical trial with pirfenidone in the treatment of pathological skin scarring caused by burns in pediatric patients. Ann. Plastic Surg. 68, 22–28 (2012).

    CAS  Google Scholar 

  210. Margaritopoulos, G. A., Vasarmidi, E. & Antoniou, K. M. Pirfenidone in the treatment of idiopathic pulmonary fibrosis: an evidence-based review of its place in therapy. Core Evid. 11, 11–22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Khanna, D. et al. An open-label, phase II study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS trial. J. Rheumatol. 43, 1672–1679 (2016).

    PubMed  Google Scholar 

  212. Rodriguez-Castellanos, M., Tlacuilo-Parra, A., Sanchez-Enriquez, S., Velez-Gomez, E. & Guevara-Gutierrez, E. Pirfenidone gel in patients with localized scleroderma: a phase II study. Arthritis Res. Ther. 16, 510 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Flores-Contreras, L. et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol. 14, 131 (2014).

    PubMed  PubMed Central  Google Scholar 

  215. Kondoh, Y. et al. Comparative chemical array screening for p38γ/δ MAPK inhibitors using a single gatekeeper residue difference between p38α/β and p38γ/δ. Sci. Rep. 6, 29881 (2016). This paper describes small molecules in development with high specificity for p38γ and p38δ isoforms over p38α and p38β.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Muller, J. & Cross, M. J. ERK5: structure, regulation and function. Cell Signal. 24, 2187–2196 (2012).

    CAS  PubMed  Google Scholar 

  217. Lin, W. et al. Function of CSF1 and IL34 in macrophage homeostasis, inflammation, and cancer. Front. Immunol. 10, 2019 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kumari, A., Silakari, O. & Singh, R. K. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed. Pharmacother. 103, 662–679 (2018).

    CAS  PubMed  Google Scholar 

  219. Yan, C., Luo, H., Lee, J. D., Abe, J. & Berk, B. C. Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J. Biol. Chem. 276, 10870–10878 (2001).

    CAS  PubMed  Google Scholar 

  220. Buschbeck, M. & Ullrich, A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J. Biol. Chem. 280, 2659–2667 (2005).

    CAS  PubMed  Google Scholar 

  221. Kasler, H. G., Victoria, J., Duramad, O. & Winoto, A. ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol. Cell Biol. 20, 8382–8389 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wilhelmsen, K. et al. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci. Signal. 8, ra86 (2015).

    PubMed  PubMed Central  Google Scholar 

  223. Lin, E. C. et al. ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc. Natl Acad. Sci. USA 113, 11865–11870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Finegan, K. G. et al. ERK5 is a critical mediator of inflammation-driven cancer. Cancer Res. 75, 742–753 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hayashi, M. et al. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J. Clin. Invest. 113, 1138–1148 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

    CAS  PubMed  Google Scholar 

  227. Eleftheriou, D. & Brogan, P. A. Genetic interferonopathies: an overview. Best Pract. Res. Clin. Rheumatol. 31, 441–459 (2017).

    PubMed  Google Scholar 

  228. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Volpi, S., Picco, P., Caorsi, R., Candotti, F. & Gattorno, M. Type I interferonopathies in pediatric rheumatology. Pediatric Rheumatol. 14, 35 (2016).

    Google Scholar 

  230. Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 (2013). This paper shows that amlexanox inhibits TBK1 and, in obese mice, can elevate energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Neveu, G. et al. AP-2-associated protein kinase 1 and cyclin G-associated kinase regulate hepatitis C virus entry and are potential drug targets. J. Virol. 89, 4387–4404 (2015). This paper reveals that by regulating HCV entry and its life cycle, AAK1 and GAK represent potential targets for antiviral strategies.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Schor, S. & Einav, S. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs. DNA Cell Biol. 37, 63–69 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Ahmad, L., Zhang, S. Y., Casanova, J. L. & Sancho-Shimizu, V. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol. Med. 22, 511–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Peters, R. T. & Maniatis, T. A new family of IKK-related kinases may function as IκB kinase kinases. Biochim. Biophys. Acta 1471, M57–M62 (2001).

    CAS  PubMed  Google Scholar 

  235. Zhang, L., Zhao, X., Zhang, M., Zhao, W. & Gao, C. Ubiquitin-specific protease 2b negatively regulates IFN-β production and antiviral activity by targeting TANK-binding kinase 1. J. Immunol. 193, 2230–2237 (2014). This report shows that USP2b deubiquitinates K63-linked polyubiquitin chains from TBK1 to terminate TBK1 activation.

    CAS  PubMed  Google Scholar 

  236. McWhirter, S. M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl Acad. Sci. USA 101, 233–238 (2004).

    CAS  PubMed  Google Scholar 

  237. Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat. Immunol. 12, 844–852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Tenoever, B. R. et al. Multiple functions of the IKK-related kinase IKKε in interferon-mediated antiviral immunity. Science 315, 1274–1278 (2007).

    CAS  PubMed  Google Scholar 

  240. Hasan, M. & Yan, N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol. Res. 111, 336–342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Hasan, M. et al. Cutting edge: inhibiting TBK1 by compound II ameliorates autoimmune disease in mice. J. Immunol. 195, 4573–4577 (2015). This report demonstrates that TBK inhibitor is efficacious in interferonopathy mouse models (such as TREX-KO) with a high interferon signature.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Yu, J. et al. Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nat. Commun. 6, 6074 (2015). This paper shows that TBK1 regulates AKT1/mTORC1 to control T cell activation and egress from draining lymph nodes using conditional T cell-specific knockout mice and TBK1 inhibitors.

    CAS  PubMed  Google Scholar 

  243. Zarnegar, B. J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Willmann, K. L. et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat. Commun. 5, 5360 (2014).

    PubMed  Google Scholar 

  245. Li, Y. et al. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses. Sci. Rep. 6, 22115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Katakam, A. K. et al. Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proc. Natl Acad. Sci. USA 112, 14664–14669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Brightbill, H. D. et al. NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat. Commun. 9, 179 (2018). This study shows that selective NIK inhibition can inhibit multiple immunological pathways, including BAFF, OX40, CD40, ICOS, IL-21 and TWEAK, and provide efficacy in preclinical SLE models.

    PubMed  PubMed Central  Google Scholar 

  248. Brightbill, H. D. et al. Conditional deletion of NF-κB-inducing kinase (NIK) in adult mice disrupts mature B cell survival and activation. J. Immunol. 195, 953–964 (2015).

    CAS  PubMed  Google Scholar 

  249. Karnell, J. L., Rieder, S. A., Ettinger, R. & Kolbeck, R. Targeting the CD40–CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv. Drug Deliv. Rev. 141, 92–103 (2019).

    CAS  PubMed  Google Scholar 

  250. Tsai, K. L. et al. A conserved mediator-CDK8 kinase module association regulates mediator–RNA polymerase II interaction. Nat. Struct. Mol. Biol. 20, 611–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    CAS  PubMed  Google Scholar 

  252. Cee, V. J., Chen, D. Y., Lee, M. R. & Nicolaou, K. C. Cortistatin A is a high-affinity ligand of protein kinases ROCK, CDK8, and CDK11. Angew Chem. Int. Ed. Engl. 48, 8952–8957 (2009).

    CAS  PubMed  Google Scholar 

  253. Porter, D. C. et al. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc. Natl Acad. Sci. USA 109, 13799–13804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Mallinger, A. et al. Discovery of potent, selective, and orally bioavailable small-molecule modulators of the mediator complex-associated kinases CDK8 and CDK19. J. Med. Chem. 59, 1078–1101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Czodrowski, P. et al. Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening. J. Med. Chem. 59, 9337–9349 (2016).

    CAS  PubMed  Google Scholar 

  256. Johannessen, L. et al. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat. Chem. Biol. 13, 1102–1108 (2017). This paper screens a chemical library and identifies CDK8/19 as a target to promote Treg cell reprogramming.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Guo, Z., Wang, G., Lv, Y., Wan, Y. Y. & Zheng, J. Inhibition of Cdk8/Cdk19 activity promotes Treg cell differentiation and suppresses autoimmune diseases. Front. Immunol. 10, 1988 (2019). This paper reports that CDK8/19 inhibition can potentiate Treg cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Akamatsu, M. et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw2707 (2019).

    Article  PubMed  Google Scholar 

  259. Han, S., Toker, A., Liu, Z. Q. & Ohashi, P. S. Turning the tide against regulatory T cells. Front. Oncol. 9, 279 (2019).

    PubMed  PubMed Central  Google Scholar 

  260. Sellwood, M. A., Ahmed, M., Segler, M. H. & Brown, N. Artificial intelligence in drug discovery. Future Med. Chem. 10, 2025–2028 (2018).

    CAS  PubMed  Google Scholar 

  261. van Beuge, M. M., Poelstra, K. & Prakash, J. Specific delivery of kinase inhibitors in nonmalignant and malignant diseases. Expert Opin. Drug Deliv. 9, 59–70 (2012).

    PubMed  Google Scholar 

  262. Cho, J. H. & Feldman, M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat. Med. 21, 730–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  265. Dempsey, A. & Bowie, A. G. Innate immune recognition of DNA: a recent history. Virology 479–480, 146–152 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Allison Bruce for superb graphic design and figure illustrations.

Author information

Authors and Affiliations

Authors

Contributions

A.A.Z. conceived the review topic with major contributions to writing and revisions of the entire manuscript. K.B. contributed to IRAK4, Syk, p38 sections and revisions. D.V. contributed to RIPK section and revisions. P.L. contributed to Table 1.

Corresponding author

Correspondence to Ali A. Zarrin.

Ethics declarations

Competing interests

A.A.Z. is an employee of TRexBio and holds stock in TRexBio and the Roche Group. K.B. is an employee of Genentech. P.L. is an employee of Synthekine and holds stock in Synthekine and the Roche Group. D.V. is an employee of Genentech and holds stock and options in the Roche Group.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Rheumatoid arthritis

(RA). A progressive autoimmune and inflammatory disease manifested by joint pain and swelling in the feet and hands that can cause permanent joint destruction and deformity.

Inflammatory bowel disease

(IBD). A group of disorders that involve chronic inflammation of the digestive tract, including ulcerative colitis and Crohn’s disease.

Crohn’s disease

An inflammatory disease that causes inflammation of the lining of the digestive tract, which often spreads deep into affected tissues.

Ulcerative colitis

An inflammatory disease that causes inflammation and sores (ulcers) in the innermost lining of the colon and rectum.

Chronic obstructive pulmonary disease

(COPD). A chronic inflammatory lung disease that causes obstructed airflow from the lungs accompanied by breathing difficulty, cough, mucus production and wheezing.

Idiopathic pulmonary fibrosis

(IPF). A chronic and progressive fibrotic lung disease with unknown aetiology accompanied by scarring, resulting in persistent dry, hacking cough.

Hypoxaemia

An abnormally low concentration of oxygen in the blood.

Plasmacytoid dendritic cells

(pDCs). Specialized, immunomodulatory dendritic cells that produce large quantities of type I interferons in response to viral antigens, with limited capacity to present such antigens to T cells.

Autoantibodies

Antibodies reactive against an individual’s own tissues or organs.

Breakthrough designation

A process designed to expedite the development and review of drugs that are intended to treat a serious condition and for which preliminary clinical evidence indicates that the drug may demonstrate substantial improvement over available therapy on a clinically significant end point(s).

Pseudokinase domain

A kinase-like domain that lacks at least one of the conserved catalytic residues.

Death domain

A protein domain that contains six α-helices that facilitate interactions with death domains in other proteins in multisubunit complex formation.

Pyogenic bacterial infections

A condition characteristic of primary immunodeficiency due to myeloid differentiation primary response 88 deficiency in which patients have increased susceptibility to infections owing to their inability to signal through Toll-like receptors to activate inflammation.

X-linked agammaglobulinaemia

A genetic immunosuppressive condition that results in a severe reduction in the number of B cells and, thereby, in the production of protective antibodies. Patients with this condition are predominantly males and are at greater risk of recurrent opportunistic infections.

Pemphigus

Skin disorders that cause blisters or pus-filled bumps. Lesions can also form in the mucus membranes (soft linings of the eyes, nose, mouth, throat and genitals).

American College of Rheumatology 20%

A standard criterion to measure the effectiveness of various arthritis medications or treatments. It means a 20% improvement in tender or swollen joint counts and other parameters.

Tachyphylaxis

A rapidly diminishing response to successive doses of a drug, rendering it less effective. The effect is common with drugs acting on the nervous system.

Amyotrophic lateral sclerosis

A disease of the central nervous system that affects nerves in the brain and spinal cord, causing the progressive loss of muscle control.

Combined immunodeficiency syndrome

Rare disorders caused by mutations in different genes involved in the development and function of B cells and T cells.

Peyer’s patches

Lymphoid nodules located on the outer lining of the small intestine, serving as monitors of the intestinal contents, often bacteria of the microbiome, to prevent the outgrowth of pathogenic bacteria in the gut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrin, A.A., Bao, K., Lupardus, P. et al. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov 20, 39–63 (2021). https://doi.org/10.1038/s41573-020-0082-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0082-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research