Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Predominant ligament-centric soft-tissue involvement differentiates axial psoriatic arthritis from ankylosing spondylitis

Abstract

Since the original description of spondyloarthritis 50 years ago, results have demonstrated similarities and differences between ankylosing spondylitis (AS) and axial psoriatic arthritis (PsA). HLA-B27 gene carriage in axial inflammation is linked to peri-fibrocartilaginous sacroiliac joint osteitis, as well as to spinal peri-entheseal osteitis, which is often extensive and which provides a crucial anatomical and immunological differentiation between the AS and PsA phenotypes. Specifically, HLA-B27-related diffuse bone marrow oedema (histologically an osteitis) and bone marrow fatty corners detected via magnetic resonance imaging, as well as radiographic changes such as sacroiliitis, vertebral squaring, corner erosions and Romanus lesions, all indicate initial bone phenotypes in HLA-B27+ axial disease. However, in much of PsA with axial involvement, enthesitis primarily manifests in ligamentous soft tissue as ‘ligamentitis’, with characteristic lesions that include para-syndesmophytes and sacroiliac joint bony sparing. Like axial PsA, diffuse idiopathic skeletal hyperostosis phenotypes, which can be indistinguishable from PsA, exhibit a thoracic and cervical spinal ligamentous soft-tissue tropism, clinically manifesting as syndesmophytosis that is soft-tissue-centric, including paravertebral soft-tissue ossification and sacroiliac soft-ligamentous ossification instead of joint-cavity fusion. The enthesis bone and soft tissues have radically different immune cell and stromal compositions, which probably underpins differential responses to immunomodulatory therapy, especially IL-23 inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Commonalities and differences between AS, axial PsA and DISH.
Fig. 2: Bone phenotype in HLA-B27+-related arthritis and soft-tissue phenotype in axial PsA.
Fig. 3: How normal ageing sculpts AS, PsA and DISH axial phenotypes.
Fig. 4: Imaging features of axial psoriatic arthritis.
Fig. 5: Osteitis versus ligamentitis.

Similar content being viewed by others

References

  1. Moll, J. M. & Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 3, 55–78 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Jadon, D. R. et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 76, 701–707 (2017).

    Article  PubMed  Google Scholar 

  3. Feld, J. et al. Is axial psoriatic arthritis distinct from ankylosing spondylitis with and without concomitant psoriasis? Rheumatology 59, 1340–1346 (2020).

    Article  PubMed  Google Scholar 

  4. Kwok, T. S. H. et al. Isolated axial disease in psoriatic arthritis and ankylosing spondylitis with psoriasis. Ann. Rheum. Dis. 81, 1678–1684 (2022).

    Article  PubMed  Google Scholar 

  5. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  PubMed  Google Scholar 

  6. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2019).

    Article  PubMed  Google Scholar 

  8. McGonagle, D., Watad, A., Sharif, K. & Bridgewood, C. Why inhibition of IL-23 lacked efficacy in ankylosing spondylitis. Front. Immunol. 12, 614255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deodhar, A. et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1115–1125 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mease, P. J. et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1126–1136 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Ramiro, S. et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 82, 19 (2023).

    Article  PubMed  Google Scholar 

  12. Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): updated treatment recommendations for psoriatic arthritis 2021. Nat. Rev. Rheumatol. 18, 465–479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sieper, J. et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann. Rheum. Dis. 68, 784–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bennett, A. N. et al. Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum. 58, 3413–3418 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Haddad, A., Thavaneswaran, A., Toloza, S., Chandran, V. & Gladman, D. D. Diffuse idiopathic skeletal hyperostosis in psoriatic arthritis. J. Rheumatol. 40, 1367–1373 (2013).

    Article  PubMed  Google Scholar 

  16. Gladman, D. D. Axial psoriatic arthritis. Curr. Rheumatol. Rep. 23, 35 (2021).

    Article  PubMed  Google Scholar 

  17. Poddubnyy, D. et al. Axial Involvement in Psoriatic Arthritis cohort (AXIS): the protocol of a joint project of the Assessment of SpondyloArthritis international Society (ASAS) and the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA). Ther. Adv. Musculoskelet. Dis. 13, 1759720X211057975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bollow, M. et al. Early sacroiliitis in patients with spondyloarthropathy: evaluation with dynamic gadolinium-enhanced MR imaging. Radiology 194, 529–536 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hermann, K. G. & Bollow, M. Magnetic resonance imaging of sacroiliitis in patients with spondyloarthritis: correlation with anatomy and histology. RoFo 186, 230–237 (2014).

    PubMed  Google Scholar 

  21. van der Linden, S., Valkenburg, H. A. & Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27, 361–368 (1984).

    Article  PubMed  Google Scholar 

  22. Ridley, L. K. et al. Why do some patients have severe sacroiliac disease but no syndesmophytes in ankylosing spondylitis? Data from a nested case-control study. J. Rheumatol. 50, 335–341 (2022).

    PubMed  Google Scholar 

  23. Oostveen, J., Prevo, R., den Boer, J. & van de Laar, M. Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography. A prospective, longitudinal study. J. Rheumatol. 26, 1953–1958 (1999).

    CAS  PubMed  Google Scholar 

  24. Puhakka, K. B. et al. Magnetic resonance imaging of sacroiliitis in early seronegative spondylarthropathy. Abnormalities correlated to clinical and laboratory findings. Rheumatology 43, 234–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bollow, M. et al. Very early spondyloarthritis: where the inflammation in the sacroiliac joints starts. Ann. Rheum. Dis. 64, 1644 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Appel, H. et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res. Ther. 8, R143 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marzo-Ortega, H., O’Connor, P., Emery, P. & McGonagle, D. Sacroiliac joint biopsies in early sacroiliitis. Rheumatology 46, 1210–1211 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Gracey, E. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Romero-López, J. P., Elewaut, D., Pacheco-Tena, C. & Burgos-Vargas, R. Inflammatory foot involvement in spondyloarthritis: from tarsitis to ankylosing tarsitis. Front. Med. 8, 730273 (2021).

    Article  Google Scholar 

  30. Pacheco-Tena, C. et al. Bone lineage proteins in the entheses of the midfoot in patients with spondyloarthritis. J. Rheumatol. 42, 630–637 (2015).

    Article  PubMed  Google Scholar 

  31. Marzo-Ortega, H. et al. Baseline and 1-year magnetic resonance imaging of the sacroiliac joint and lumbar spine in very early inflammatory back pain. Relationship between symptoms, HLA-B27 and disease extent and persistence. Ann. Rheum. Dis. 68, 1721–1727 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. McGonagle, D. et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum. 46, 489–493 (2002).

    Article  PubMed  Google Scholar 

  33. Lambert, R. G. W. et al. High prevalence of symptomatic enthesopathy of the shoulder in ankylosing spondylitis: deltoid origin involvement constitutes a hallmark of disease. Arthritis Care Res. 51, 681–690 (2004).

    Article  Google Scholar 

  34. Braun, J., Bollow, M. & Sieper, J. Radiologic diagnosis and pathology of the spondyloarthropathies. Rheum. Dis. Clin. North Am. 24, 697–735 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Baraliakos, X. et al. Frequency of MRI changes suggestive of axial spondyloarthritis in the axial skeleton in a large population-based cohort of individuals aged <45 years. Ann. Rheum. Dis. 79, 186–192 (2020).

    Article  PubMed  Google Scholar 

  36. Caetano, A. P., Mascarenhas, V. V. & Machado, P. M. Axial spondyloarthritis: mimics and pitfalls of imaging assessment. Front. Med. 8, 658538 (2021).

    Article  Google Scholar 

  37. Baraliakos, X., Listing, J., Rudwaleit, M., Sieper, J. & Braun, J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res. Ther. 10, R104 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ball, J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann. Rheum. Dis. 30, 213–223 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chung, H. Y., Yiu, R. S. W., Chan, S. C. W., Lee, K. H. & Lau, C. S. Fatty corner lesions in T1-weighted magnetic resonance imaging as an alternative to sacroiliitis for diagnosis of axial spondyloarthritis. BMC Rheumatol. 3, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bakker, P. A. C. et al. Can we use structural lesions seen on MRI of the sacroiliac joints reliably for the classification of patients according to the ASAS axial spondyloarthritis criteria? Data from the DESIR cohort. Ann. Rheum. Dis. 76, 392–398 (2017).

    Article  PubMed  Google Scholar 

  41. Baraliakos, X. et al. What constitutes the fat signal detected by MRI in the spine of patients with ankylosing spondylitis? A prospective study based on biopsies obtained during planned spinal osteotomy to correct hyperkyphosis or spinal stenosis. Ann. Rheum. Dis. 78, 1220–1225 (2019).

    Article  PubMed  Google Scholar 

  42. Bennett, A. N. et al. The fatty Romanus lesion: a non-inflammatory spinal MRI lesion specific for axial spondyloarthropathy. Ann. Rheum. Dis. 69, 891–894 (2010).

    Article  PubMed  Google Scholar 

  43. Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Brief report: magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA–B27. Arthritis Rheum. 65, 2274–2278 (2013).

    Article  PubMed  Google Scholar 

  44. Baraliakos, X. et al. Secukinumab in patients with psoriatic arthritis and axial manifestations: results from the double-blind, randomised, phase 3 MAXIMISE trial. Ann. Rheum. Dis. 80, 582–590 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Michelena, X. et al. Characterising the axial phenotype of psoriatic arthritis: a study comparing axial psoriatic arthritis and ankylosing spondylitis with psoriasis from the REGISPONSER registry. RMD Open 8, e002513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum. 65, 2274–2278 (2013).

    Article  PubMed  Google Scholar 

  47. Marzo-Ortega, H., McGonagle, D., O’Connor, P. & Emery, P. Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum. 44, 2112–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rudwaleit, M. et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann. Rheum. Dis. 68, 1520–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Baraliakos, X. et al. MRI lesions of the spine in patients with axial spondyloarthritis: an update of lesion definitions and validation by the ASAS MRI working group. Ann. Rheum. Dis. 81, 1243 (2022).

    Article  Google Scholar 

  50. Mauro, D. et al. The bone marrow side of axial spondyloarthritis. Nat. Rev. Rheumatol. 19, 519–532 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Maksymowych, W. P. Evidence in support of the bone marrow as the primary lesion in axial spondyloarthritis. Curr. Opin. Rheumatol. 35, 213–218 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

    Article  PubMed  Google Scholar 

  53. McGonagle, D., Aydin, S. Z., Gül, A., Mahr, A. & Direskeneli, H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behçet disease. Nat. Rev. Rheumatol. 11, 731–740 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feltkamp, T. E. Ophthalmological significance of HLA associated uveitis. Eye 4, 839–844 (1990).

    Article  PubMed  Google Scholar 

  56. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kuiper, J. J. et al. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann. Rheum. Dis. 82, 887–896 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Díaz-Peña, R., Castro-Santos, P., Durán, J., Santiago, C. & Lucia, A. The genetics of spondyloarthritis. J. Pers. Med. 10, 151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eder, L. et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 71, 50–55 (2012).

    Article  PubMed  Google Scholar 

  60. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    Article  PubMed  Google Scholar 

  61. Timothy, S. H. K. et al. Isolated axial disease in psoriatic arthritis and ankylosing spondylitis with psoriasis. Ann. Rheum. Dis. 81, 1678 (2022).

    Article  Google Scholar 

  62. Savage, L. et al. Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis: a fifty-two-week, prospective, open-label feasibility study. Arthritis Rheumatol. 71, 626–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Loeser, R. F. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin. Geriat. Med. 26, 371–386 (2010).

    Article  Google Scholar 

  64. Jurik, A. G. Imaging the spine in arthritis—a pictorial review. Insights Imaging 2, 177–191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Feld, J. et al. Axial disease in psoriatic arthritis: the presence and progression of unilateral grade 2 sacroiliitis in a psoriatic arthritis cohort. Semin. Arthritis Rheum. 51, 464–468 (2021).

    Article  PubMed  Google Scholar 

  66. Renson, T. et al. Progressive increase in sacroiliac joint and spinal lesions detected on magnetic resonance imaging in healthy individuals in relation to age. Arthritis Rheumatol. 74, 1506–1514 (2022).

    Article  PubMed  Google Scholar 

  67. Sherratt, M. J. Age-related tissue stiffening: cause and effect. Adv. Wound Care 2, 11–17 (2013).

    Article  Google Scholar 

  68. Tan, A. L. et al. Combined high-resolution magnetic resonance imaging and histological examination to explore the role of ligaments and tendons in the phenotypic expression of early hand osteoarthritis. Ann. Rheum. Dis. 65, 1267–1272 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tan, A. L. et al. High-resolution magnetic resonance imaging for the assessment of hand osteoarthritis. Arthritis Rheum. 52, 2355–2365 (2005).

    Article  PubMed  Google Scholar 

  70. Tan, A. L., Grainger, A. J., Tanner, S. F., Emery, P. & McGonagle, D. A high-resolution magnetic resonance imaging study of distal interphalangeal joint arthropathy in psoriatic arthritis and osteoarthritis: are they the same? Arthritis Rheum. 54, 1328–1333 (2006).

    Article  PubMed  Google Scholar 

  71. Braum, L. S. et al. Characterisation of hand small joints arthropathy using high-resolution MRI—limited discrimination between osteoarthritis and psoriatic arthritis. Eur. Radio. 23, 1686–1693 (2013).

    Article  Google Scholar 

  72. Altman, R. et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 29, 1039–1049 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Waghray, N., Jyothi, G. A., Imran, M., Yaseen, S. & Chaudhary, U. Enthesis: a brief review. Apollo Med. 12, 32–38 (2015).

    Article  Google Scholar 

  74. Urban, J. P. & Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. Ther. 5, 120–130 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ziegeler, K., Eshed, I., Diekhoff, T. & Hermann, K. G. Imaging of joints and bones in autoinflammation. J. Clin. Med. 9, 4074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eshed, I. et al. MRI of enthesitis of the appendicular skeleton in spondyloarthritis. Ann. Rheum. Dis. 66, 1553–1559 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Benjamin, M. & McGonagle, D. Histopathologic changes at “synovio–entheseal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondylarthritis. Arthritis Rheum. 56, 3601–3609 (2007).

    Article  PubMed  Google Scholar 

  78. Mathew, A. J. & Østergaard, M. Magnetic resonance imaging of enthesitis in spondyloarthritis, including psoriatic arthritis—status and recent advances. Front. Med. 7, 296 (2020).

    Article  Google Scholar 

  79. McGonagle, D., Palmou Fontana, N., Tan, A. L. & Benjamin, M. Nailing down the genetic and immunological basis for psoriatic disease. Dermatology 221, 15–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Baraliakos, X. et al. Predictors of response to secukinumab in patients with psoriatic arthritis and axial manifestations: a post-hoc analysis of the MAXIMISE trial. RMD Open 8, e002303 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mader, R., Verlaan, J. J. & Buskila, D. Diffuse idiopathic skeletal hyperostosis: clinical features and pathogenic mechanisms. Nat. Rev. Rheumatol. 9, 741–750 (2013).

    Article  PubMed  Google Scholar 

  82. McGonagle, D., Hermann, K. G. & Tan, A. L. Differentiation between osteoarthritis and psoriatic arthritis: implications for pathogenesis and treatment in the biologic therapy era. Rheumatology 54, 29–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Eshed, I. Imaging characteristics of diffuse idiopathic skeletal hyperostosis: more than just spinal bony bridges. Diagnostics 13, 563 (2023).

  84. Latourte, A. et al. Imaging findings suggestive of axial spondyloarthritis in diffuse idiopathic skeletal hyperostosis. Arthritis Care Res. 70, 145–152 (2018).

    Article  Google Scholar 

  85. Mader, R. et al. Imaging of diffuse idiopathic skeletal hyperostosis (DISH). RMD Open 6, e001151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hochberg, M. C., Borenstein, D. G. & Arnett, F. C. The absence of back pain in classical ankylosing spondylitis. Johns Hopkins Med. J. 143, 181–183 (1978).

    CAS  PubMed  Google Scholar 

  87. Littlejohn, G. O. Insulin and new bone formation in diffuse idiopathic skeletal hyperostosis. Clin. Rheumatol. 4, 294–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Youssef, A., Aboalola, D. & Han, V. K. M. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017, 9453108 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Crane, J. L. et al. IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res. 1, 186–194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riley, R. S. et al. Bone marrow aspirate and biopsy: a pathologist’s perspective. II. Interpretation of the bone marrow aspirate and biopsy. J. Clin. Lab. Anal. 23, 259–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Macleod, T., Bridgewood, C. & McGonagle, D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. Lancet Rheumatol. 5, e47–e57 (2023).

    Article  CAS  Google Scholar 

  92. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).

    Article  PubMed  Google Scholar 

  93. Stavre, Z. et al. A role for neutrophils in early enthesitis in spondyloarthritis. Arthritis Res. Ther. 24, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coletto, L. A. et al. The role of neutrophils in spondyloarthritis: a journey across the spectrum of disease manifestations. Int. J. Mol. Sci. 24, 4108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bridgewood, C., Sharif, K., Sherlock, J., Watad, A. & McGonagle, D. Interleukin-23 pathway at the enthesis: the emerging story of enthesitis in spondyloarthropathy. Immunol. Rev. 294, 27–47 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Sunwoo, J. Y., Eliasberg, C. D., Carballo, C. B. & Rodeo, S. A. The role of the macrophage in tendinopathy and tendon healing. J. Orthop. Res. 38, 1666–1675 (2020).

    Article  PubMed  Google Scholar 

  97. Moeed, A. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).

    Google Scholar 

  98. Gladman, D. D. et al. Efficacy and safety of guselkumab in biologic-naïve patients with active axial psoriatic arthritis: study protocol for STAR, a phase 4, randomized, double-blinded, placebo-controlled trial. Trials 23, 743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coates, L. C. et al. The phenotype of axial spondyloarthritis: is it dependent on HLA-B27 status? Arthritis Care Res. 73, 856–860 (2021).

    Article  CAS  Google Scholar 

  100. Helliwell, P. S. Axial disease in psoriatic arthritis. Rheumatology 59, 1193–1195 (2020).

    Article  PubMed  Google Scholar 

  101. Helliwell, P. S., Hickling, P. & Wright, V. Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann. Rheum. Dis. 57, 135–140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.M.’s work is partially funded by the Leeds Biomedical Research Centre and Versus Arthritis.

Author information

Authors and Affiliations

Authors

Contributions

D.M. developed the concept. All authors contributed substantially to discussion of the content. D.M. wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Dennis McGonagle.

Ethics declarations

Competing interests

D.M. has received grant support from Abbvie, BMS, Janssen, Lilly, Novartis and UCB. A.W. has received grant support from Janssen. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Clementina Lopez-Medina, Victoria Navarro-Compán and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGonagle, D., David, P., Macleod, T. et al. Predominant ligament-centric soft-tissue involvement differentiates axial psoriatic arthritis from ankylosing spondylitis. Nat Rev Rheumatol 19, 818–827 (2023). https://doi.org/10.1038/s41584-023-01038-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01038-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing