Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The bone marrow side of axial spondyloarthritis

Abstract

Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bone marrow oedema in axial spondyloarthritis.
Fig. 2: Bone marrow involvement in early spondyloarthritis.
Fig. 3: Bone marrow–enthesis crosstalk.
Fig. 4: Bone marrow niche dysfunction in axSpA.

Similar content being viewed by others

References

  1. Robinson, P. C., van der Linden, S., Khan, M. A. & Taylor, W. J. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat. Rev. Rheumatol. 17, 109–118 (2020).

    PubMed  Google Scholar 

  2. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 68, 777–783 (2009).

    CAS  PubMed  Google Scholar 

  3. van der Heijde, D. et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 76, 978–991 (2017).

    PubMed  Google Scholar 

  4. Mauro, D. et al. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat. Rev. Rheumatol. 17, 387–404 (2021).

    CAS  PubMed  Google Scholar 

  5. Schett, G. et al. Psoriatic arthritis from a mechanistic perspective. Nat. Rev. Rheumatol. 18, 311–325 (2022).

    CAS  PubMed  Google Scholar 

  6. Aydin, S. Z., Bridgewood, C., Zabotti, A., Girolimetto, N. & McGonagle, D. The transition from enthesis physiological responses in health to aberrant responses that underpin spondyloarthritis mechanisms. Curr. Opin. Rheumatol. 33, 64–73 (2020).

    Google Scholar 

  7. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    PubMed  Google Scholar 

  8. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    CAS  PubMed  Google Scholar 

  9. Ball, J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann. Rheum. Dis. 30, 213–223 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McGonagle, D., Lories, R. J. U., Tan, A. L. & Benjamin, M. The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 56, 2482–2491 (2007).

    PubMed  Google Scholar 

  11. Sharif, K., Bridgewood, C., Dubash, S. & McGonagle, D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology 59, iv67–iv78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell, T. et al. Cytokine ‘fine tuning’ of enthesis tissue homeostasis as a pointer to spondyloarthritis pathogenesis with a focus on relevant TNF and IL-17 targeted therapies. Semin. Immunopathol. 43, 193–206 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, U. et al. Frequency and anatomic distribution of magnetic resonance imaging features in the sacroiliac joints of young athletes: exploring “background noise” toward a data-driven definition of sacroiliitis in early spondyloarthritis. Arthritis Rheumatol. 70, 736–745 (2018).

    PubMed  Google Scholar 

  14. Varkas, G. et al. Effect of mechanical stress on magnetic resonance imaging of the sacroiliac joints: assessment of military recruits by magnetic resonance imaging study. Rheumatology 57, 508–513 (2018).

    PubMed  Google Scholar 

  15. Renson, T. et al. High prevalence of spondyloarthritis-like MRI lesions in postpartum women: a prospective analysis in relation to maternal, child and birth characteristics. Ann. Rheum. Dis. 79, 929–934 (2020).

    PubMed  Google Scholar 

  16. Zubler, V., Agten, C. A., Pfirrmann, C. W. A., Weiss, B. G. & Dietrich, T. J. Frequency of arthritis-like MRI findings in the forefeet of healthy volunteers versus patients with symptomatic rheumatoid arthritis or psoriatic arthritis. AJR Am. J. Roentgenol. 208, W45–W53 (2017).

    PubMed  Google Scholar 

  17. Mauro, D., Simone, D., Bucci, L. & Ciccia, F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin. Immunopathol. 43, 265–277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gracey, E. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. Debusschere, K., Cambré, I., Gracey, E. & Elewaut, D. Born to run: the paradox of biomechanical force in spondyloarthritis from an evolutionary perspective. Best Pract. Res. Clin. Rheumatol. 31, 887–894 (2017).

    PubMed  Google Scholar 

  20. Jadon, D. R., Stober, C., Pennington, S. R. & FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 16, 609–627 (2020).

    PubMed  Google Scholar 

  21. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    CAS  PubMed  Google Scholar 

  22. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).

    CAS  PubMed  Google Scholar 

  23. Mauro, D., Nakamura, A., Haroon, N. & Ciccia, F. The gut-enthesis axis and the pathogenesis of spondyloarthritis. Semin. Immunol. 58, 101607 (2021).

    CAS  PubMed  Google Scholar 

  24. Gracey, E. et al. Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 16, 415–433 (2020).

    PubMed  Google Scholar 

  25. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  26. Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    CAS  PubMed  Google Scholar 

  27. Bridgewood, C., Sharif, K., Sherlock, J., Watad, A. & McGonagle, D. Interleukin‐23 pathway at the enthesis: the emerging story of enthesitis in spondyloarthropathy. Immunol. Rev. 294, 27–47 (2020).

    CAS  PubMed  Google Scholar 

  28. Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    CAS  PubMed  Google Scholar 

  29. Rosine, N. et al. Characterization of blood mucosal-associated invariant T cells in patients with axial spondyloarthritis and of resident mucosal-associated invariant T cells from the axial entheses of non-axial spondyloarthritis control patients. Arthritis Rheumatol. 74, 1786–1795 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Watad, A. et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann. Rheum. Dis. 79, 1044–1054 (2020).

    CAS  PubMed  Google Scholar 

  31. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    CAS  PubMed  Google Scholar 

  32. Zhang, J. & Wang, J. H.-C. Production of PGE2 increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J. Orthop. Res. 28, 198–203 (2010).

    PubMed  Google Scholar 

  33. Mauro, D. et al. Prostaglandin E2/EP4 axis is upregulated in spondyloarthritis and contributes to radiographic progression. Clin. Immunol. 251, 109332 (2023).

    CAS  PubMed  Google Scholar 

  34. Wanders, A. et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum. 52, 1756–1765 (2005).

    CAS  PubMed  Google Scholar 

  35. Dubash, S. et al. Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology 58, 963–968 (2019).

    CAS  PubMed  Google Scholar 

  36. Wang, C., Hanly, E., McDonald, K. & Newberry, R. The effect of a4β7 blockade on T-lymphocyte trafficking to intestinal compartments in the normal and inflamed intestine. Inflamm. Bowel Dis. 15, S47–S48 (2009).

    Google Scholar 

  37. Guggino, G., Rizzo, A., Mauro, D., Macaluso, F. & Ciccia, F. Gut-derived CD8+ tissue-resident memory T cells are expanded in the peripheral blood and synovia of SpA patients. Ann. Rheum. Dis. 80, e174 (2021).

    PubMed  Google Scholar 

  38. Vanhoenacker, F. M. & Snoeckx, A. Bone marrow edema in sports: general concepts. Eur. J. Radiol. 62, 6–15 (2007).

    CAS  PubMed  Google Scholar 

  39. Kornaat, P. R., de Jonge, M. C. & Maas, M. Bone marrow edema-like signal in the athlete. Eur. J. Radiol. 67, 49–53 (2008).

    PubMed  Google Scholar 

  40. Kornaat, P. R. & van de Velde, S. K. Bone marrow edema lesions in the professional runner. Am. J. Sports Med. 42, 1242–1246 (2014).

    PubMed  Google Scholar 

  41. de Cata, A., Inglese, M., Rubino, R., Molinaro, F. & Mazzoccoli, G. The synovio-entheseal complex in enthesoarthritis. Clin. Exp. Med. 16, 109–124 (2016).

    PubMed  Google Scholar 

  42. Watad, A., Cuthbert, R. J., Amital, H. & McGonagle, D. Enthesitis: much more than focal insertion point inflammation. Curr. Rheumatol. Rep. 20, 41 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. François, R. J., Braun, J. & Khan, M. A. Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr. Opin. Rheumatol. 13, 255–264 (2001).

    PubMed  Google Scholar 

  44. Maksymowych, W. P. The role of imaging in the diagnosis and management of axial spondyloarthritis. Nat. Rev. Rheumatol. 15, 657–672 (2019).

    CAS  PubMed  Google Scholar 

  45. Lorenzin, M. et al. Spine and sacroiliac joints lesions on magnetic resonance imaging in early axial-spondyloarthritis during 24-months follow-up (Italian arm of SPACE study). Front. Immunol. 11, 936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maksymowych, W. P. et al. Central reader evaluation of MRI scans of the sacroiliac joints from the ASAS classification cohort: discrepancies with local readers and impact on the performance of the ASAS criteria. Ann. Rheum. Dis. 79, 935–942 (2020).

    PubMed  Google Scholar 

  47. Maksymowych, W. P. et al. MRI lesions in the sacroiliac joints of patients with spondyloarthritis: an update of definitions and validation by the ASAS MRI working group. Ann. Rheum. Dis. 78, 1550–1558 (2019).

    PubMed  Google Scholar 

  48. Weber, U. et al. Does evaluation of the ligamentous compartment enhance diagnostic utility of sacroiliac joint MRI in axial spondyloarthritis? Arthritis Res. Ther. 17, 246 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Cruickshank, B. Pathology of ankylosing spondylitis. Bull. Rheum. Dis. 10, 211–214 (1960).

    CAS  PubMed  Google Scholar 

  50. No authors listed. Clinicopathological conference. A case of early ankylosing spondylitis with fatal secondary amyloidosis. Br. Med. J. 2, 412–416 (1968).

    Google Scholar 

  51. Appel, H. et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone–cartilage interface and subchondral bone marrow. Arthritis Rheum. 54, 1805–1813 (2006).

    PubMed  Google Scholar 

  52. Appel, H. et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum. 54, 2845–2851 (2006).

    PubMed  Google Scholar 

  53. Bleil, J. et al. Histomorphologic and histomorphometric characteristics of zygapophyseal joint remodeling in ankylosing spondylitis. Arthritis Rheumatol. 66, 1745–1754 (2014).

    PubMed  Google Scholar 

  54. Bleil, J. et al. Granulation tissue eroding the subchondral bone also promotes new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 68, 2456–2465 (2016).

    CAS  PubMed  Google Scholar 

  55. Pacheco-Tena, C. et al. Bone lineage proteins in the entheses of the midfoot in patients with spondyloarthritis. J. Rheumatol. 42, 630–637 (2015).

    PubMed  Google Scholar 

  56. Muche, B. et al. Anatomic structures involved in early- and late-stage sacroiliitis in spondylarthritis: a detailed analysis by contrast-enhanced magnetic resonance imaging. Arthritis Rheum. 48, 1374–1384 (2003).

    CAS  PubMed  Google Scholar 

  57. Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Brief report: magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum. 65, 2274–2278 (2013).

    PubMed  Google Scholar 

  58. McGonagle, D. et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum. 46, 489–493 (2002).

    PubMed  Google Scholar 

  59. Dougados, M. et al. Rate and predisposing factors for sacroiliac joint radiographic progression after a two-year follow-up period in recent-onset spondyloarthritis. Arthritis Rheumatol. 68, 1904–1913 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bollow, M. et al. Very early spondyloarthritis: where the inflammation in the sacroiliac joints starts. Ann. Rheum. Dis. 64, 1644–1666 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shichikawa, K., Tsujimoto, M., Nishioka, J. & Matsumoto, K. in Advances in Inflammation Research: The Spondyloarthropathies Vol. 9 (eds Ziff, M. & Cohen, S. B.) 15–24 (Raven, 1985).

  62. Wang, D. M. et al. Pannus inflammation in sacroiliitis following immune pathological injury and radiological structural damage: a study of 193 patients with spondyloarthritis. Arthritis Res. Ther. 20, 120 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Bollow, M. et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis – cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann. Rheum. Dis. 59, 135–140 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dougados, M. et al. Sacroiliac radiographic progression in recent onset axial spondyloarthritis: the 5-year data of the DESIR cohort. Ann. Rheum. Dis. 76, 1823–1828 (2017).

    PubMed  Google Scholar 

  65. Bennett, A. N. et al. Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum. 58, 3413–3418 (2008).

    CAS  PubMed  Google Scholar 

  66. Sepriano, A. et al. Is active sacroiliitis on MRI associated with radiographic damage in axial spondyloarthritis? Real-life data from the ASAS and DESIR cohorts. Rheumatology 58, 798–802 (2019).

    PubMed  Google Scholar 

  67. Weber, U. et al. Can erosions on MRI of the sacroiliac joints be reliably detected in patients with ankylosing spondylitis? A cross-sectional study. Arthritis Res. Ther. 14, R124 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Maksymowych, W. P., Wichuk, S., Chiowchanwisawakit, P., Lambert, R. G. & Pedersen, S. J. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 66, 2958–2967 (2014).

    PubMed  Google Scholar 

  69. Maksymowych, W. P., Wichuk, S., Chiowchanwisawakit, P., Lambert, R. G. & Pedersen, S. J. Fat metaplasia on MRI of the sacroiliac joints increases the propensity for disease progression in the spine of patients with spondyloarthritis. RMD Open 3, e000399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Machado, P. M., Baraliakos, X., van der Heijde, D., Braun, J. & Landewé, R. MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann. Rheum. Dis. 75, 1486–1493 (2016).

    PubMed  Google Scholar 

  71. Baraliakos, X. et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann. Rheum. Dis. 73, 1819–1825 (2014).

    CAS  PubMed  Google Scholar 

  72. Chiowchanwisawakit, P., Lambert, R. G. W., Conner-Spady, B. & Maksymowych, W. P. Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum. 63, 2215–2225 (2011).

    PubMed  Google Scholar 

  73. Thomopoulos, S., Genin, G. M. & Galatz, L. M. The development and morphogenesis of the tendon-to-bone insertion – what development can teach us about healing. J. Musculoskelet. Neuronal Interact. 10, 35–45 (2010).

    CAS  PubMed  Google Scholar 

  74. Rossetti, L. et al. The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).

    CAS  PubMed  Google Scholar 

  75. Genin, G. M. et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97, 976–985 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Killian, M. L. Growth and mechanobiology of the tendon–bone enthesis. Semin. Cell Dev. Biol. 123, 64–73 (2022).

    CAS  PubMed  Google Scholar 

  77. Laloux, L. Immunohistological study of entheses in spondyloarthropathies: comparison in rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 60, 316–321 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Benjamin, M. et al. Microdamage and altered vascularity at the enthesis–bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheum. 56, 224–233 (2007).

    CAS  PubMed  Google Scholar 

  79. Grüneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1, 236–250 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. François, R. J., Neure, L., Sieper, J. & Braun, J. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumour necrosis factor α in two patients with early disease and transforming growth factor β in three more advanced cases. Ann. Rheum. Dis. 65, 713–720 (2006).

    PubMed  Google Scholar 

  81. Stavre, Z. et al. A role for neutrophils in early enthesitis in spondyloarthritis. Arthritis Res. Ther. 24, 24 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Macleod, T., Bridgewood, C. & McGonagle, D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. Lancet Rheumatol. 5, e47–e57 (2023).

    CAS  Google Scholar 

  83. Ciccia, F. et al. Proinflammatory CX3CR1+CD59+ tumor necrosis factor-like molecule 1A+interleukin-23+ monocytes are expanded in patients with ankylosing spondylitis and modulate innate lymphoid cell 3 immune functions. Arthritis Rheumatol. 70, 2003–2013 (2018).

    CAS  PubMed  Google Scholar 

  84. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    CAS  PubMed  Google Scholar 

  85. Subramanian, A. & Schilling, T. F. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 142, 4191–4204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Das, M., Ithychanda, S., Qin, J. & Plow, E. F. Mechanisms of talin-dependent integrin signaling and crosstalk. Biochim. Biophys. Acta 1838, 579–588 (2014).

    CAS  PubMed  Google Scholar 

  88. Zhen, G. et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun. 12, 1706 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Wang, X. et al. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. J. Clin. Invest. 128, 846–860 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Adkisson, H. D. et al. Immune evasion by neocartilage-derived chondrocytes: implications for biologic repair of joint articular cartilage. Stem Cell Res. 4, 57–68 (2010).

    CAS  PubMed  Google Scholar 

  92. Braun, J. et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 38, 499–505 (1995).

    CAS  PubMed  Google Scholar 

  93. Appel, H. et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res. Ther. 8, R143 (2006).

    PubMed  PubMed Central  Google Scholar 

  94. Yang, H. K. et al. Regression of syndesmophyte after bone marrow transplantation for acute myeloid leukemia in a patient with ankylosing spondylitis: a case report. J. Med. Case Rep. 6, 250 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Britanova, O. V. et al. First autologous hematopoietic SCT for ankylosing spondylitis: a case report and clues to understanding the therapy. Bone Marrow Transplant. 47, 1479–1481 (2012).

    CAS  PubMed  Google Scholar 

  96. Simonetta, F. et al. Complete and sustained remission of spondyloarthritis after allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome. Jt. Bone Spine 82, 216–217 (2014).

    Google Scholar 

  97. Taugor, J. D. et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol. Rev. 169, 209–223 (1999).

    Google Scholar 

  98. Breban, M., Hammer, R. E., Richardson, J. A. & Taurog, J. D. Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment. J. Exp. Med. 178, 1607–1616 (1993).

    CAS  PubMed  Google Scholar 

  99. Wang, R. & Maksymowych, W. P. Targeting the interleukin-23/interleukin-17 inflammatory pathway: successes and failures in the treatment of axial spondyloarthritis. Front. Immunol. 12, 3472 (2021).

    Google Scholar 

  100. Appel, H. et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 65, 1522–1529 (2013).

    CAS  PubMed  Google Scholar 

  101. Mauro, D., Macaluso, F., Fasano, S., Alessandro, R. & Ciccia, F. ILC3 in axial spondyloarthritis: the gut angle. Curr. Rheumatol. Rep. 21, 37 (2019).

    PubMed  Google Scholar 

  102. Toussirot, É., Laheurte, C., Gaugler, B., Gabriel, D. & Saas, P. Increased IL-22-and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front. Immunol. 9, 1610 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    CAS  PubMed  Google Scholar 

  104. El-Zayadi, A. A. et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology 56, 488–493 (2016).

    Google Scholar 

  105. Slouma, M. et al. Increased serum interleukin 22 levels in patients with axial spondyloarthritis. Expert Rev. Clin. Immunol. 19, 123–129 (2023).

    CAS  PubMed  Google Scholar 

  106. Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. van Praet, L. et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann. Rheum. Dis. 73, 1186–1189 (2014).

    PubMed  Google Scholar 

  108. Karow, F. et al. Monocyte transcriptomes from patients with axial spondyloarthritis reveal dysregulated monocytopoiesis and a distinct inflammatory imprint. Arthritis Res. Ther. 23, 246 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yáñez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902.e4 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Regan-Komito, D. et al. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat. Commun. 11, 155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi, H. et al. GM-CSF primes proinflammatory monocyte responses in ankylosing spondylitis. Front. Immunol. 11, 1520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mauro, D. & Ciccia, F. Gut dysbiosis in spondyloarthritis: cause or effect? Best Pract. Res. Clin. Rheumatol. 33, 101493 (2020).

    Google Scholar 

  113. Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802–811 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    CAS  PubMed  Google Scholar 

  115. Guggino, G. et al. Inflammasome activation in ankylosing spondylitis is associated to gut dysbiosis. Arthritis Rheumatol. 73, 1189–1199 (2021).

    CAS  PubMed  Google Scholar 

  116. Furesi, G. et al. Rodent models of spondyloarthritis have decreased white and bone marrow adipose tissue depots. Front. Immunol. 12, 665208 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hurwitz, S. N., Jung, S. K. & Kurre, P. Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 34, 3136–3148 (2020).

    PubMed  Google Scholar 

  119. Gao, X., Xu, C., Asada, N. & Frenette, P. S. The hematopoietic stem cell niche: from embryo to adult. Development 145, dev139691 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Perry, J. M. & Li, L. in Cellular Programming and Reprogramming. Methods in Molecular Biology Vol. 636 (ed. Ding, S.) 45–54 (Humana, 2010).

  121. Eaves, C. J. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125, 2605–2613 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Vandoorne, K. et al. Imaging the vascular bone marrow niche during inflammatory stress. Circ. Res. 123, 415–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Olmsted-Davis, E. A. et al. Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proc. Natl Acad. Sci. USA 100, 15877–15882 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ria, R. et al. Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin. Cancer Res. 14, 1678–1685 (2008).

    CAS  PubMed  Google Scholar 

  125. Bernardo, M. E. & Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    CAS  PubMed  Google Scholar 

  126. He, X. et al. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS ONE 11, e0149876 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Pevsner-Fischer, M. et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109, 1422–1432 (2007).

    CAS  PubMed  Google Scholar 

  128. Jung, Y. et al. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cell 26, 2042–2051 (2008).

    Google Scholar 

  129. Durig, J. et al. Intercellular communication between bone marrow stromal cells and CD34+ haematopoietic progenitor cells is mediated by connexin 43-type gap junctions. Br. J. Haematol. 111, 416–425 (2000).

    CAS  PubMed  Google Scholar 

  130. Li, Y. et al. Whole genome expression profiling and signal pathway screening of MSCs in ankylosing spondylitis. Stem Cell Int. 2014, 913050 (2014).

    Google Scholar 

  131. Li, J. et al. Elevated TRAF4 expression impaired LPS-induced autophagy in mesenchymal stem cells from ankylosing spondylitis patients. Exp. Mol. Med. 49, e343 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Li, Y. et al. A study of the immunoregulatory function of TLR3 and TLR4 on mesenchymal stem cells in ankylosing spondylitis. Stem Cell Dev. 28, 1398–1412 (2019).

    CAS  Google Scholar 

  133. Li, Y.-X. et al. Integrative analysis of long non-coding RNA and messenger RNA expression in toll-like receptor 4-primed mesenchymal stem cells of ankylosing spondylitis. Ann. Transl. Med. 9, 1563–1563 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, W. et al. SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Hum. Mol. Genet. 30, 277–293 (2021).

    CAS  PubMed  Google Scholar 

  135. Xie, Z. et al. Differential expression profiles of long noncoding RNA and mRNA of osteogenically differentiated mesenchymal stem cells in ankylosing spondylitis. J. Rheumatol. 43, 1523–1531 (2016).

    CAS  PubMed  Google Scholar 

  136. Akiyama, K. et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10, 544–555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008).

    CAS  PubMed  Google Scholar 

  138. Li, D. et al. All-trans retinoic acid improves the effects of bone marrow-derived mesenchymal stem cells on the treatment of ankylosing spondylitis: an in vitro study. Stem Cell Int. 2015, 484528 (2015).

    Google Scholar 

  139. Ma, M. et al. SMAD-specific E3 ubiquitin ligase 2 promotes angiogenesis by facilitating PTX3 degradation in MSCs from patients with ankylosing spondylitis. Stem Cell 39, 581–599 (2021).

    CAS  Google Scholar 

  140. Liu, L., Yuan, Y., Zhang, S., Xu, J. & Zou, J. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. J. Cell. Physiol. 236, 6090–6100 (2021).

    CAS  PubMed  Google Scholar 

  141. Zheng, G. et al. Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis. 10, 350 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Xie, Z. et al. Imbalance between bone morphogenetic protein 2 and noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Arthritis Rheumatol. 68, 430–440 (2016).

    CAS  PubMed  Google Scholar 

  143. Yang, Y. & Dai, M. Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. Int. J. Mol. Med. 36, 565–570 (2015).

    CAS  PubMed  Google Scholar 

  144. Liu, C.-H. et al. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J. Clin. Invest. 129, 5357–5373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dangoria, N. S. et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J. Biol. Chem. 277, 23459–23468 (2002).

    CAS  PubMed  Google Scholar 

  146. Tran, T. M. et al. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J. Immunol. 172, 5110–5119 (2004).

    CAS  PubMed  Google Scholar 

  147. Turner, M. J., DeLay, M. L., Bai, S., Klenk, E. & Colbert, R. A. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56, 215–223 (2007).

    PubMed  Google Scholar 

  148. Liu, C. et al. Transfer of microRNA-22-3p by M2 macrophage-derived extracellular vesicles facilitates the development of ankylosing spondylitis through the PER2-mediated Wnt/β-catenin axis. Cell Death Discov. 8, 269 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, W. et al. Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis. 10, 188 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Xie, Z. et al. TNF-α-mediated m6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat. Commun. 12, 5373 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Osta, B., Lavocat, F., Eljaafari, A. & Miossec, P. Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front. Immunol. 5, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Okamoto, K. & Takayanagi, H. Osteoimmunology. Cold Spring Harb. Perspect. Med. 9, a031245 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jo, S. et al. IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res. Ther. 20, 115 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Russell, T. et al. IL-17A and TNF modulate normal human spinal entheseal bone and soft tissue mesenchymal stem cell osteogenesis, adipogenesis, and stromal function. Cells 10, 341 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Papagoras, C. et al. IL‐17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone‐forming cells in ankylosing spondylitis. Eur. J. Immunol. 51, 930–942 (2021).

    CAS  PubMed  Google Scholar 

  156. McGonagle, D., Thomas, R. C. & Schett, G. Spondyloarthritis: may the force be with you? Ann. Rheum. Dis. 73, 321–323 (2014).

    PubMed  Google Scholar 

  157. Tinazzi, I. et al. ‘Deep Koebner’ phenomenon of the flexor tendon-associated accessory pulleys as a novel factor in tenosynovitis and dactylitis in psoriatic arthritis. Ann. Rheum. Dis. 77, 922–925 (2018).

    CAS  PubMed  Google Scholar 

  158. François, R. J., Gardner, D. L., Degrave, E. J. & Bywaters, E. G. L. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis: systematic study of specimens from patients and control subjects. Arthritis Rheum. 43, 2011–2024 (2000).

    PubMed  Google Scholar 

  159. Bywaters, E. G. L. in Spondylarthropathies (ed. Calin, A.) 43–68 (Grune & Stratton, 1984).

  160. Raman, N., Imran, S. A. M., Ahmad Amin Noordin, K. B., Zaman, W. S. W. K. & Nordin, F. Mechanotransduction in mesenchymal stem cells (MSCs) differentiation: a review. Int. J. Mol. Sci. 23, 4580 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, Y.-S. & Lee, O. K. In search of the pivot point of mechanotransduction: mechanosensing of stem cells. Cell Transpl. 23, 1–11 (2014).

    CAS  Google Scholar 

  162. Hao, J. et al. Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater. 20, 1–9 (2015).

    PubMed  Google Scholar 

  163. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Yeremenko, N. et al. Disease-specific and inflammation-independent stromal alterations in spondylarthritis synovitis. Arthritis Rheum. 65, 174–185 (2013).

    CAS  PubMed  Google Scholar 

  166. Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).

    CAS  PubMed  Google Scholar 

  167. Wu, D., Schaffler, M. B., Weinbaum, S. & Spray, D. C. Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process. Proc. Natl Acad. Sci. USA 110, 12096–12101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Si, J. et al. Osteopontin in bone metabolism and bone diseases. Med. Sci. Monit. 26, e919159 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Dai, B. et al. Macrophages in epididymal adipose tissue secrete osteopontin to regulate bone homeostasis. Nat. Commun. 13, 427 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ishijima, M. et al. Osteopontin is required for mechanical stress-dependent signals to bone marrow cells. J. Endocrinol. 193, 235–243 (2007).

    CAS  PubMed  Google Scholar 

  171. Choi, S. T. et al. Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology 47, 1775–1779 (2008).

    CAS  PubMed  Google Scholar 

  172. Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).

    CAS  PubMed  Google Scholar 

  173. Kaaij, M. H. et al. Anti-IL-17A treatment reduces serum inflammatory, angiogenic and tissue remodeling biomarkers accompanied by less synovial high endothelial venules in peripheral spondyloarthritis. Sci. Rep. 10, 21094 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. McWhorter, F. Y., Davis, C. T. & Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72, 1303–1316 (2015).

    CAS  PubMed  Google Scholar 

  176. Symons, R. A. et al. Targeting the IL-6–Yap–Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Ann. Rheum. Dis. 81, 214–224 (2022).

    CAS  PubMed  Google Scholar 

  177. Ekpenyong, A. E. et al. Mechanical deformation induces depolarization of neutrophils. Sci. Adv. 3, e1602536 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Kang, J. H. et al. Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells. Sci. Rep. 11, 12106 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Jaumard, N. V., Welch, W. C. & Winkelstein, B. A. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J. Biomech. Eng. 133, 71010 (2011).

    PubMed Central  Google Scholar 

  181. Yang, K. H. & King, A. I. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9, 557–565 (1984).

    CAS  PubMed  Google Scholar 

  182. Kiapour, A. et al. Biomechanics of the sacroiliac joint: anatomy, function, biomechanics, sexual dimorphism, and causes of pain. Int. J. Spine Surg. 14, S3–S13 (2020).

    PubMed Central  Google Scholar 

  183. Rosine, N. & Miceli-Richard, C. Innate cells: the alternative source of IL-17 in axial and peripheral spondyloarthritis? Front. Immunol. 11, 553742 (2021).

    PubMed  PubMed Central  Google Scholar 

  184. Maerz, T. et al. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture. Osteoarthr. Cartil. 25, 1335–1344 (2017).

    CAS  Google Scholar 

  185. Chang, N.-H., Inman, R. D., Dick, J. E. & Wither, J. E. Bone marrow-derived human hematopoietic stem cells engraft NOD/SCID mice and traffic appropriately to an inflammatory stimulus in the joint. J. Rheumatol. 37, 496–502 (2010).

    PubMed  Google Scholar 

  186. Schett, G. & Firestein, G. S. Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann. Rheum. Dis. 69, 787–789 (2010).

    PubMed  Google Scholar 

  187. Binks, D. A. et al. Role of vascular channels as a novel mechanism for subchondral bone damage at cruciate ligament entheses in osteoarthritis and inflammatory arthritis. Ann. Rheum. Dis. 74, 196–203 (2015).

    CAS  PubMed  Google Scholar 

  188. de Winter, J. et al. Magnetic resonance imaging of the sacroiliac joints indicating sacroiliitis according to the Assessment of SpondyloArthritis international Society definition in healthy individuals, runners, and women with postpartum back pain. Arthritis Rheumatol. 70, 1042–1048 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.M., S.G., G.S., W.P.M. and F.C. researched data and wrote the article. All authors made a substantial contribution to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Francesco Ciccia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks R. Colbert, R. Ramonda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauro, D., Gandolfo, S., Tirri, E. et al. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 19, 519–532 (2023). https://doi.org/10.1038/s41584-023-00986-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00986-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing