Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Back to the future: targeting the extracellular matrix to treat systemic sclerosis

Abstract

Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for >40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the ECM, including some drugs that are currently under consideration for the treatment of cancer.

Key points

  • Systemic sclerosis (SSc) is a fibrotic disease, and anti-fibrotic agents deserve consideration as treatments for this disease.

  • Major efforts have been made in the past ~20–25 years to uncover common mechanisms underlying fibrotic disease, including mechanotransductive pathways and enzymes that directly affect extracellular matrix stiffness.

  • Potential SSc targets include collagen prolyl 4-hydroxylase, lysyl oxidase, focal adhesion kinase, TGFβ-activating integrin subunits, TGFβ-activated kinase 1, yes-associated protein 1, myocardin-related transcription factor A and cellular communication network factors.

  • Current efforts are focused on understanding how fibroblast subsets respond excessively to inflammation in fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammatory insults result in fibroblast activation in systemic sclerosis.
Fig. 2: Potentially druggable extracellular matrix targets in systemic sclerosis.

Similar content being viewed by others

References

  1. Herrick, A. L., Assassi, S. & Denton, C. P. Skin involvement in early diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat. Rev. Rheumatol. 18, 276–285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang, Y., Turk, M. A. & Pope, J. E. Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc). Autoimmun. Rev. 19, 102602 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Attanasio, U. et al. Pulmonary hypertension phenotypes in systemic sclerosis: the right diagnosis for the right treatment. Int. J. Mol. Sci. 21, 4430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siqueira, V. S. et al. Predictors of progression to systemic sclerosis: analysis of very early diagnosis of systemic sclerosis in a large single-centre cohort. Rheumatology 61, 3686–3692 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Domsic, R. T. et al. Defining the optimal disease duration of early diffuse systemic sclerosis for clinical trial design. Rheumatology 60, 4662–4670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Higley, H. et al. Immunocytochemical localization and serologic detection of transforming growth factor β1. Association with type I procollagen and inflammatory cell markers in diffuse and limited systemic sclerosis, morphea, and Raynaud’s phenomenon. Arthritis Rheum. 37, 278–288 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Tsou, P. S., Shi, B. & Varga, J. Role of cellular senescence in the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol. 34, 343–350 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Lescoat, A., Lecureur, V. & Varga, J. Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent insights and therapeutic implications. Curr. Opin. Rheumatol. 33, 463–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Tsou, P. S., Varga, J. & O’Reilly, S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol. 17, 596–607 (2021).

    Article  PubMed  Google Scholar 

  10. Shah, S. & Denton, C. P. Scleroderma autoantibodies in guiding monitoring and treatment decisions. Curr. Opin. Rheumatol. 34, 302–310 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Lescoat, A., Varga, J., Matucci-Cerinic, M. & Khanna, D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert. Opin. Investig. Drugs 30, 635–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Haynes, D. C. & Gershwin, M. E. The immunopathology of progressive systemic sclerosis (PSS). Semin. Arthritis Rheum. 11, 331–351 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Sappino, A. P., Masouyé, I., Saurat, J. H. & Gabbiani, G. Smooth muscle differentiation in scleroderma fibroblastic cells. Am. J. Pathol. 137, 585–591 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirk, T. Z., Mark, M. E., Chua, C. C., Chua, B. H. & Mayes, M. D. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. J. Biol. Chem. 270, 3423–3428 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Krieg, T., Perlish, J. S., Mauch, C. & Fleischmajer, R. Collagen synthesis by scleroderma fibroblasts. Ann. N. Y. Acad. Sci. 460, 375–386 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. LeRoy, E. C. The pathogenesis of systemic sclerosis. Clin. Exp. Rheumatol. 7, S135–S137 (1989).

    PubMed  Google Scholar 

  18. Mauch, C. & Kreig, T. Fibroblast-matrix interactions and their role in the pathogenesis of fibrosis. Rheum. Dis. Clin. North. Am. 16, 93–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. van der Slot, A. J. et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278, 40967–40972 (2003).

    Article  PubMed  Google Scholar 

  20. Ivarsson, M., McWhirter, A., Black, C. M. & Rubin, K. Impaired regulation of collagen pro-α1(I) mRNA and change in pattern of collagen-binding integrins on scleroderma fibroblasts. J. Invest. Dermatol. 101, 216–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Bou-Gharios, G., Osman, J., Black, C. & Olsen, I. Excess matrix accumulation in scleroderma is caused partly by differential regulation of stromelysin and TIMP-1 synthesis. Clin. Chim. Acta 231, 69–78 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Wakhlu, A. et al. Assessment of extent of skin involvement in scleroderma using shear wave elastography. Indian. J. Rheumatol. 12, 194–198 (2017).

    Article  Google Scholar 

  23. Aden, N. et al. Proteomic analysis of scleroderma lesional skin reveals activated wound healing phenotype of epidermal cell layer. Rheumatology 47, 1754–1760 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Allanore, Y. et al. Correlation of serum collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. J. Rheumatol. 30, 68–73 (2003).

    CAS  PubMed  Google Scholar 

  25. Lurje, I., Gaisa, N. T., Weiskirchen, R. & Tacke, F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol. Asp. Med. 92, 101191 (2023).

    Article  CAS  Google Scholar 

  26. Brown, M. & O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 195, 310–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. van Bon, L., Cossu, M. & Radstake, T. R. An update on an immune system that goes awry in systemic sclerosis. Curr. Opin. Rheumatol. 23, 505–510 (2011).

    Article  PubMed  Google Scholar 

  28. Wei, L., Abraham, D. & Ong, V. The Yin and Yang of IL-17 in systemic sclerosis. Front. Immunol. 13, 885609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Worrell, J. C. & O’Reilly, S. Bi-directional communication: conversations between fibroblasts and immune cells in systemic sclerosis. J. Autoimmun. 113, 102526 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Li, G. et al. Skin-resident effector memory CD8+CD28 T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. J. Invest. Dermatol. 137, 1042–1050 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Yaseen, B. et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology 59, 2625–2636 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Makhluf, H. A. et al. IL-4 upregulates tenascin synthesis in scleroderma and healthy skin fibroblasts. J. Invest. Dermatol. 107, 856–859 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Matsushita, T. et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci. Adv. 4, eaas9944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. François, A. et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res. Ther. 15, R168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matsushita, T. et al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 54, 192–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. van der Kroef, M. et al. CXCL4 triggers monocytes and macrophages to produce PDGF-BB, culminating in fibroblast activation: implications for systemic sclerosis. J. Autoimmun. 111, 102444 (2020).

    Article  PubMed  Google Scholar 

  37. Binai, N., O’Reilly, S., Griffiths, B., van Laar, J. M. & Hügle, T. Differentiation potential of CD14+ monocytes into myofibroblasts in patients with systemic sclerosis. PLoS ONE 7, e33508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herrick, A. L. et al. Treatment outcome in early diffuse cutaneous systemic sclerosis: the European Scleroderma Observational Study (ESOS). Ann. Rheum. Dis. 76, 1207–1218 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Namas, R. et al. Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. Arthritis Care Res. 70, 439–444 (2018).

    Article  CAS  Google Scholar 

  40. Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, S. et al. Role of Rac1 in a bleomycin-induced scleroderma model using fibroblast-specific Rac1-knockout mice. Arthritis Rheum. 58, 2189–2195 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, S., Shi-wen, X., Abraham, D. J. & Leask, A. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 63, 239–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Tsang, M. et al. Insights into fibroblast plasticity: cellular communication network 2 is required for activation of cancer-associated fibroblasts in a murine model of melanoma. Am. J. Pathol. 190, 206–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Y. et al. Matrix contraction by dermal fibroblasts requires transforming growth factor-β/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am. J. Pathol. 167, 1699–1711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajkumar, V. S., Sundberg, C., Abraham, D. J., Rubin, K. & Black, C. M. Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum. 42, 930–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Young-Min, S. A. et al. Serum TIMP-1, TIMP-2, and MMP-1 in patients with systemic sclerosis, primary Raynaud’s phenomenon, and in normal controls. Ann. Rheum. Dis. 60, 846–851 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, S. et al. Endothelins: effect on matrix biosynthesis and proliferation in normal and scleroderma fibroblasts. J. Cardiovasc. Pharmacol. 31, S360–S363 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Chanoki, M. et al. Increased expression of lysyl oxidase in skin with scleroderma. Br. J. Dermatol. 133, 710–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Rimar, D. et al. Brief report: lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis. Arthritis Rheumatol. 66, 726–730 (2014).

    Article  PubMed  Google Scholar 

  51. Nguyen, X. X. et al. Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. Am. J. Physiol. Lung Cell Mol. Physiol. 320, L29–L40 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Siegel, R. C., Pinnell, S. R. & Martin, G. R. Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry 9, 4486–4492 (1970).

    Article  CAS  PubMed  Google Scholar 

  53. Peltonen, L., Palotie, A., Myllylä, R., Krieg, T. & Oikarinen, A. Collagen biosynthesis in systemic scleroderma: regulation of posttranslational modifications and synthesis of procollagen in cultured fibroblasts. J. Invest. Dermatol. 84, 14–18 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Kawaguchi, Y. et al. Cytokine regulation of prolyl 4-hydroxylase production in skin fibroblast cultures from patients with systemic sclerosis: contribution to collagen synthesis and fibrosis. J. Rheumatol. 19, 1195–1201 (1992).

    CAS  PubMed  Google Scholar 

  55. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Van De Water, L., Varney, S. & Tomasek, J. J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv. Wound Care 2, 122–141 (2013).

    Article  Google Scholar 

  57. Ogawa, R. & Hsu, C. K. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell Mol. Med. 17, 817–822 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leask, A. The hard problem: mechanotransduction perpetuates the myofibroblast phenotype in scleroderma fibrosis. Wound Repair. Regen. 29, 582–587 (2021).

    Article  PubMed  Google Scholar 

  59. Spiera, R. et al. A randomised, double-blind, placebo-controlled phase 3 study of lenabasum in diffuse cutaneous systemic sclerosis: RESOLVE-1 design and rationale. Clin. Exp. Rheumatol. 239, 124–133 (2021).

    Article  Google Scholar 

  60. Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 8, 963–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Khanna, D. et al. An open-label, phase II study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS trial. J. Rheumatol. 43, 1672–1679 (2016).

    Article  PubMed  Google Scholar 

  62. Leask, A. Signaling in fibrosis: targeting the TGFbeta, endothelin-1 and CCN2 axis in scleroderma. Front. Biosci. 1, 115–122 (2009).

    Google Scholar 

  63. Leask, A., Holmes, A., Black, C. M. & Abraham, D. J. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-β2 in fibroblasts. J. Biol. Chem. 278, 13008–13015 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Thannickal, V. J. et al. Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 278, 12384–12389 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Shi-wen, X. et al. Requirement of transforming growth factor β-activated kinase 1 for transforming growth factor β-induced α-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis Rheum. 60, 234–241 (2009).

    Article  PubMed  Google Scholar 

  66. Lagares, D. et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 64, 1653–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi-wen, X. et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology 51, 2146–2154 (2012).

    Article  PubMed  Google Scholar 

  68. Khan, Z. & Marshall, J. F. The role of integrins in TGFβ activation in the tumour stroma. Cell Tissue Res. 365, 657–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asano, Y., Ihn, H., Jinnin, M., Mimura, Y. & Tamaki, K. Involvement of αvβ5 integrin in the establishment of autocrine TGF-β signaling in dermal fibroblasts derived from localized scleroderma. J. Invest. Dermatol. 126, 1761–1769 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Asano, Y. et al. Increased expression of integrin αvβ3 contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts. J. Immunol. 175, 7708–7718 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Asano, Y., Ihn, H., Yamane, K., Jinnin, M. & Tamaki, K. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am. J. Pathol. 168, 499–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, S. et al. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J. Cell Sci. 123, 3674–3682 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Myllyharju, J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann. Med. 40, 402–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Gorres, K. L. & Raines, R. T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 45, 106–124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Franklin, T. J. Therapeutic approaches to organ fibrosis. Int. J. Biochem. Cell Biol. 29, 79–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Böker, K., Schwarting, G., Kaule, G., Günzler, V. & Schmidt, E. Fibrosis of the liver in rats induced by bile duct ligation. Effects of inhibition by prolyl 4-hydroxylase. J. Hepatol. 13, S35–S40 (1991).

    Article  PubMed  Google Scholar 

  78. Bickel, M. et al. Selective inhibition of hepatic collagen accumulation in experimental liver fibrosis in rats by a new prolyl 4-hydroxylase inhibitor. Hepatology 28, 404–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Bolarin, D. M., Palicharla, P. & Fuller, G. C. Enzymes of collagen synthesis in lung tissues of bleomycin-induced pulmonary fibrosis. Toxicol. Appl. Pharmacol. 73, 188–191 (1984).

    Article  CAS  PubMed  Google Scholar 

  81. Takeda, K., Kawai, S., Kato, F., Tetsuka, T. & Konno, K. Stimulation of prolyl hydroxylase activity by bleomycin. J. Antibiot. 31, 884–887 (1978).

    Article  CAS  Google Scholar 

  82. Tschank, G., Raghunath, M., Günzler, V. & Hanauske-Abel, H. M. Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. Decrease in interstitial collagen and Clq secretion in cell culture. Biochem. J. 248, 625–633 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vasta, J. D. et al. Selective inhibition of collagen prolyl 4-hydroxylase in human cells. ACS Chem. Biol. 11, 193–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Szauter, K. M., Cao, T., Boyd, C. D. & Csiszar, K. Lysyl oxidase in development, aging and pathologies of the skin. Pathol. Biol. 53, 448–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Pharmaxis. Product pipeline: amine oxidase platform. Pharmaxis https://www.pharmaxis.com.au/product-pipeline/amine-oxidase-platform/ (2023).

  86. Infante, J. R. et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J. Clin. Oncol. 30, 1527–1533 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Peidl, A., Perbal, B. & Leask, A. Yin/Yang expression of CCN family members: transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PLoS ONE 14, e0218178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jones, S. F. et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest. N. Drugs 33, 1100–1107 (2015).

    Article  CAS  Google Scholar 

  89. Gerber, D. E. et al. Phase 2 study of the focal adhesion kinase inhibitor defactinib (VS-6063) in previously treated advanced KRAS mutant non-small cell lung cancer. Lung Cancer 139, 60–67 (2020).

    Article  PubMed  Google Scholar 

  90. Wang-Gillam, A. et al. Defactinib, pembrolizumab, and gemcitabine in patients with advanced treatment refractory pancreatic cancer: a phase I dose escalation and expansion study. Clin. Cancer Res. 28, 5254–5262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. François, R. A. et al. Targeting focal adhesion kinase and resistance to mTOR inhibition in pancreatic neuroendocrine tumors. J. Natl Cancer Inst. 107, djv123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mullard, A. Pliant’s integrin inhibitor boosted by phase II IPF data. Nat. Rev. Drug. Discov. 21, 626 (2022).

    PubMed  Google Scholar 

  95. Liu, S. & Leask, A. Integrin β1 is required for dermal homeostasis. J. Invest. Dermatol. 133, 899–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Riopel, M. M., Li, J., Liu, S., Leask, A. & Wang, R. β1 integrin-extracellular matrix interactions are essential for maintaining exocrine pancreas architecture and function. Lab. Invest. 93, 31–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Parapuram, S. K., Huh, K., Liu, S. & Leask, A. Integrin β1 is necessary for the maintenance of corneal structural integrity. Invest. Ophthalmol. Vis. Sci. 52, 7799–7806 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, S. & Leask, A. Integrin β1 is required for maintenance of vascular tone in postnatal mice. J. Cell Commun. Signal. 6, 175–180 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zeltz, C. et al. Integrin α11β1 in tumor fibrosis: more than just another cancer-associated fibroblast biomarker? J. Cell Commun. Signal. 16, 649–666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zeltz, C. et al. α11β1 integrin is induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration. Cancers 11, 765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, W. et al. TAK1: a molecular link between liver inflammation, fibrosis, steatosis, and carcinogenesis. Front. Cell Dev. Biol. 9, 734749 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Totzke, J. et al. Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. Cell Chem. Biol. 24, 1029–1039.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scarneo, S. et al. Development and efficacy of an orally bioavailable selective TAK1 inhibitor for the treatment of inflammatory arthritis. ACS Chem. Biol. 17, 536–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Scarneo, S. A. et al. Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res. Ther. 21, 292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Foster, C. T., Gualdrini, F. & Treisman, R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes. Dev. 31, 2361–2375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gibault, F. et al. Non-photoinduced biological properties of verteporfin. Curr. Med. Chem. 23, 1171–1184 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Seeneevassen, L., Dubus, P., Gronnier, C. & Varon, C. Hippo in gastric cancer: from signalling to therapy. Cancers 14, 2282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi-Wen, X. et al. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts. J. Cell Commun. Signal. 15, 71–80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chitturi, P. et al. The Tripterygium wilfordii derivative celastrol, a YAP inhibitor, has anti-fibrotic effects in systemic sclerosis. Ann. Rheum. Dis. 82, 1191–1204 (2023).

    PubMed  Google Scholar 

  110. Shiwen, X. et al. A role of myocardin related transcription factor-A (MRTF-A) in scleroderma related fibrosis. PLoS ONE 10, e0126015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ma, H. Y. et al. Inhibition of MRTF activation as a clinically achievable anti-fibrotic mechanism for pirfenidone. Eur. Respir. J. 61, 2200604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leask, A. Conjunction junction, what’s the function? CCN proteins as targets in fibrosis and cancers. Am. J. Physiol. Cell Physiol. 318, C1046–C1054 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, Y. et al. CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol. Biol. Cell 15, 5635–5646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shi-wen, X. et al. CCN2 is necessary for adhesive responses to transforming growth factor-β1 in embryonic fibroblasts. J. Biol. Chem. 281, 10715–10726 (2006).

    Article  PubMed  Google Scholar 

  115. Lau, L. F. Cell surface receptors for CCN proteins. J. Cell Commun. Signal. 10, 121–127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Richeldi, L. et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 28, 25–33 (2020).

    Article  Google Scholar 

  117. Makino, K. et al. Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis. Arthritis Res. Ther. 19, 134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liu, S., Thompson, K. & Leask, A. CCN2 expression by fibroblasts is not required for cutaneous tissue repair. Wound Repair. Regen. 22, 119–124 (2014).

    Article  PubMed  Google Scholar 

  119. Liu, S., Parapuram, S. K. & Leask, A. Fibrosis caused by loss of PTEN expression in mouse fibroblasts is crucially dependent on CCN2. Arthritis Rheum. 65, 2940–2944 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. FibroGen. FibroGen announces topline results from phase 3 ZEPHYRUS-1 study of pamrevlumab for the treatment of idiopathic pulmonary fibrosis. FibroGen https://fibrogen.gcs-web.com/news-releases/news-release-details/fibrogen-announces-topline-results-phase-3-zephyrus-1-study (2023).

  121. Grazioli, S. et al. CYR61 (CCN1) overexpression induces lung injury in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L759–L765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kurundkar, A. R. et al. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J. 30, 2135–2150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kulkarni, T. et al. The senescence-associated matricellular protein CCN1 in plasma of human subjects with idiopathic pulmonary fibrosis. Respir. Med. 161, 105821 (2020).

    Article  PubMed  Google Scholar 

  124. Quesnel, K. et al. CCN1 expression by fibroblasts is required for bleomycin-induced skin fibrosis. Matrix Biol. 3, 100009 (2019).

    Article  Google Scholar 

  125. Königshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119, 772–787 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. FibroGen. Pamrevlumab trials. FibroGen https://www.fibrogen.com/pamrevlumab-trials (2023).

  127. Lu, G. et al. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. Nat. Commun. 211, 5667 (2020).

    Article  Google Scholar 

  128. Resovi, A. et al. CCN-based therapeutic peptides modify pancreatic ductal adenocarcinoma microenvironment and decrease tumor growth in combination with chemotherapy. Cells 9, 952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Riser, B. L., Barnes, J. L. & Varani, J. Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J. Cell Commun. Signal. 9, 327–339 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Leask, A. Yin and Yang revisited: CCN3 as an anti-fibrotic therapeutic? J. Cell Commun. Signal. 9, 97–98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. & Leask, A. Yin and Yang: CCN3 inhibits the pro-fibrotic effects of CCN2. J. Cell Commun. Signal. 3, 161–162 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pliant Therapeutics. World-class drug development capabilities. Pliant https://pliantrx.com/pipeline/ (2023).

  133. Adami, E. et al. IL11 is elevated in systemic sclerosis and IL11-dependent ERK signalling underlies TGFβ-mediated activation of dermal fibroblasts. Rheumatology 60, 5820–5826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Werner, G. et al. Single-cell transcriptome analysis identifies subclusters with inflammatory fibroblast responses in localized scleroderma. Int. J. Mol. Sci. 24, 9796 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ishida, Y., Kuninaka, Y., Mukaida, N. & Kondo, T. Immune mechanisms of pulmonary fibrosis with bleomycin. Int. J. Mol. Sci. 24, 3149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lagares, D. & Hinz, B. Animal and human models of tissue repair and fibrosis: an introduction. Methods Mol. Biol. 2299, 277–290 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. A.L. and R.J.S. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Andrew Leask.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Yoshihide Asano, Gabriela Kania and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leask, A., Naik, A. & Stratton, R.J. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol 19, 713–723 (2023). https://doi.org/10.1038/s41584-023-01032-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01032-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research