Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement therapeutics are coming of age in rheumatology

Abstract

The complement system was described over 100 years ago, and it is well established that activation of this pathway accompanies the great majority of autoimmune and inflammatory diseases. In addition, over three decades of work in murine models of human disease have nearly universally demonstrated that complement activation is upstream of tissue injury and the engagement of pro-inflammatory mechanisms such as the elaboration of cytokines and chemokines, as well as myeloid cell recruitment and activation. With that background, and taking advantage of advances in the development of biologic and small-molecule therapeutics, the creation and clinical evaluation of complement therapeutics is now rapidly expanding. This article reviews the current state of the complement therapeutics field, with a focus on their use in diseases cared for or consulted upon by rheumatologists. Included is an overview of the activation mechanisms and components of the system, in addition to the mechanisms by which the complement system interacts with other immune system constituents. The various therapeutic approaches to modulating the system in rheumatic and autoimmune diseases are reviewed. To understand how best to clinically assess the complement system, methods of its evaluation are described. Finally, next-generation therapeutic and diagnostic advances that can be envisioned for the future are discussed.

Key points

  • Analyses of both tissue and circulating biomarkers indicate that the complement pathway is activated in the majority of rheumatological and autoimmune diseases.

  • A complement inhibitor targeting interaction of the anaphylatoxin C5a with its receptor is effective and approved for the treatment of ANCA-associated vasculitis.

  • A separate inhibitor of C5 activation is also effective and approved for use in atypical haemolytic uraemic syndrome (aHUS), a thrombotic microangiopathy disorder, as well as neuromyelitis optica spectrum disorder.

  • Complement system biomarkers assessed using multiple formats can provide diagnostic as well as prognostic information in diseases for which there are approved complement therapeutics, as well as in certain other clinical settings.

  • Murine models of human rheumatic and autoimmune diseases, including ANCA-associated vasculitis, aHUS, thrombotic microangiopathy and lupus nephritis, demonstrate that complement activation is upstream of tissue injury and the generation of other effector mechanisms.

  • Polymorphic variation and mutations in complement genes are associated with the risks of development of several rheumatic and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complement pathway overview: pathways, activators and effector mechanisms.
Fig. 2: Activation and regulatory steps in the amplification loop of the complement pathways.
Fig. 3: Complement receptors, cell distributions and primary roles.
Fig. 4: Roles of complement in the pathogenesis of ANCA-associated vasculitis.

Similar content being viewed by others

References

  1. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2014).

    Google Scholar 

  2. Holers, V. M. Complement and its receptors: new insights into human disease. Ann. Rev. Immunol. 32, 433–459 (2014).

    CAS  Google Scholar 

  3. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    CAS  PubMed  Google Scholar 

  4. Liszewski, M. K., Java, A., Schramm, E. C. & Atkinson, J. P. Complement dysregulation and disease: insights from contemporary genetics. Annu. Rev. Pathol. Mech. Dis. 12, 25–52 (2017).

    CAS  Google Scholar 

  5. Ricklin, D. & Lambris, J. D. Progress and trends in complement therapeutics. Adv. Exp. Med. Biol. 735, 1–22 (2013).

    CAS  PubMed  Google Scholar 

  6. Jayne, D. R. W., Merkel, P. S., Schall, T. J., Bekker, P. & Group, A. S. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    CAS  PubMed  Google Scholar 

  7. Nürnberger, J. et al. Eculizumab for atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 542–544 (2009).

    PubMed  Google Scholar 

  8. Kim, M. Y. et al. Complement activation predicts adverse pregnancy outcome in patients with systemic lupus erythematosus and/or antiphospholipid antibodies. Ann. Rheum. Dis. 77, 549–555 (2018).

    CAS  PubMed  Google Scholar 

  9. Li, N. L., Birmingham, D. J. & Rovin, B. H. Expanding the role of complement therapies: the case for lupus nephritis. J. Clin. Med. 10, 626 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Holers, V. M., Kinoshita, T. & Molina, H. Evolution of mouse and human complement of C3 binding proteins: divergence of form but conservation of function. Immunol. Today 13, 231–236 (1992).

    CAS  PubMed  Google Scholar 

  11. Banda, N. & Holers, V. M. Complement in the initiation and evolution of rheumatoid arthritis. Front. Immunol. https://doi.org/10.3389/fimmu.2018.01057 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Walport, M. J. Complement: first of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    CAS  PubMed  Google Scholar 

  13. Walport, M. J. Complement: second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    CAS  PubMed  Google Scholar 

  14. Bohlson, S. S., Garred, P., Kemper, C. & Tenner, A. J. Complement nomenclature — deconvoluted. Front. Immunol. https://doi.org/10.3389/fimmu.2019.01308 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, K., Sacks, S. H. & Zhou, W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol. Immunol. 44, 3866–3874 (2007).

    CAS  PubMed  Google Scholar 

  16. Lachmann, P. J. & Hughes-Jones, N. C. Initiation of complement activation. Springer Semin. Immunopathol. 7, 143–162 (1984).

    CAS  PubMed  Google Scholar 

  17. Garred, P. et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 274, 74–97 (2016).

    CAS  PubMed  Google Scholar 

  18. Rademacher, T. W., Williams, P. & Dwek, R. A. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc. Natl Acad. Sci. USA 91, 6123–6127 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Haddad, G. et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, e140453 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi, M. et al. Essential role of Mannose-binding lectin-associated serine protease-1 in activation of the complement factor D. J. Exp. Med. 207, 29–37 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilsson, B. & Ekdahl, K. N. The tick-over theory revisited: Is C3 a contact-activated protein? Immunobiology 217, 1106–1110 (2012).

    CAS  PubMed  Google Scholar 

  22. Lachmann, P. J. The amplification loop of the complement pathways. Adv. Immunol. 104, 115–149 (2009).

    CAS  PubMed  Google Scholar 

  23. Holers, V. M. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol. Rev. 313, 181–193 (2022).

    PubMed  Google Scholar 

  24. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3 — the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie, C. B., Jane-Wit, D. & Pober, J. S. Complement membrane attack complex new roles, mechanisms of action, and therapeutic targets. Am. J. Pathol. 190, 1138–1150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cicardi, M. & Johnston, D. T. Hereditary and acquired complement component 1 esterase inhibitor deficiency: a review for the hematologist. Acta Haematol. 127, 208–220 (2012).

    CAS  PubMed  Google Scholar 

  27. Zipfel, P. F. et al. The role of complement in C3 glomerulopathy. Mol. Immunol. 67, 21–30 (2015).

    CAS  PubMed  Google Scholar 

  28. Parente, R., Clark, S. J., Inforzato, A. & Day, A. J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 74, 1605–1624 (2017).

    CAS  PubMed  Google Scholar 

  29. Ermert, D. & Blom, A. M. C4b-binding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol. Lett. 169, 82–92 (2016).

    CAS  PubMed  Google Scholar 

  30. Liszewski, M. K., Farries, T. C., Lublin, D. M., Rooney, I. A. & Atkinson, J. P. Control of the complement system. Adv. Immunol. 61, 201–283 (1996).

    CAS  PubMed  Google Scholar 

  31. Kim, D. D. & Song, W.-C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  32. Matthews, K. W., Mueller-Ortiz, S. L. & Wetsel, R. A. Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol. Immunol. 40, 785–793 (2004).

    CAS  PubMed  Google Scholar 

  33. Gialeli, C., Gungor, B. & Blom, A. M. Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol. Immunol. 102, 73–83 (2018).

    CAS  PubMed  Google Scholar 

  34. de Cordoba, S. R., Tortajada, A., Harris, C. L. & Morgan, B. P. Complement dysregulation and disease: from genes and proteins to diagnostics and drugs. Immunobiology 217, 1034–1046 (2012).

    PubMed  Google Scholar 

  35. Medjeral‐Thomas, N. & Pickering, M. C. The complement factor H‐related proteins. Immunol. Rev. 274, 191–201 (2016).

    PubMed  Google Scholar 

  36. Jozsi, M. & Meri, S. Factor H-related proteins. Methods Mol. Biol. 1100, 225–236 (2014).

    CAS  PubMed  Google Scholar 

  37. Poppelaars, F. et al. A family affair: addressing the challenges of Factor H and the related proteins. Front. Immunol. 12, 660194 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjeea, P. et al. Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol. Immunol. 151, 166–182 (2022).

    Google Scholar 

  39. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sayegh, E. T., Bloch, O. & Parsa, A. T. Complement anaphylatoxins as immune regulators in cancer. Cancer Med. 3, 747–758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kavai, M. Immune complex clearance by complement receptor type 1 in SLE. Autoimmun. Rev. 8, 160–164 (2008).

    CAS  PubMed  Google Scholar 

  42. Carroll, M. C. The role of complement in B cell activation and tolerance. Adv. Immunol. 74, 61–88 (2000).

    CAS  PubMed  Google Scholar 

  43. van Lookeren Campagne, M., Wiesmann, C. & Brown, E. J. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 9, 2095–2102 (2007).

    PubMed  Google Scholar 

  44. Carroll, M. C. & Holers, V. M. Innate autoimmunity. Adv. Immunol. 86, 137–157 (2005).

    CAS  PubMed  Google Scholar 

  45. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis and circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  47. Wetsel, R. A. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr. Opin. Immunol. 7, 48–53 (1995).

    CAS  PubMed  Google Scholar 

  48. Pandey, S., Maharana, J., Li, X. X., Woodruff, T. M. & Shukla, A. K. Emerging insights into the structure and function of complement C5a receptors. Trends Biochem. Sci. 45, 693–705 (2020).

    CAS  PubMed  Google Scholar 

  49. Karsten, C. M. & Kohl, J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 217, 1067–1079 (2012).

    CAS  PubMed  Google Scholar 

  50. Humbles, A. A. et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406, 998–1001 (2000).

    CAS  PubMed  Google Scholar 

  51. Gao, S. & Cui, Z. & Zhao, M.-h. The complement C3a and C3a receptor pathway in kidney diseases. Front. Immunol. https://doi.org/10.3389/fimmu.2020.01875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kunz, N. & Kemper, C. Complement has brains — do intracellular complement and immunometabolism cooperate in tissue homeostasis and behavior? Front. Immunol. https://doi.org/10.3389/fimmu.2021.629986 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. King, B. C. & Blom, A. M. Intracellular complement: evidence, definitions, controversies, and solutions. Immunol. Rev. 313, 104–119 (2022).

    PubMed  PubMed Central  Google Scholar 

  54. Heurich, M. et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc. Natl Acad. Sci. USA 108, 8761–8766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamitak, N. et al. Complement genes contribute sex-biased vulnerability in diverse illnesses. Nature 582, 577–581 (2020).

    Google Scholar 

  56. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25, 1256–1264 (2007).

    CAS  PubMed  Google Scholar 

  57. Nester, C. M. & Brophy, P. D. Eculizumab in the treatment of atypical haemolytic uraemic syndrome and other complement-mediated renal diseases. Curr. Opin. Pediatr. 25, 225–231 (2012).

    Google Scholar 

  58. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    CAS  PubMed  Google Scholar 

  59. Howard, J. F. Jr et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017).

    CAS  PubMed  Google Scholar 

  60. Varga, L. & Farkas, H. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency. Expert. Rev. Clin. Immunol. 7, 143–153 (2011).

    CAS  PubMed  Google Scholar 

  61. Mastellos, D. C. et al. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur. J. Clin. Invest. 45, 423–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hillmen, P. et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 384, 1028–1037 (2021).

    CAS  PubMed  Google Scholar 

  63. Berentsen, S., Barcellini, W., D’Sa, S. & Jilma, B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom? Immunotherapy 14, 1191–1204 (2022).

    CAS  PubMed  Google Scholar 

  64. Holers, V. M. et al. New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin. Immunol. 28, 260–267 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Botto, M. et al. Complement in human diseases: lessons from complement deficiencies. Mol. Immunol. 46, 2774–2783 (2009).

    CAS  PubMed  Google Scholar 

  66. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    PubMed  Google Scholar 

  67. Jain, R., Jawa, P., Derebail, V. K. & Falk, R. J. Treatment updates in antineutrophil cytoplasmic autoantibodies (ANCA) vasculitis. Kidney360 2, 763–770 (2021).

    PubMed  Google Scholar 

  68. Heijl, C., Mohammad, A. J., Westman, K. & Höglund, P. Long-term patient survival in a Swedish population-based cohort of patients with ANCA-associated vasculitis. RMD Open https://doi.org/10.1136/rmdopen-2017-000435 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Sullivan, K. M. & Holdsworth, S. R. Neutrophil extracellular traps: a potential therapeutic target in MPO-ANCA associated vasculitis? Front. Immunol. https://doi.org/10.3389/fimmu.2021.635188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA 114, E9618–E9625 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, E. Y. et al. Measuring circulating complement activation products in myeloperoxidase- and proteinase 3-antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 71, 1894–1903 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kallenberg, C. G. M. & Heeringa, P. Complement is crucial in the pathogenesis of ANCA-associated vasculitis. Kidney Int. 83, 16–18 (2012).

    Google Scholar 

  75. Johansson, L. et al. Complement activation prior to symptom onset in myeloperoxidase ANCA-associated vasculitis but not proteinase 3 ANCA associated vasculitis — a Swedish biobank study. Scand. J. Rheum. 51, 214–219 (2022).

    CAS  PubMed  Google Scholar 

  76. Gou, S. J., Yuan, J., Wang, C., Zhao, M.-H. & Chen, M. Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin. J. Am. Soc. Nephrol. 8, 1884–1891 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Oba, R. et al. Long-term renal survival in antineutrophil cytoplasmic antibody-associated glomerulonephritis with complement C3 deposition. Kidney Int. Rep. 6, 2661–2670 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Shochet, L., Holdsworth, S. & Kitching, A. R. Animal models of ANCA associated vasculitis. Front. Immunol. https://doi.org/10.3389/fimmu.2020.00525 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 25, 225–231 (2014).

    CAS  PubMed  Google Scholar 

  81. Miao, D., Li, D.-Y., Chen, M. & Zhao, M.-H. Platelets are activated in ANCA-associated vasculitis via thrombin-PARs pathway and can activate the alternative complement pathway. Arthritis Res. Ther. 19, 252 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Noris, M. & Remuzzi, G. Hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 1035–1050 (2005).

    CAS  PubMed  Google Scholar 

  83. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Perez-Caballero, D. et al. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am. J. Hum. Genet. 68, 478–484 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Neumann, H. P. et al. Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J. Med. Genet. 40, 676–681 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Caprioli, J. et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum. Mol. Genet. 12, 3385–3395 (2003).

    CAS  PubMed  Google Scholar 

  87. Richards, A. et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 100, 12966–12971 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    CAS  PubMed  Google Scholar 

  89. Fremeaux-Bacchi, V. et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J. Med. Genet. 41, e84 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dragon-Durey, M. A. et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  91. Dragon-Durey, M. A. et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J. Am. Soc. Nephrol. 21, 2180–2187 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Arjona, E., Huerta, A., Goicoechea de Jorge, E. & Rodrıguez de Cordoba, S. Familial risk of developing atypical hemolytic-uremic syndrome. Blood 136, 1558–1561 (2020).

    PubMed  Google Scholar 

  93. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    CAS  PubMed  Google Scholar 

  94. El-Husseini, A. et al. Thrombotic microangiopathy in systemic lupus erythematosus: efficacy of eculizumab. Am. J. Kidney Dis. 65, 127–130 (2014).

    PubMed  Google Scholar 

  95. Devresse, A. et al. Complement activation and effect of eculizumab in scleroderma renal crisis. Medicine 95, e4459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Asif, A., Nayer, A. & Haas, C. S. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J. Nephrol. 30, 347–362 (2017).

    CAS  PubMed  Google Scholar 

  97. Wingerchuk, D. M. & Lucchinetti, C. F. Neuromyelitis optica spectrum disorder. N. Engl. J. Med. 387, 631–639 (2022).

    PubMed  Google Scholar 

  98. Bennett, J. L. & Owens, G. P. Neuromyelitis optica: deciphering a complex immune-mediated astrocytopathy. J. Neuroophthalmol. 37, 291–299 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Hakobyan, S. et al. Plasma complement biomarkers distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. Mult. Scler. 23, 946–955 (2017).

    CAS  PubMed  Google Scholar 

  100. Duan, T. & Verkman, A. S. Experimental animal models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress and shortcomings. Brain Pathol. 30, 13–25 (2020).

    PubMed  Google Scholar 

  101. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    CAS  PubMed  Google Scholar 

  102. Fanouriakis, A., Tziolos, N., Bertsias, G. & Boumpas, D. T. Update οn the diagnosis and management of systemic lupus erythematosus. Ann. Rheum. Dis. 80, 14–25 (2021).

    PubMed  Google Scholar 

  103. Zhao, J. et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002079 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wangm, F. M., Yu, F., Tan, Y., Song, D. & Zhao, M. H. Serum complement factor H is associated with clinical and pathological activities of patients with lupus nephritis. Rheumatology 51, 2269–2277 (2012).

    Google Scholar 

  105. Kim, A. H. J. et al. Association of blood concentrations of complement split product iC3b and serum C3 with systemic lupus erythematosus disease activity. Arthritis Rheum. 71, 420–430 (2019).

    CAS  Google Scholar 

  106. Martin, M. et al. Plasma C4d correlates with C4d deposition in kidneys and with treatment response in lupus nephritis patients. Front. Immunol. https://doi.org/10.3389/fimmu.2020.582737 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Buyon, J. P., Tamerius, J., Ordorica, S., Young, B. & Abramson, S. B. Activation of the alternative complement pathway accompanies disease flares in systemic lupus erythematosus during pregnancy. Arthritis Rheum. 35, 55–61 (1992).

    CAS  PubMed  Google Scholar 

  108. Parikh, S. V. et al. Molecular imaging of the kidney in lupus nephritis to characterize response to treatment. Transl. Res. 182, 1–13 (2017).

    CAS  PubMed  Google Scholar 

  109. Sato, N. et al. Significance of glomerular activation of the alternative pathway and lectin pathway in lupus nephritis. Lupus 20, 1378–1386 (2011).

    CAS  PubMed  Google Scholar 

  110. Hill, G. S. et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 59, 304–316 (2001).

    CAS  PubMed  Google Scholar 

  111. Wang, Y. et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc. Natl Acad. Sci. USA 93, 8563–8568 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Watanabe, H. et al. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J. Immunol. 164, 786–794 (2000).

    CAS  PubMed  Google Scholar 

  113. Elliott, M. K. et al. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int. 65, 129–138 (2004).

    CAS  PubMed  Google Scholar 

  114. Bao, L. et al. Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice. J. Immunol. 168, 3601–3607 (2002).

    CAS  PubMed  Google Scholar 

  115. Lieberman, L. A. et al. Complement receptor of the immunoglobulin superfamily reduces murine lupus nephritis and cutaneous disease. Clin. Immunol. 160, 286–291 (2015).

    CAS  PubMed  Google Scholar 

  116. Bao, L. et al. C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur. J. Immunol. 35, 2496–2506 (2005).

    CAS  PubMed  Google Scholar 

  117. Sekine, H. et al. Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J. Immunol. 166, 6444–6451 (2001).

    CAS  PubMed  Google Scholar 

  118. Pickering, M. C. et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology 54, 2286–2288 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Garcia, D. & Erkan, D. Diagnosis and management of the antiphospholipid syndrome. N. Engl. J. Med. 378, 2010–2021 (2018).

    CAS  PubMed  Google Scholar 

  120. Chaturvedi, S., Braunstein, E. M. & Brodsky, R. A. Antiphospholipid syndrome: complement activation, complement gene mutations, and therapeutic implications. J. Thromb. Haemost. 19, 607–616 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chaturvedi, S., Brodsky, R. A. & McCrae, K. R. Complement in the pathophysiology of the antiphospholipid syndrome. Front. Immunol. 10, 449 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Breen, K. A. et al. Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome. Thromb. Haemost. 107, 423–429 (2012).

    CAS  PubMed  Google Scholar 

  123. Chaturvedi, S. et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood 135, 239–251 (2020).

    PubMed  PubMed Central  Google Scholar 

  124. Strakham, M. et al. 36-year-old female with catastrophic antiphospholipid syndrome treated with eculizumab: a case report and review of literature. Case Rep. Hematol. https://doi.org/10.1155/2014/704371 (2014).

    Article  Google Scholar 

  125. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 195, 211–220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Pierangelli, S. et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 52, 2120–2124 (2005).

    Google Scholar 

  127. Girardi, G. et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest. 112, 1644–1654 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Girardi, G., Redecha, P. & Salmon, J. E. Heparin prevents anti-phospholipid antibody-mediated fetal loss by inhibiting complement activation. Nat. Med. 10, 1222–1226 (2004).

    CAS  PubMed  Google Scholar 

  129. Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Q. et al. Identification of a role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lahoria, R., Selcen, D. & Engel, A. G. Microvascular alterations and the role of complement in dermatomyositis. Brain 139, 1891–1903 (2016).

    PubMed  Google Scholar 

  132. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    CAS  PubMed  Google Scholar 

  134. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Linton, S. M. & Morgan, B. P. Complement activation and inhibition in experimental models of arthritis. Mol. Immunol. 36, 905–914 (1999).

    CAS  PubMed  Google Scholar 

  136. Monach, P. A., Benoist, C. & Mathis, D. The role of antibodies in mouse models of rheumatoid arthritis, and relevance to human disease. Adv. Immunol. 82, 217–248 (2004).

    CAS  PubMed  Google Scholar 

  137. Neumann, E. et al. Local production of complement proteins in rheumatoid arthritis synovium. Arthritis Rheum. 46, 934–945 (2002).

    CAS  PubMed  Google Scholar 

  138. Mojcik, C. F. et al. Results of a phase 2b study of the humanized anti-C5 antibody eculizumab in patients with rheumatoid arthritis [abstract]. Ann. Rheum. Dis. 63, 301 (2004).

    Google Scholar 

  139. Banda, N. K. et al. Analysis of complement gene expression, clinical associations, and biodistribution of complement proteins in the synovium of early rheumatoid arthritis patients reveals unique pathophysiologic features. J. Immunol. 208, 2482–2496 (2022).

    CAS  PubMed  Google Scholar 

  140. Hitchon, C. A. & El-Gabalawy, H. S. The synovium in rheumatoid arthritis. Open Rheumatol. 5, 107–114 (2011).

    Google Scholar 

  141. Paoliello-Paschoalato, A. B. et al. Activation of complement alternative pathway in rheumatoid arthritis: implications in peripheral neutrophils functions. Open. Autoimmun. J. 3, 1–9 (2014).

    Google Scholar 

  142. Dalakas, M. C. Complement in autoimmune inflammatory myopathies, the role of myositis-associated antibodies, COVID-19 associations, and muscle amyloid deposits. Expert. Rev. Clin. Immunol. https://doi.org/10.1080/1744666X.2022.2054803 (2022).

    Article  PubMed  Google Scholar 

  143. Prohászka, Z., Nilsson, B., Frazer-Abel, A. & Kirschfink, M. Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology 221, 1247–1258 (2016).

    PubMed  Google Scholar 

  144. Ohtani, K. Complement-related proteins and their measurements: the current status of clinical investigation. Nephron 144, 7–12 (2020).

    CAS  PubMed  Google Scholar 

  145. Mollnes, T. E. et al. Complement analysis in the 21st century. Mol. Immunol. 44, 3838–3849 (2007).

    CAS  PubMed  Google Scholar 

  146. Palarasah, Y. et al. Novel assays to assess the functional capacity of the classical, the alternative and the lectin pathways of the complement system. Clin. Exp. Immunol. 164, 388–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Harder, M. J. et al. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood 129, 970–980 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bu, F. et al. Soluble c5b-9 as a biomarker for complement activation in atypical hemolytic uremic syndrome. Am. J. Kidney Dis. 65, 968–969 (2015).

    CAS  PubMed  Google Scholar 

  149. Muff-Luett, M. & Nester, C. M. The genetics of ultra-rare renal disease. J. Pediatr. Genet. 5, 33–42 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. van Lookeren Campagne, M., Strauss, E. C. & Yaspan, B. L. Age-related macular degeneration: complement in action. Immunobiology 221, 733–739 (2016).

    PubMed  Google Scholar 

  151. Barnum, S. R., Bubeck, D. & Schein, T. N. Soluble membrane attack complex: biochemistry and immunobiology. Front. Immunol. https://doi.org/10.3389/fimmu.2020.585108 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zwarthoff, S. A. et al. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Front. Immunol. https://doi.org/10.3389/fimmu.2018.01691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Trouw, L. A. et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J. Clin. Invest. 114, 679–688 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ramsey-Goldman, R., Li, J., Dervieux, T. & Alexander, R. V. Cell-bound complement activation products in SLE. Lupus Sci. Med. 4, e000236 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Ramsey-Goldman, R. et al. Complement activation in patients with probable Systemic Lupus Erythematosus and ability to predict progression to American College of Rheumatology — classified systemic lupus erythematosus. Arthritis Rheumatol. 72, 78–88 (2020).

    CAS  PubMed  Google Scholar 

  156. Thurman, J. M. et al. Detection of complement activation using monoclonal antibodies against C3d. J. Clin. Invest. 123, 2218–2230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Willems, E. et al. Quantitative multiplex profiling of the complement system to diagnose complement-mediated diseases. Clin. Transl. Immunol. 9, e1225 (2020).

    CAS  Google Scholar 

  158. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Smith-Jackson, K. et al. Hyperfunctional complement C3 promotes C5-dependent atypical hemolytic uremic syndrome in mice. J. Clin. Invest. 129, 1061–1075 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Sekine, H., Ruiz, P., Gilkeson, G. S. & Tomlinson, S. The dual role of complement in the progression of renal disease in NZB/W F1 mice and alternative pathway inhibition. Mol. Immunol. 49, 317–323 (2011).

    CAS  PubMed  Google Scholar 

  161. Thurman, J. M. et al. A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody-induced pregnancy loss in mice. Mol. Immunol. 42, 87–97 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks his many colleagues with whom he has worked to understand the biological and clinical roles of the complement system in human disease. These individuals include J. Thurman, N. Banda, L. Kulik, F. Zhang, S. Tomlinson, R. Quigg, C. Atkinson, A. Lynch, J. Atkinson, B. Dixon and A. Frazer-Abel. The author also thanks colleagues from Taligen Therapeutics and Q32 Bio, who have worked to develop therapeutics designed to translate to patient care the discoveries made in academic research laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Michael Holers.

Ethics declarations

Competing interests

The author declares that he is a co-founder of Q32 Bio, a complement therapeutics company, and through those efforts has received sponsored research funding, consulting income and stock.

Peer review

Peer review information

Nature Reviews Rheumatology thanks A. Blom, L. Trouw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holers, V.M. Complement therapeutics are coming of age in rheumatology. Nat Rev Rheumatol 19, 470–485 (2023). https://doi.org/10.1038/s41584-023-00981-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00981-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing