Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of complement in kidney disease

Abstract

The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic–uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.

Key points

  • The complement system is activated in kidney diseases of different aetiologies, including diseases involving immune complex formation, thrombotic microangiopathy, C3 glomerulopathy, glomerulosclerosis and acute kidney injury.

  • Experimental and clinical evidence suggests that the complement cascade contributes to injury in diseases that are not traditionally regarded as immune mediated, including diabetic kidney disease and focal segmental glomerulosclerosis.

  • The mechanisms of complement activation, including the activation pathways involved, vary among different kidney diseases, as do their downstream pathological effects.

  • Deposition of immune complexes in the glomerular capillaries, the high local concentration of complement proteins and the delicate system of complement regulation within the kidney might all contribute to its unique susceptibility to complement-mediated injury.

  • Many complement-inhibiting drugs have been approved, and additional agents targeting different components along the complement cascade are being investigated in clinical trials.

  • Complement-inhibiting drugs target immune system pathways that are not directly blocked by other immunosuppressive agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of complement activation in glomerular disease.
Fig. 2: Complement fragments mediate multiple downstream effects.
Fig. 3: Complement regulators in the kidney.
Fig. 4: Complement-inhibiting drugs for the treatment of kidney diseases.

Similar content being viewed by others

References

  1. Ehrlich, P. Collected Studies on Immunity (John Wiley & Sons, 1906).

  2. Thurman, J. M., Lucia, M. S., Ljubanovic, D. & Holers, V. M. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 67, 524–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Noris, M. et al. Hypocomplementemia discloses genetic predisposition to hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: role of factor H abnormalities. Italian Registry of Familial and Recurrent Hemolytic Uremic Syndrome/Thrombotic Thrombocytopenic Purpura. J. Am. Soc. Nephrol. 10, 281–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Loupy, A. et al. The Banff 2019 Kidney Meeting Report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 20, 2318–2331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reis, E. S., Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. New insights into the immune functions of complement. Nat. Rev. Immunol. 19, 503–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Arbore, G. et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352, aad1210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X. et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110, 228–236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huber-Lang, M. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Holers, V. M. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol. Rev. 313, 181–193 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Pouw, R. B., Vredevoogd, D. W., Kuijpers, T. W. & Wouters, D. Of mice and men: the factor H protein family and complement regulation. Mol. Immunol. 67, 12–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Ebanks, R. O. & Isenman, D. E. Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity. Mol. Immunol. 33, 297–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Brooimans, R. A. et al. Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. J. Clin. Invest. 88, 379–384 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Welch, T. R., Beischel, L. S., Frenzke, M. & Witte, D. Regulated expression of complement factor B in the human kidney. Kidney Int. 50, 521–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Zwirner, J., Felber, E., Herzog, V., Riethmuller, G. & Feucht, H. E. Classical pathway of complement activation in normal and diseased human glomeruli. Kidney Int. 36, 1069–1077 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Dodds, A. W. & Matsushita, M. The phylogeny of the complement system and the origins of the classical pathway. Immunobiology 212, 233–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Matsushita, M. et al. Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc. Natl Acad. Sci. USA 101, 10127–10131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garred, P. et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 274, 74–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Roos, A. et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 17, 1724–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Seifert, L. et al. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat. Commun. 14, 473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harboe, M., Ulvund, G., Vien, L., Fung, M. & Mollnes, T. E. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin. Exp. Immunol. 138, 439–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Boer, E. C. et al. The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation. Clin. Transl. Immunol. 12, e1436 (2023).

    Article  Google Scholar 

  23. Lachmann, P. J., Lay, E. & Seilly, D. J. Experimental confirmation of the C3 tickover hypothesis by studies with an Ab (S77) that inhibits tickover in whole serum. FASEB J. 32, 123–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Jean, D. et al. A cysteine proteinase, which cleaves human C3, the third component of complement, is involved in tumorigenicity and metastasis of human melanoma. Cancer Res. 56, 254–258 (1996).

    CAS  PubMed  Google Scholar 

  25. Volanakis, J. E., Barnum, S. R., Giddens, M. & Galla, J. H. Renal filtration and catabolism of complement protein D. N. Engl. J. Med. 312, 395–399 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. C3(H2O) prevents rescue of complement-mediated C3 glomerulopathy in Cfh−/− Cfd−/− mice. JCI Insight https://doi.org/10.1172/jci.insight.135758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jalal, D. et al. Endothelial microparticles and systemic complement activation in patients with chronic kidney disease. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.117.007818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I — molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brown, K. M. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N. Engl. J. Med. 354, 2014–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sircar, M. et al. Complement 7 is up-regulated in human early diabetic kidney disease. Am. J. Pathol. 188, 2147–2154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, S., Zhou, W., Sheerin, N. S., Vaughan, R. W. & Sacks, S. H. Contribution of renal secreted complement C3 to the circulating pool in humans. J. Immunol. 162, 4336–4341 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. West, E. E. & Kemper, C. Complosome — the intracellular complement system. Nat. Rev. Nephrol. 19, 426–439 (2023).

    Article  PubMed  Google Scholar 

  35. Vandendriessche, S., Cambier, S., Proost, P. & Marques, P. E. Complement receptors and their role in leukocyte recruitment and phagocytosis. Front. Cell. Dev. Biol. 9, 624025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stokowska, A. et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity. J. Clin. Invest. https://doi.org/10.1172/JCI162253 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Strey, C. W. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J. Exp. Med. 198, 913–923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serna, M., Giles, J. L., Morgan, B. P. & Bubeck, D. Structural basis of complement membrane attack complex formation. Nat. Commun. 7, 10587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Blom, A. M., Webb, J., Villoutreix, B. O. & Dahlback, B. A cluster of positively charged amino acids in the C4BP α-chain is crucial for C4b binding and factor I cofactor function. J. Biol. Chem. 274, 19237–19245 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Degn, S. E. et al. MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J. Immunol. 183, 7371–7378 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Mueller-Ortiz, S. L. et al. Targeted disruption of the gene encoding the murine small subunit of carboxypeptidase N (CPN1) causes susceptibility to C5a anaphylatoxin-mediated shock. J. Immunol. 182, 6533–6539 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Lucientes-Continente, L., Marquez-Tirado, B. & Goicoechea de Jorge, E. The factor H protein family: the switchers of the complement alternative pathway. Immunol. Rev. 313, 25–45 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Martin Merinero, H. et al. Functional characterization of 105 factor H variants associated with aHUS: lessons for variant classification. Blood 138, 2185–2201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Servais, A. et al. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J. Med. Genet. 44, 193–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Medjeral-Thomas, N. R. et al. Glomerular complement factor H-related protein 5 (FHR5) is highly prevalent in C3 glomerulopathy and associated with renal impairment. Kidney Int. Rep. 4, 1387–1400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Medjeral-Thomas, N. R. et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 92, 942–952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goodship, T. H. et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 91, 539–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Savige, J. et al. Retinal disease in the C3 glomerulopathies and the risk of impaired vision. Ophthalmic Genet. 37, 369–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Durey, M. A., Sinha, A., Togarsimalemath, S. K. & Bagga, A. Anti-complement-factor H-associated glomerulopathies. Nat. Rev. Nephrol. 12, 563–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Donadelli, R. et al. Unraveling the molecular mechanisms underlying complement dysregulation by nephritic factors in C3G and IC-MPGN. Front. Immunol. 9, 2329 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sethi, S. et al. Dense deposit disease associated with monoclonal gammopathy of undetermined significance. Am. J. Kidney Dis. 56, 977–982 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schaefer, F. et al. Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome. Kidney Int. 94, 408–418 (2018).

    Article  PubMed  Google Scholar 

  55. Blanc, C. et al. Overall neutralization of complement factor H by autoantibodies in the acute phase of the autoimmune form of atypical hemolytic uremic syndrome. J. Immunol. 189, 3528–3537 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Martinez-Barricarte, R. et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J. Clin. Invest. 120, 3702–3712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Osborne, A. J. et al. Statistical validation of rare complement variants provides insights into the molecular basis of atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Immunol. 200, 2464–2478 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Thurman, J. M. & Harrison, R. A. The susceptibility of the kidney to alternative pathway activation — a hypothesis. Immunol. Rev. https://doi.org/10.1111/imr.13168 (2022).

    Article  PubMed  Google Scholar 

  59. Rondeau, E. et al. The long-acting C5 inhibitor, ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int. 97, 1287–1296 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ruggenenti, P. et al. C5 Convertase blockade in membranoproliferative glomerulonephritis: a single-arm clinical trial. Am. J. Kidney Dis. 74, 224–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Nasr, S. H. et al. Proliferative glomerulonephritis with monoclonal IgG deposits: a distinct entity mimicking immune-complex glomerulonephritis. Kidney Int. 65, 85–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Nasr, S. H. et al. Proliferative glomerulonephritis with monoclonal IgG deposits. J. Am. Soc. Nephrol. 20, 2055–2064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nasr, S. H. et al. Dysproteinemia, proteinuria, and glomerulonephritis. Kidney Int. 69, 772–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ravindran, A., Fervenza, F. C., Smith, R. J. H. & Sethi, S. C3 glomerulopathy associated with monoclonal Ig is a distinct subtype. Kidney Int. 94, 178–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meri, S., Koistinen, V., Miettinen, A., Tornroth, T. & Seppala, I. J. Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J. Exp. Med. 175, 939–950 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Servais, A. et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 82, 454–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Sethi, S., Nasr, S. H., De Vriese, A. S. & Fervenza, F. C. C4d as a diagnostic tool in proliferative GN. J. Am. Soc. Nephrol. 26, 2852–2859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hou, J. et al. Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int. 85, 450–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Iatropoulos, P. et al. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol. Immunol. 71, 131–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, Y. et al. The spectrum of C4d deposition in renal biopsies of lupus nephritis patients. Front. Immunol. 12, 654652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Verroust, P. J., Wilson, C. B., Cooper, N. R., Edgington, T. S. & Dixon, F. J. Glomerular complement components in human glomerulonephritis. J. Clin. Invest. 53, 77–84 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, H., Sandor, D. G. & Beck, L. H. Jr The role of complement in membranous nephropathy. Semin. Nephrol. 33, 531–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tomas, N. M. et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Invest. 126, 2519–2532 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Murtas, C. et al. Coexistence of different circulating anti-podocyte antibodies in membranous nephropathy. Clin. J. Am. Soc. Nephrol. 7, 1394–1400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van der Zee, J. S., van Swieten, P. & Aalberse, R. C. Inhibition of complement activation by IgG4 antibodies. Clin. Exp. Immunol. 64, 415–422 (1986).

    PubMed  PubMed Central  Google Scholar 

  78. Val-Bernal, J. F., Garijo, M. F., Val, D., Rodrigo, E. & Arias, M. C4d immunohistochemical staining is a sensitive method to confirm immunoreactant deposition in formalin-fixed paraffin-embedded tissue in membranous glomerulonephritis. Histol. Histopathol. 26, 1391–1397 (2011).

    CAS  PubMed  Google Scholar 

  79. Haddad, G. et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, https://doi.org/10.1172/JCI140453 (2021).

  80. Bally, S. et al. Phospholipase A2 receptor-related membranous nephropathy and mannan-binding lectin deficiency. J. Am. Soc. Nephrol. 27, 3539–3544 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lhotta, K., Wurzner, R., Rumpelt, H. J., Eder, P. & Mayer, G. Membranous nephropathy in a patient with hereditary complete complement C4 deficiency. Nephrol. Dial. Transpl. 19, 990–993 (2004).

    Article  Google Scholar 

  82. Baker, P. J. et al. Depletion of C6 prevents development of proteinuria in experimental membranous nephropathy in rats. Am. J. Pathol. 135, 185–194 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cunningham, P. N. & Quigg, R. J. Contrasting roles of complement activation and its regulation in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1214–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Gao, S., Cui, Z. & Zhao, M. H. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J. Am. Soc. Nephrol. 33, 1742–1756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pickering, M. C., Botto, M., Taylor, P. R., Lachmann, P. J. & Walport, M. J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 76, 227–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Birmingham, D. J. et al. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 19, 1272–1280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, A. H. J. et al. Association of blood concentrations of complement split product iC3b and serum C3 with systemic lupus erythematosus disease activity. Arthritis Rheumatol. 71, 420–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martin, M. et al. Plasma C4d correlates with C4d deposition in kidneys and with treatment response in lupus nephritis patients. Front. Immunol. 11, 582737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jennette, J. C. & Hipp, C. G. Immunohistopathologic evaluation of C1q in 800 renal biopsy specimens. Am. J. Clin. Pathol. 83, 415–420 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Turley, A. J. et al. Spectrum and management of complement immunodeficiencies (excluding hereditary angioedema) across Europe. J. Clin. Immunol. 35, 199–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Elliott, M. K. et al. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int. 65, 129–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Watanabe, H. et al. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J. Immunol. 164, 786–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Pedchenko, V. et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N. Engl. J. Med. 363, 343–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bowman, C., Ambrus, K. & Lockwood, C. M. Restriction of human IgG subclass expression in the population of auto-antibodies to glomerular basement membrane. Clin. Exp. Immunol. 69, 341–349 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, R. et al. The alternative pathway of complement activation may be involved in the renal damage of human anti-glomerular basement membrane disease. PLoS One 9, e91250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Quigg, R. J. et al. Blockade of antibody-induced glomerulonephritis with Crry-Ig, a soluble murine complement inhibitor. J. Immunol. 160, 4553–4560 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. van Daalen, E. E. et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin. J. Am. Soc. Nephrol. 13, 63–72 (2018).

    Article  PubMed  Google Scholar 

  99. Nithagon, P. et al. Eculizumab and complement activation in anti-glomerular basement membrane disease. Kidney Int. Rep. 6, 2713–2717 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Haas, M. Histology and immunohistology of IgA nephropathy. J. Nephrol. 18, 676–680 (2005).

    PubMed  Google Scholar 

  101. Kim, S. J. et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One 7, e40495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hiemstra, P. S., Gorter, A., Stuurman, M. E., Van Es, L. A. & Daha, M. R. Activation of the alternative pathway of complement by human serum IgA. Eur. J. Immunol. 17, 321–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki, H. et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Invest. 118, 629–639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rizk, D. V. et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J. Am. Soc. Nephrol. 30, 2017–2026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Espinosa, M. et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 9, 897–904 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tan, L. et al. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci. Rep. 11, 5467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, Y. et al. Glomerular C4d deposition and kidney disease progression in IgA nephropathy: a systematic review and meta-analysis. Kidney Med. 3, 1014–1021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wu, L. et al. Immunofluorescence deposits in the mesangial area and glomerular capillary loops did not affect the prognosis of immunoglobulin a nephropathy except C1q:a single-center retrospective study. BMC Nephrol. 22, 43 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Evans, D. J. et al. Glomerular deposition of properdin in Henoch-Schonlein syndrome and idiopathic focal nephritis. Br. Med. J. 3, 326–328 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chiu, Y. L. et al. Alternative complement pathway is activated and associated with galactose-deficient IgA1 antibody in IgA nephropathy patients. Front. Immunol. 12, 638309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Holmes, L. V. et al. Determining the population frequency of the CFHR3/CFHR1 deletion at 1q32. PLoS One 8, e60352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xie, J. et al. Fine mapping implicates a deletion of CFHR1 and CFHR3 in protection from IgA nephropathy in Han Chinese. J. Am. Soc. Nephrol. 27, 3187–3194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murphy, B., Georgiou, T., Machet, D., Hill, P. & McRae, J. Factor H-related protein-5: a novel component of human glomerular immune deposits. Am. J. Kidney Dis. 39, 24–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Medjeral-Thomas, N. R. et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein-5 (FHR5) deposition. Kidney Int. Rep. 3, 426–438 (2018).

    Article  PubMed  Google Scholar 

  117. Tortajada, A. et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 92, 953–963 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Zhai, Y. L. et al. Rare variants in the complement factor H-related protein 5 gene contribute to genetic susceptibility to IgA nephropathy. J. Am. Soc. Nephrol. 27, 2894–2905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harris, A. A., Falk, R. J. & Jennette, J. C. Crescentic glomerulonephritis with a paucity of glomerular immunoglobulin localization. Am. J. Kidney Dis. 32, 179–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 25, 225–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Haas, M. & Eustace, J. A. Immune complex deposits in ANCA-associated crescentic glomerulonephritis: a study of 126 cases. Kidney Int. 65, 2145–2152 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Yuan, J. et al. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res. Ther. 14, R140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gou, S. J., Yuan, J., Wang, C., Zhao, M. H. & Chen, M. Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin. J. Am. Soc. Nephrol. 8, 1884–1891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gou, S. J., Yuan, J., Chen, M., Yu, F. & Zhao, M. H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 83, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Jayne, D. R. W., Merkel, P. A., Schall, T. J., Bekker, P. & Group, A. S. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Jayne, D. R. W. et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J. Am. Soc. Nephrol. 28, 2756–2767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Jiao, Y. et al. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: evidence from transcriptomic data and renal histopathology. J. Diabetes Investig. 13, 839–849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duan, S. et al. Association of glomerular complement C4c deposition with the progression of diabetic kidney disease in patients with type 2 diabetes. Front. Immunol. 11, 2073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fortpied, J., Vertommen, D. & Van Schaftingen, E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab. Res. Rev. 26, 254–260 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Ostergaard, J. et al. Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 50, 1541–1549 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Ostergaard, J. A. et al. Mannan-binding lectin in diabetic kidney disease: the impact of mouse genetics in a type 1 diabetes model. Exp. Diabetes Res. 2012, 678381 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ostergaard, J. A. et al. Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes. Scand. J. Immunol. 77, 187–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Saraheimo, M. et al. Increased levels of mannan-binding lectin in type 1 diabetic patients with incipient and overt nephropathy. Diabetologia 48, 198–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Hansen, T. K. et al. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 53, 1517–1524 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Lu, H., Deng, S., Zheng, M. & Hu, K. iTRAQ plasma proteomics analysis for candidate biomarkers of type 2 incipient diabetic nephropathy. Clin. Proteom. 16, 33 (2019).

    Article  Google Scholar 

  139. Qin, X. et al. Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53, 2653–2661 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Acosta, J. et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl Acad. Sci. USA 97, 5450–5455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ghosh, P. et al. Plasma glycated CD59, a novel biomarker for detection of pregnancy-induced glucose intolerance. Diabetes Care 40, 981–984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Angeletti, A. et al. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J. Exp. Med. https://doi.org/10.1084/jem.20191699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Valoti, E. et al. Impact of a complement factor H gene variant on renal dysfunction, cardiovascular events, and response to ACE inhibitor therapy in type 2 diabetes. Front. Genet. 10, 681 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

    Article  PubMed  Google Scholar 

  145. Zhang, Y. M. et al. Clinical significance of IgM and C3 glomerular deposition in primary focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 11, 1582–1589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Trachtman, H. et al. Natural antibody and complement activation characterize patients with idiopathic nephrotic syndrome. Am. J. Physiol. Renal Physiol. 321, F505–F516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Strassheim, D. et al. IgM contributes to glomerular injury in FSGS. J. Am. Soc. Nephrol. 24, 393–406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van de Lest, N. A. et al. Glomerular C4d deposition can precede the development of focal segmental glomerulosclerosis. Kidney Int. 96, 738–749 (2019).

    Article  PubMed  Google Scholar 

  149. Thurman, J. M. et al. Complement activation in patients with focal segmental glomerulosclerosis. PLoS One 10, e0136558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Huang, J. et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS One 15, e0234934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lenderink, A. M. et al. The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy. Am. J. Physiol. Renal Physiol. 293, F555–F564 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Turnberg, D. et al. Complement activation contributes to both glomerular and tubulointerstitial damage in adriamycin nephropathy in mice. J. Immunol. 177, 4094–4102 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Hisano, S. et al. Clinicopathologic correlation and outcome of C1q nephropathy. Clin. J. Am. Soc. Nephrol. 3, 1637–1643 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vizjak, A. et al. Pathology, clinical presentations, and outcomes of C1q nephropathy. J. Am. Soc. Nephrol. 19, 2237–2244 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gunasekara, V. N., Sebire, N. J. & Tullus, K. C1q nephropathy in children: clinical characteristics and outcome. Pediatr. Nephrol. 29, 407–413 (2014).

    Article  PubMed  Google Scholar 

  156. Thurman, J. M., Ljubanovic, D., Edelstein, C. L., Gilkeson, G. S. & Holers, V. M. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J. Immunol. 170, 1517–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Thurman, J. M. et al. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J. Clin. Invest. 116, 357–368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Farrar, C. A. et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J. Clin. Invest. 126, 1911–1925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Boudhabhay, I. et al. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis. Kidney Int. 99, 581–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Merchant, M. L., Brier, M. E., Slaughter, M. S., Klein, J. B. & McLeish, K. R. Biomarker enhanced risk prediction for development of AKI after cardiac surgery. BMC Nephrol. 19, 102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Laskowski, J., Philbrook, H. T., Parikh, C. R. & Thurman, J. M. Urine complement activation fragments are increased in patients with kidney injury after cardiac surgery. Am. J. Physiol. Renal Physiol. 317, F650–F657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mrug, M. et al. Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int. 73, 63–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Zhou, J. et al. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement. J. Am. Soc. Nephrol. 23, 1161–1171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mrug, M. et al. Complement C3 activation in cyst fluid and urine from autosomal dominant polycystic kidney disease patients. J. Intern. Med. 276, 539–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Ichida, S., Yuzawa, Y., Okada, H., Yoshioka, K. & Matsuo, S. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int. 46, 89–96 (1994).

    Article  CAS  PubMed  Google Scholar 

  166. Cosio, F. G., Sedmak, D. D., Mahan, J. D. & Nahman, N. S. Jr. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 36, 100–107 (1989).

    Article  CAS  PubMed  Google Scholar 

  167. Endoh, M. et al. Immunohistochemical demonstration of membrane cofactor protein (MCP) of complement in normal and diseased kidney tissues. Clin. Exp. Immunol. 94, 182–188 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Baker, P. J., Adler, S., Yang, Y. & Couser, W. G. Complement activation by heat-killed human kidney cells: formation, activity, and stabilization of cell-bound C3 convertases. J. Immunol. 133, 877–881 (1984).

    Article  CAS  PubMed  Google Scholar 

  169. Tang, S., Sheerin, N. S., Zhou, W., Brown, Z. & Sacks, S. H. Apical proteins stimulate complement synthesis by cultured human proximal tubular epithelial cells. J. Am. Soc. Nephrol. 10, 69–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Farrar, C. A., Zhou, W., Lin, T. & Sacks, S. H. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 20, 217–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Roth, A. et al. Sutimlimab in cold agglutinin disease. N. Engl. J. Med. 384, 1323–1334 (2021).

    Article  PubMed  Google Scholar 

  172. Hillmen, P. et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 384, 1028–1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Harris, C. L. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin. Immunopathol. 40, 125–140 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Stites, E., Le Quintrec, M. & Thurman, J. M. The complement system and antibody-mediated transplant rejection. J. Immunol. 195, 5525–5531 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Khaled, S. K. et al. Narsoplimab, a Mannan-binding lectin-associated serine protease-2 inhibitor, for the treatment of adult hematopoietic stem-cell transplantation-associated thrombotic microangiopathy. J. Clin. Oncol. 40, 2447–2457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bomback, A. S. et al. Alternative complement pathway inhibition with iptacopan for the treatment of C3 glomerulopathy-study design of the APPEAR-C3G trial. Kidney Int. Rep. 7, 2150–2159 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hasturk, H. et al. Phase IIa clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J. Clin. Invest. https://doi.org/10.1172/JCI152973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Li, C., Li, H., Wen, Y. B., Li, X. M. & Li, X. W. Analysis of predictive factors for immunosuppressive response in anti-phospholipase A2 receptor antibody positive membranous nephropathy. BMC Nephrol. 19, 354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bech, A. P., Hofstra, J. M., Brenchley, P. E. & Wetzels, J. F. Association of anti-PLA2R antibodies with outcomes after immunosuppressive therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1386–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Robson, J. et al. Glucocorticoid treatment and damage in the anti-neutrophil cytoplasm antibody-associated vasculitides: long-term data from the European Vasculitis Study Group trials. Rheumatology 54, 471–481 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Stojan, G. & Petri, M. The risk benefit ratio of glucocorticoids in SLE: have things changed over the past 40 years? Curr. Treatm. Opt. Rheumatol. 3, 164–172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Morigi, M. et al. C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight https://doi.org/10.1172/jci.insight.131849 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Carter, R. H., Spycher, M. O., Ng, Y. C., Hoffman, R. & Fearon, D. T. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457–463 (1988).

    Article  CAS  PubMed  Google Scholar 

  184. Strainic, M. G., Shevach, E. M., An, F., Lin, F. & Medof, M. E. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat. Immunol. 14, 162–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Heeger, P. S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bomback, A. S. et al. Improving clinical trials for anticomplement therapies in complement-mediated glomerulopathies: report of a scientific workshop sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 79, 570–581 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Skattum, L., Martensson, U. & Sjoholm, A. G. Hypocomplementaemia caused by C3 nephritic factors (C3 NeF): clinical findings and the coincidence of C3 NeF type II with anti-C1q autoantibodies. J. Intern. Med. 242, 455–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Thurman, J. M. & Fremeaux-Bacchi, V. Alternative pathway diagnostics. Immunol. Rev. 313, 225–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Wyatt, R. J., Forristal, J., West, C. D., Sugimoto, S. & Curd, J. G. Complement profiles in acute post-streptococcal glomerulonephritis. Pediatr. Nephrol. 2, 219–223 (1988).

    Article  CAS  PubMed  Google Scholar 

  190. Brenchley, P. E. et al. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. 41, 933–937 (1992).

    Article  CAS  PubMed  Google Scholar 

  191. Coupes, B. M., Kon, S. P., Brenchley, P. E., Short, C. D. & Mallick, N. P. The temporal relationship between urinary C5b-9 and C3dg and clinical parameters in human membranous nephropathy. Nephrol. Dial. Transplant. 8, 397–401 (1993).

    CAS  PubMed  Google Scholar 

  192. Fakhouri, F. et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood 137, 2438–2449 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Hill, G. S., Hinglais, N., Tron, F. & Bach, J. F. Systemic lupus erythematosus. Morphologic correlations with immunologic and clinical data at the time of biopsy. Am. J. Med. 64, 61–79 (1978).

    Article  CAS  PubMed  Google Scholar 

  194. Drachenberg, C. B. et al. Epidemiology and pathophysiology of glomerular C4d staining in native kidney biopsies. Kidney Int. Rep. 4, 1555–1567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fremeaux-Bacchi, V. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 8, 554–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Caprioli, J. et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Le Quintrec, M. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 13, 663–675 (2013).

    Article  PubMed  Google Scholar 

  198. Renner, B. et al. Annexin A2 enhances complement activation by inhibiting factor H. J. Immunol. 196, 1355–1365 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Karasu, E., Eisenhardt, S. U., Harant, J. & Huber-Lang, M. Extracellular vesicles: packages sent with complement. Front. Immunol. 9, 721 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Sethi, S. K. et al. Eculizumab for atypical hemolytic-uremic syndrome in India: first report from India and the challenges faced. Indian J. Nephrol. 27, 58–61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sridharan, M., Go, R. S. & Willrich, M. A. V. Clinical utility and potential cost savings of pharmacologic monitoring of eculizumab for complement-mediated thrombotic microangiopathy. Mayo Clin. Proc. Innov. Qual. Outcomes 6, 458–464 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Fakhouri, F., Zuber, J., Fremeaux-Bacchi, V. & Loirat, C. Haemolytic uraemic syndrome. Lancet 390, 681–696 (2017).

    Article  PubMed  Google Scholar 

  204. Smith, R. J. H. et al. C3 glomerulopathy — understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Yan, K., Desai, K., Gullapalli, L., Druyts, E. & Balijepalli, C. Epidemiology of atypical hemolytic uremic syndrome: a systematic literature review. Clin. Epidemiol. 12, 295–305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Smith, R. J. et al. New approaches to the treatment of dense deposit disease. J. Am. Soc. Nephrol. 18, 2447–2456 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Kavanagh, D., Goodship, T. H. & Richards, A. Atypical hemolytic uremic syndrome. Semin. Nephrol. 33, 508–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nasr, S. H. et al. Dense deposit disease: clinicopathologic study of 32 pediatric and adult patients. Clin. J. Am. Soc. Nephrol. 4, 22–32 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Fakhouri, F. et al. Insights from the use in clinical practice of eculizumab in adult patients with atypical hemolytic uremic syndrome affecting the native kidneys: an analysis of 19 cases. Am. J. Kidney Dis. 63, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Zuber, J. et al. New insights into postrenal transplant hemolytic uremic syndrome. Nat. Rev. Nephrol. 7, 23–35 (2011).

    Article  PubMed  Google Scholar 

  211. Misra, A., Peethambaram, A. & Garg, A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine 83, 18–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Dalvin, L. A., Fervenza, F. C., Sethi, S. & Pulido, J. S. Shedding light on Fundus Drusen Associated with Membranoproliferative Glomerulonephritis: breaking stereotypes of types I, II, and III. Retin. Cases Brief. Rep. https://doi.org/10.1097/ICB.0000000000000164 (2015).

    Article  Google Scholar 

  213. Noris, M. et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood 124, 1715–1726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chauvet, S. et al. Results from a national-wide retrospective cohort measure the impact of C3 and soluble C5b-9 levels on kidney outcomes in C3 glomerulopathy. Kidney Int. https://doi.org/10.1016/j.kint.2022.05.027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhang, Y. et al. Factor H autoantibodies and complement-mediated diseases. Front. Immunol. 11, 607211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Corvillo, F. et al. Nephritic factors: an overview of classification, diagnostic tools and clinical associations. Front. Immunol. 10, 886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chauvet, S. et al. Both monoclonal and polyclonal immunoglobulin contingents mediate complement activation in monoclonal gammopathy associated-C3 glomerulopathy. Front. Immunol. 9, 2260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Schubart, A. et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc. Natl Acad. Sci. USA 116, 7926–7931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zelek, W. M., Xie, L., Morgan, B. P. & Harris, C. L. Compendium of current complement therapeutics. Mol. Immunol. 114, 341–352 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Joshua M. Thurman.

Ethics declarations

Competing interests

J.M.T. is a consultant for Q32 Bio, Inc., which is a company developing complement inhibitors. He holds stock and will receive royalty income from Q32 Bio, Inc. He co-founded and holds stock in Compsit3, a company developing complement diagnostics. V.P. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks A. Blom, R. Quigg and R. Taylor for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petr, V., Thurman, J.M. The role of complement in kidney disease. Nat Rev Nephrol 19, 771–787 (2023). https://doi.org/10.1038/s41581-023-00766-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00766-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing