Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies

Abstract

Osteoarthritis (OA) is a disabling condition that affects billions of people worldwide and places a considerable burden on patients and on society owing to its prevalence and economic cost. As cartilage injuries are generally associated with the progressive onset of OA, robustly effective approaches for cartilage regeneration are necessary. Despite extensive research, technical development and clinical experimentation, no current surgery-based, material-based, cell-based or drug-based treatment can reliably restore the structure and function of hyaline cartilage. This paucity of effective treatment is partly caused by a lack of fundamental understanding of why articular cartilage fails to spontaneously regenerate. Thus, research studies that investigate the mechanisms behind the cartilage regeneration processes and the failure of these processes are critical to instruct decisions about patient treatment or to support the development of next-generation therapies for cartilage repair and OA prevention. This Review provides a synoptic and structured analysis of the current hypotheses about failure in cartilage regeneration, and the accompanying therapeutic strategies to overcome these hurdles, including some current or potential approaches to OA therapy.

Key points

  • Multiple pathways can cause cartilage regeneration to fail following injury, thereby leading to a cascade of events that ultimately results in a degenerative disease state.

  • Various hypotheses for why cartilage regeneration fails exist relating to a lack of regeneration-competent cells, pathological mechanical changes, non-resolving inflammation and metabolic switches.

  • Treatment strategies should not only consider the potential mechanisms underlying the initial failure in cartilage regeneration but also the stage of disease progression.

  • The cause of entry into the cascade of events that prevent cartilage regeneration might not necessarily be the target point of exit of an ideal treatment strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Postulated mechanisms of cellular-based strategies for cartilage regeneration.
Fig. 2: Postulated mechanisms of abnormal joint loading aggravating cartilage damage following injury.
Fig. 3: Inflammatory events involved in cartilage regeneration and associated therapeutic strategies.
Fig. 4: Strategies for targeting the metabolic changes that negatively affect cartilage regeneration.
Fig. 5: Clinical stage of strategies targeting various hypotheses for why cartilage regeneration fails.
Fig. 6: Potential entry points and exit strategies relating to cartilage regeneration failure.

Similar content being viewed by others

References

  1. Iwamoto, M., Ohta, Y., Larmour, C. & Enomoto-Iwamoto, M. Towards regeneration of articular cartilage. Birth Defects Res. C. Embryo Today 99, 192–202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gobbi, A., Lane, J. G., Longo, U. G. & Dallo, I. (eds) Joint Function Preservation: a Focus on the Osteochondral Unit (Springer International Publishing, 2022).

  3. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  4. GBD 2015 Obesity Collaborators. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  Google Scholar 

  5. Wallace, I. J. et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA 114, 9332–9336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Center for Drug Evaluation and Research. Expedited Programs for Serious Conditions — Drugs and Biologics. US Food and Drug Administration https://www.fda.gov/regulatory-information/search-fda-guidance-documents/expedited-programs-serious-conditions-drugs-and-biologics (2022).

  7. Hunziker, E. B., Quinn, T. M. & Häuselmann, H.-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wuelling, M. & Vortkamp, A. Chondrocyte proliferation and differentiation. Endocr. Dev. 21, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Barbero, A. et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12, 476–484 (2004).

    Article  PubMed  Google Scholar 

  10. David, M. A. et al. Early, focal changes in cartilage cellularity and structure following surgically induced meniscal destabilization in the mouse. J. Orthop. Res. 35, 537–547 (2017).

    Article  PubMed  Google Scholar 

  11. Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malda, J. et al. Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PLoS One 8, e57683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chu, C. R., Szczodry, M. & Bruno, S. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev. 16, 105–115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50, 1522–1532 (2004).

    Article  PubMed  Google Scholar 

  15. Dowthwaite, G. P. et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, R. et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 5, e13246 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barbero, A., Ploegert, S., Heberer, M. & Martin, I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 48, 1315–1325 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, Y. et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cell Transl. Med. 5, 733–744 (2016).

    Article  CAS  Google Scholar 

  19. Brittberg, M. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. LaPrade, R. F., Bursch, L. S., Son, E. J., Havlas, V. & Carlson, C. S. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee. Am. J. Sports Med. 36, 360–368 (2008).

    Article  PubMed  Google Scholar 

  21. Mastbergen, S. C., Saris, D. B. F. & Lafeber, F. P. J. G. Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat. Rev. Rheumatol. 9, 277–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Saris, D. et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture two-year follow-up of a prospective randomized trial. Am. J. Sports Med. 42, 1384–1394 (2014).

    Article  PubMed  Google Scholar 

  23. Siebold, R., Suezer, F., Schmitt, B., Trattnig, S. & Essig, M. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg. Sports Traumatol. Arthrosc. 26, 831–839 (2018).

    Article  PubMed  Google Scholar 

  24. Frisbie, D. D., McCarthy, H. E., Archer, C. W., Barrett, M. F. & McIlwraith, C. W. Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. J. Bone Jt. Surg. 97A, 484–493 (2015).

    Article  Google Scholar 

  25. Zhao, X. et al. Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering. Front. Bioeng. Biotechnol. 9, 603444 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sennett, M. L. et al. Long term outcomes of biomaterial-mediated repair of focal cartilage defects in a large animal model. Eur. Cells Mater. 41, 40–51 (2021).

    Article  CAS  Google Scholar 

  27. Pelttari, K., Wixmerten, A. & Martin, I. Do we really need cartilage tissue engineering? Swiss Med. Wkly. 139, 602–609 (2009).

    CAS  PubMed  Google Scholar 

  28. Mumme, M. et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 388, 1985–1994 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Acevedo Rua, L. et al. Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Sci. Transl. Med. 13, eaaz4499 (2021).

    Article  PubMed  Google Scholar 

  30. de Windt, T. S. et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35, 256–264 (2017).

    Article  PubMed  Google Scholar 

  31. Saris, T. F. F. et al. Five-year outcome of 1-stage cell-based cartilage repair using recycled autologous chondrons and allogenic mesenchymal stromal cells: a first-in-human clinical trial. Am. J. Sports Med. 49, 941–947 (2021).

    Article  PubMed  Google Scholar 

  32. Salzmann, G. M., Ossendorff, R., Gilat, R. & Cole, B. J. Autologous minced cartilage implantation for treatment of chondral and osteochondral lesions in the knee joint: an overview. Cartilage 13, 1124S–1136S (2021).

    Article  PubMed  Google Scholar 

  33. Farr, J., Tabet, S. K., Margerrison, E. & Cole, B. J. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am. J. Sports Med. 42, 1417–1425 (2014).

    Article  PubMed  Google Scholar 

  34. Theodoropoulos, J. S., Croos, J. N. A. D., Park, S. S., Pilliar, R. & Kandel, R. A. Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin. Orthop. Relat. Res. 469, 2785 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, L., Hu, J. & Athanasiou, K. A. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37, 1–57 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu, M. J. M., Sermer, C., Kandel, R. A. & Theodoropoulos, J. S. Characterization of migratory cells from bioengineered bovine cartilage in a 3D co-culture model. Am. J. Sports Med. 50, 3090–3101 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Obradovic, B. et al. Integration of engineered cartilage. J. Orthop. Res. 19, 1089–1097 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Steadman, J. R., Rodkey, W. G., Singleton, S. B. & Briggs, K. K. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper. Tech. Orthop. 7, 300–304 (1997).

    Article  Google Scholar 

  39. Schwarz, M. L. et al. Coefficient of friction and height loss: two criteria used to determine the mechanical property and stability of regenerated versus natural articular cartilage. Biomedicines 10, 2685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erggelet, C. & Vavken, P. Microfracture for the treatment of cartilage defects in the knee joint — a golden standard? J. Clin. Orthop. Trauma. 7, 145–152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Steinwachs, M. R. et al. Systematic review and meta-analysis of the clinical evidence on the use of autologous matrix-induced chondrogenesis in the knee. Cartilage 13, 42S–56S (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Van Genechten, W., Vuylsteke, K., Struijk, C., Swinnen, L. & Verdonk, P. Joint surface lesions in the knee treated with an acellular aragonite-based scaffold: a 3-year follow-up case series. Cartilage 13, 1217S–1227S (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kon, E., Delcogliano, M., Filardo, G., Altadonna, G. & Marcacci, M. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg. Sports Traumatol. Arthrosc. 17, 1312–1315 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sridharan, B., Sharma, B. & Detamore, M. S. A road map to commercialization of cartilage therapy in the United States of America. Tissue Eng. Part B Rev. 22, 15–33 (2016).

    Article  PubMed  Google Scholar 

  45. Jeyaraman, M. et al. Mesenchymal stem cell-derived exosomes: a potential therapeutic avenue in knee osteoarthritis. Cartilage 13, 1572S–1585S (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Babu, G. S. et al. Immunomodulatory actions of mesenchymal stromal cells (MSCs) in osteoarthritis of the knee. Osteology 1, 209–224 (2021).

    Article  Google Scholar 

  47. Eggenhofer, E., Luk, F., Dahlke, M. H. & Hoogduijn, M. J. The life and fate of mesenchymal stem cells. Front. Immunol. 5, 148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan, S. S. H. et al. Mesenchymal stem cell exosomes for cartilage regeneration: a systematic review of preclinical in vivo studies. Tissue Eng. Part B Rev. 27, 1–13 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Rikkers, M., Korpershoek, J. V., Levato, R., Malda, J. & Vonk, L. A. The clinical potential of articular cartilage-derived progenitor cells: a systematic review. npj Regen. Med. 7, 1–20 (2022).

    Article  Google Scholar 

  50. Li, Y., Wei, X., Zhou, J. & Wei, L. The age-related changes in cartilage and osteoarthritis. Biomed. Res. Int. 2013, 916530 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Jager, K. J., Zoccali, C., MacLeod, A. & Dekker, F. W. Confounding: what it is and how to deal with it. Kidney Int. 73, 256–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  PubMed  Google Scholar 

  54. Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci. 72, 780–785 (2017).

    CAS  PubMed  Google Scholar 

  55. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paez-Ribes, M., González-Gualda, E., Doherty, G. J. & Muñoz-Espín, D. Targeting senescent cells in translational medicine. EMBO Mol. Med. 11, e10234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04210986 (2023).

  58. Prašnikar, E., Borišek, J. & Perdih, A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res. Rev. 66, 101251 (2021).

    Article  PubMed  Google Scholar 

  59. Novais, E. J. et al. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 3, e67–e77 (2022).

    Article  PubMed  Google Scholar 

  61. Sun, H. B., Cardoso, L. & Yokota, H. Mechanical intervention for maintenance of cartilage and bone. Clin. Med. Insights Arthritis Musculoskelet. Disord. 4, 65–70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martínez-Moreno, D., Jiménez, G., Gálvez-Martín, P., Rus, G. & Marchal, J. A. Cartilage biomechanics: a key factor for osteoarthritis regenerative medicine. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1067–1075 (2019).

    Article  PubMed  Google Scholar 

  63. Caravaggi, P. et al. Biomechanical-based protocol for in vitro study of cartilage response to cyclic loading: a proof-of-concept in knee osteoarthritis. Front. Bioeng. Biotechnol. 9, 634327 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Assirelli, E. et al. Location-dependent human osteoarthritis cartilage response to realistic cyclic loading: ex-vivo analysis on different knee compartments. Front. Bioeng. Biotechnol. 10, 862254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 1–18 (2016).

    Google Scholar 

  66. Li, G. et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther. 15, 223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andriacchi, T. P. et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32, 447–457 (2004).

    Article  PubMed  Google Scholar 

  68. Dolzani, P. et al. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS One 14, e0222947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Madry, H., van Dijk, C. N. & Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 18, 419–433 (2010).

    Article  PubMed  Google Scholar 

  70. Jackson, D. W., Lalor, P. A., Aberman, H. M. & Simon, T. M. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J. Bone Jt. Surg. Am. 83, 53–64 (2001).

    Article  CAS  Google Scholar 

  71. Sun, H. B. Mechanical loading, cartilage degradation, and arthritis. Ann. N. Y. Acad. Sci. 1211, 37–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Brouwer, R. W. et al. Osteotomy for treating knee osteoarthritis. Cochrane Database Syst. Rev. 2014, CD004019 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16, 137–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Amendola, A. & Panarella, L. High tibial osteotomy for the treatment of unicompartmental arthritis of the knee. Orthop. Clin. North. Am. 36, 497–504 (2005).

    Article  PubMed  Google Scholar 

  75. Jung, W.-H. et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 30, 72–79 (2014).

    Article  PubMed  Google Scholar 

  76. Besselink, N. J. et al. Cartilage quality (dGEMRIC Index) following knee joint distraction or high tibial osteotomy. Cartilage 11, 19–31 (2020).

    Article  PubMed  Google Scholar 

  77. Intema, F. et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study. Ann. Rheum. Dis. 70, 1441–1446 (2011).

    Article  PubMed  Google Scholar 

  78. Jansen, M. P. et al. Knee joint distraction compared with high tibial osteotomy and total knee arthroplasty: two-year clinical, radiographic, and biochemical marker outcomes of two randomized controlled trials. Cartilage 12, 181–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Ferreira, N. & Marais, L. C. Prevention and management of external fixator pin track sepsis. Strateg. Trauma. Limb Reconstr. 7, 67–72 (2012).

    Article  Google Scholar 

  80. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Conaghan, P. G., Cook, A. D., Hamilton, J. A. & Tak, P. P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15, 355–363 (2019).

    Article  PubMed  Google Scholar 

  83. Thakur, M., Dickenson, A. H. & Baron, R. Osteoarthritis pain: nociceptive or neuropathic? Nat. Rev. Rheumatol. 10, 374–380 (2014).

    Article  PubMed  Google Scholar 

  84. van den Bosch, M. H. J. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin. Exp. Immunol. 195, 153–166 (2019).

    Article  PubMed  Google Scholar 

  85. Loeser, R. F. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 54, 1357–1360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cho, Y. et al. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp. Mol. Med. 53, 1689–1696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai, G. et al. Effect of zoledronic acid and denosumab in patients with low back pain and modic change: a proof-of-principle trial. J. Bone Min. Res. 33, 773–782 (2018).

    Article  CAS  Google Scholar 

  88. Conaghan, P. G. et al. Effects of a single intra-articular injection of a microsphere formulation of triamcinolone acetonide on knee osteoarthritis pain. J. Bone Jt. Surg. Am. 100, 666–677 (2018).

    Article  Google Scholar 

  89. Cheleschi, S. et al. A combination of celecoxib and glucosamine sulfate has anti-inflammatory and chondroprotective effects: results from an in vitro study on human osteoarthritic chondrocytes. Int. J. Mol. Sci. 22, 8980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oo, W. M. Prospects of disease-modifying osteoarthritis drugs. Clin. Geriatr. Med. 38, 397–432 (2022).

    Article  PubMed  Google Scholar 

  91. Veronese, N. et al. Multimodal multidisciplinary management of patients with moderate to severe pain in knee osteoarthritis: a need to meet patient expectations. Drugs https://doi.org/10.1007/s40265-022-01773-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lieberman, J. Tapping the RNA world for therapeutics. Nat. Struct. Mol. Biol. 25, 357–364 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Orthopaedic gene therapy: twenty-five years on. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.20.00220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Palmer, G. D. et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther. 12, 219–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Cucchiarini, M. et al. Effects of TGF-β overexpression via rAAV gene transfer on the early repair processes in an osteochondral defect model in minipigs. Am. J. Sports Med. 46, 1987–1996 (2018).

    Article  PubMed  Google Scholar 

  96. Cucchiarini, M. & Madry, H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat. Rev. Rheumatol. 15, 18–29 (2019).

    Article  PubMed  Google Scholar 

  97. Pferdehirt, L., Ross, A. K., Brunger, J. M. & Guilak, F. A synthetic gene circuit for self-regulating delivery of biologic drugs in engineered tissues. Tissue Eng. Part A 25, 809–820 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Evans, C. H. et al. Clinical trials in the gene therapy of arthritis. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-200010001-00039 (2000).

    Article  PubMed  Google Scholar 

  99. Zhou, L., Rubin, L. E., Liu, C. & Chen, Y. Short interfering RNA (siRNA)-based therapeutics for cartilage diseases. Regen. Eng. Transl. Med. 7, 283–290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kwon, D. G. et al. State of the art: the immunomodulatory role of MSCs for osteoarthritis. Int. J. Mol. Sci. 23, 1618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jeyaraman, M., Muthu, S. & Ganie, P. A. Does the source of mesenchymal stem cell have an effect in the management of osteoarthritis of the knee? Meta-analysis of randomized controlled trials. Cartilage 13, 1532S–1547S (2021).

    Article  PubMed  Google Scholar 

  102. Levy, O. et al. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 6, eaba6884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Musiał-Wysocka, A., Kot, M. & Majka, M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transpl. 28, 801–812 (2019).

    Article  Google Scholar 

  104. Grässel, S. & Muschter, D. Recent advances in the treatment of osteoarthritis. F1000Res 9, F1000 Faculty Rev-325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhou, S., Cui, Z. & Urban, J. P. G. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 50, 3915–3924 (2004).

    Article  PubMed  Google Scholar 

  106. Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Bai, Y., Gong, X., Dou, C., Cao, Z. & Dong, S. Redox control of chondrocyte differentiation and chondrogenesis. Free Radic. Biol. Med. 132, 83–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Tchetina, E. V. & Markova, G. A. Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol. Int. 38, 1963–1974 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. High, R. A. et al. In vivo assessment of extracellular pH of joint tissues using acidoCEST-UTE MRI. Quant. Imaging Med. Surg. 9, 1664–1673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zuo, J. et al. Glycolysis rate-limiting enzymes: novel potential regulators of rheumatoid arthritis pathogenesis. Front. Immunol. 12, 779787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bierma-Zeinstra, S. M. & van Middelkoop, M. Osteoarthritis: in search of phenotypes. Nat. Rev. Rheumatol. 13, 705–706 (2017).

    Article  PubMed  Google Scholar 

  113. Bay-Jensen, A.-C. et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol. Int. 30, 435–442 (2010).

    Article  PubMed  Google Scholar 

  114. Bao, C., Zhu, S., Song, K. & He, C. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun. Signal. 20, 132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ohashi, Y. et al. Metabolic reprogramming in chondrocytes to promote mitochondrial respiration reduces downstream features of osteoarthritis. Sci. Rep. 11, 15131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nishida, T., Kubota, S., Aoyama, E. & Takigawa, M. Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthritis Cartilage 21, 700–709 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Pålsson-McDermott, E. M. & O’Neill, L. A. J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300–314 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Stathopoulou, C., Nikoleri, D. & Bertsias, G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 11, 813–829 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. McGarry, T. et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol. 70, 1959–1970 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Tan, C., Li, L., Han, J., Xu, K. & Liu, X. A new strategy for osteoarthritis therapy: inhibition of glycolysis. Front. Pharmacol. 13, 1057229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zou, Y. et al. Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br. J. Pharmacol. 174, 893–908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Green, D. R. & Van Houten, B. SnapShot: mitochondrial quality control. Cell 147, 950.e1 (2011).

    Article  PubMed  Google Scholar 

  125. Alvarez-Garcia, O. et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol. 69, 1418–1428 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, H. J. et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J. Clin. Med. 8, 1849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, B. et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J. Cell Physiol. 236, 4369–4386 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, F.-S. et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants 9, 810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, L. et al. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology 102, 117–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Yao, X. et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol. Res. 139, 314–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Masuda, I. et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci. Rep. 8, 7229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Qiu, L., Luo, Y. & Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother. 103, 1585–1591 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, C. et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci. Trends 12, 605–612 (2019).

    Article  PubMed  Google Scholar 

  135. Lee, A. R. et al. Mitochondrial transplantation ameliorates the development and progression of osteoarthritis. Immune Netw. 22, e14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bauer, C. et al. Increased chondroprotective effect of combining hyaluronic acid with a glucocorticoid compared to separate administration on cytokine-treated osteoarthritic chondrocytes in a 2D culture. Biomedicines 10, 1733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kullich, W., Fagerer, N. & Schwann, H. Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr. Med. Res. Opin. 23, 1981–1986 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Valvason, C. et al. Influence of glucosamine sulphate on oxidative stress in human osteoarthritic chondrocytes: effects on HO-1, p22(Phox) and iNOS expression. Rheumatology 47, 31–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Setti, T. et al. The protective role of glutathione in osteoarthritis. J. Clin. Orthop. Trauma. 15, 145–151 (2021).

    Article  PubMed  Google Scholar 

  140. Henrotin, Y. E., Bruckner, P. & Pujol, J.-P. L. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Chin, K.-Y. & Ima-Nirwana, S. The role of vitamin e in preventing and treating osteoarthritis — a review of the current evidence. Front. Pharmacol. 9, 946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dunlap, B. et al. Vitamin C supplementation for the treatment of osteoarthritis: perspectives on the past, present, and future. Ther. Adv. Chron. Dis. 12, 20406223211047024 (2021).

    Google Scholar 

  143. Hu, Y. et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med. 145, 146–160 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Burton, L. H. et al. Systemic administration of a pharmacologic iron chelator reduces cartilage lesion development in the Dunkin-Hartley model of primary osteoarthritis. Free Radic. Biol. Med. 179, 47–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Y. et al. Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: a cross-sectional study. Arthritis Res. Ther. 9, R66 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Henrotin, Y. & Kurz, B. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets 8, 347–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Z. et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact. Mater. 11, 317–338 (2022).

    Article  PubMed  Google Scholar 

  148. Li, M. et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 140, 23–42 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Valenti, M. T., Dalle Carbonare, L., Zipeto, D. & Mottes, M. Control of the autophagy pathway in osteoarthritis: key regulators, therapeutic targets and therapeutic strategies. Int. J. Mol. Sci. 22, 2700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Saris, D. B. F., Dhert, W. J. A. & Verbout, A. J. Joint homeostasis. The discrepancy between old and fresh defects in cartilage repair. J. Bone Jt. Surg. Br. 85, 1067–1076 (2003).

    Article  CAS  Google Scholar 

  151. Vanlauwe, J. et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am. J. Sports Med. 39, 2566–2574 (2011).

    Article  PubMed  Google Scholar 

  152. Mobasheri, A. et al. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res 8, F1000 Faculty Rev-2091 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Angelini, F. et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann. Rheum. Dis. 81, 666–675 (2022).

    Article  PubMed  Google Scholar 

  154. Korpershoek, J. V. et al. Efficacy of one-stage cartilage repair using allogeneic mesenchymal stromal cells and autologous chondron transplantation (IMPACT) compared to nonsurgical treatment for focal articular cartilage lesions of the knee: study protocol for a crossover randomized controlled trial. Trials 21, 842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Warmink, K. et al. Mesenchymal stem cell derived extracellular vesicles as treatment for osteoarthritis in a rat high fat diet groove model. Osteoarthritis Cartilage 29, S410–S411 (2021).

    Article  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03595618 (2021).

  157. Conaghan, P. G. et al. Disease-modifying effects of a novel Cathepsin K inhibitor in osteoarthritis: a randomized controlled trial. Ann. Intern. Med. 172, 86–95 (2020).

    Article  PubMed  Google Scholar 

  158. Yazici, Y. et al. A phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthritis Cartilage 29, 654–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. McGuire, D. et al. Study TPX-100-5: intra-articular TPX-100 significantly delays pathological bone shape change and stabilizes cartilage in moderate to severe bilateral knee OA. Arthritis Res. Ther. 23, 242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pavelka, K. et al. The efficacy and safety of diacerein in the treatment of painful osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled study with primary end points at two months after the end of a three-month treatment period. Arthritis Rheum. 56, 4055–4064 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Kloppenburg, M. et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 78, 413–420 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Xie, X.-W., Wan, R.-Z. & Liu, Z.-P. Recent research advances in selective matrix metalloproteinase-13 inhibitors as anti-osteoarthritis agents. ChemMedChem 12, 1157–1168 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Kim, S. et al. Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation. Nat. Commun. 10, 4898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03133676 (2022).

  165. Gerwin, N. et al. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat. Med. 28, 2633–2645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Eckstein, F. et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann. Rheum. Dis. 80, 1062–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Giordano, N. et al. The efficacy and tolerability of glucosamine sulfate in the treatment of knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Curr. Ther. Res. Clin. Exp. 70, 185–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02790723 (2022).

  169. Kim, M.-K. et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum. Gene Ther. Clin. Dev. 29, 48–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Watkins, L. R. et al. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: toxicology and pain efficacy assessments. Brain Behav. Immun. 90, 155–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Lu, H., Dai, Y., Lv, L. & Zhao, H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 9, e84703 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Aini, H. et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci. Rep. 6, 18743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Im, G.-I., Kim, H.-J. & Lee, J. H. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32, 4385–4392 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The idea for this Review was developed during a Travelling Fellowship sponsored by the ON Foundation and the International Cartilage Regeneration & Joint Preservation Society (ICRS). The authors would like to extend their thanks to these organizations for the opportunity. The authors would also like to thank the following individuals, who hosted the Fellows during the Fellowship and inspired this piece of work: Georg Duda, Laura di Girolamo, Kay Horsch, Elizaveta Kon, Jos Malda, Sylvia Nürnberger, Peter Angele, Girish Pattapa, Heinz Redl, Matthias Steinwachs, Bill Taylor, Siegfried Trattnig and Marcy Wong.

Author information

Authors and Affiliations

Authors

Contributions

S.M., J.V.K., E.J.N. and G.F.T. researched data for the article. I.M., S.M., J.V.K., E.J.N. and G.F.T. wrote the article. All the authors contributed substantially to the discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ivan Martin.

Ethics declarations

Competing Interests

The authors have no competing interests to declare.

Peer review

Peer review information

Nature Reviews Rheumatology thanks D. Grande, C. Evans, J. Elisseeff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, S., Korpershoek, J.V., Novais, E.J. et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol 19, 403–416 (2023). https://doi.org/10.1038/s41584-023-00979-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00979-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research