Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease stratification in GCA and PMR: state of the art and future perspectives

Abstract

Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are closely related conditions characterized by systemic inflammation, a predominant IL-6 signature, an excellent response to glucocorticoids, a tendency to a chronic and relapsing course, and older age of the affected population. This Review highlights the emerging view that these diseases should be approached as linked conditions, unified under the term GCA–PMR spectrum disease (GPSD). In addition, GCA and PMR should be seen as non-monolithic conditions, with different risks of developing acute ischaemic complications and chronic vascular and tissue damage, different responses to available therapies and disparate relapse rates. A comprehensive stratification strategy for GPSD, guided by clinical findings, imaging and laboratory data, facilitates appropriate therapy and cost-effective use of health-economic resources. Patients presenting with predominant cranial symptoms and vascular involvement, who usually have a borderline elevation of inflammatory markers, are at an increased risk of sight loss in early disease but have fewer relapses in the long term, whereas the opposite is observed in patients with predominant large-vessel vasculitis. How the involvement of peripheral joint structures affects disease outcomes remains uncertain and understudied. In the future, all cases of new-onset GPSD should undergo early disease stratification, with their management adapted accordingly.

Key points

  • Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are part of the same disease spectrum, which can be unified under the term GCA–PMR spectrum disease (GPSD).

  • Management of GPSD is characterized by a paradoxical contrast between short-term steroid responsiveness and long-term damage related to both the disease itself and its treatment.

  • Stratifying patients with GPSD according to clinical, imaging and laboratory features might help clinicians in personalizing the treatment to optimize the balance between effectiveness and safety.

  • A strong inflammatory activation, as indicated by high levels of classic markers but also of alternative biomarkers such as YKL-40 and osteopontin, predicts an increased risk of disease relapse.

  • Large-vessel involvement, peripheral arthritis and synovial hypertrophy in the shoulders are associated with a worse long-term outcome.

  • There is a need for prospective inception cohort studies of GPSD mapping of anatomical sites of inflammation and evolution during disease course to long-term critical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main clinical, imaging and laboratory features of GPSD.
Fig. 2: Suggested protocol for GCA-PMR spectrum disease study.

Similar content being viewed by others

References

  1. Buttgereit, F., Matteson, E. L. & Dejaco, C. Polymyalgia rheumatica and giant cell arteritis. J. Am. Med. Assoc. 324, 993–994 (2020).

    Article  Google Scholar 

  2. van der Geest, K. S. M., Sandovici, M., Brouwer, E. & Mackie, S. L. Diagnostic accuracy of symptoms, physical signs, and laboratory tests for giant cell arteritis: a systematic review and meta-analysis. JAMA Intern. Med. 180, 1295–1304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salvarani, C., Cantini, F., Boiardi, L. & Hunder, G. G. Polymyalgia rheumatica and giant-cell arteritis. N. Engl. J. Med. 347, 261–271 (2002).

    Article  PubMed  Google Scholar 

  4. Dejaco, C. et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2022-223429 (2023).

    Article  PubMed  Google Scholar 

  5. Matteson, E. L., Buttgereit, F., Dejaco, C. & Dasgupta, B. Glucocorticoids for management of polymyalgia rheumatica and giant cell arteritis. Rheum. Dis. Clin. North. Am. 42, 75–90 (2016).

    Article  PubMed  Google Scholar 

  6. Hellmich, B. et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30 (2020).

    Article  PubMed  Google Scholar 

  7. Dejaco, C. et al. 2015 recommendations for the management of polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 74, 1799–1807 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bond, M., Tomelleri, A., Buttgereit, F., Matteson, E. L. & Dejaco, C. Looking ahead: giant-cell arteritis in 10 years time. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221096366 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sebastian, A., Tomelleri, A. & Dasgupta, B. Current and innovative therapeutic strategies for the treatment of giant cell arteritis. Expert Opin. Orphan Drugs 9, 161–173 (2021).

    Article  CAS  Google Scholar 

  10. Watts, R. A., Hatemi, G., Burns, J. C. & Mohammad, A. J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 18, 22–34 (2022).

    Article  PubMed  Google Scholar 

  11. Li, K. J., Semenov, D., Turk, M. & Pope, J. A meta-analysis of the epidemiology of giant cell arteritis across time and space. Arthritis Res. Ther. 23, 82 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mohammad, A. J., Nilsson, J. Å., Jacobsson, L. T. H., Merkel, P. A. & Turesson, C. Incidence and mortality rates of biopsy-proven giant cell arteritis in southern Sweden. Ann. Rheum. Dis. 74, 993–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Sharma A., Mohammad A., Turesson C. Incidence and prevalence of giant cell arteritis and polymyalgia rheumatica: a systematic literature review. Semin. Arthritis Rheum. 50, 1040–1048 (2020).

    Article  PubMed  Google Scholar 

  14. Hunder, G. G. The early history of giant cell arteritis and polymyalgia rheumatica: first descriptions to 1970. Mayo Clin. Proc. 81, 1071–1083 (2006).

    Article  PubMed  Google Scholar 

  15. Koster, M. J., Matteson, E. L. & Warrington, K. J. Large-vessel giant cell arteritis: diagnosis, monitoring and management. Rheumatology 57, ii32–ii42 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Dasgupta, B. et al. 2012 provisional classification criteria for polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 71, 484–492 (2012).

    Article  PubMed  Google Scholar 

  17. Kermani, T. A. & Warrington, K. J. Polymyalgia rheumatica. Lancet 381, 63–72 (2013).

    Article  PubMed  Google Scholar 

  18. Koster, M. J. et al. Giant cell arteritis and its mimics: a comparison of three patient cohorts. Semin. Arthritis Rheum. 50, 923–929 (2020).

    Article  PubMed  Google Scholar 

  19. van der Geest, K. S. M. et al. Comparison and validation of FDG-PET/CT scores for polymyalgia rheumatica. Rheumatology 61, 1072–1082 (2022).

    Article  PubMed  Google Scholar 

  20. Henckaerts, L., Gheysens, O., Vanderschueren, S., Goffin, K. & Blockmans, D. Use of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of polymyalgia rheumatica — a prospective study of 99 patients. Rheumatology 57, 1908–1916 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt, W. A. & Gromnica-Ihle, E. Incidence of temporal arteritis in patients with polymyalgia rheumatica: a prospective study using colour Doppler ultrasonography of the temporal arteries. Rheumatology 41, 46–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Alba, M. A. et al. Relapses in patients with giant cell arteritis: prevalence, characteristics, and associated clinical findings in a longitudinally followed cohort of 106 patients. Medicine 93, 194–201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hemmig, A. K. et al. Subclinical giant cell arteritis in new onset polymyalgia rheumatica: a systematic review and meta-analysis of individual patient data. Semin. Arthritis Rheum. 55, 152017 (2022).

    Article  PubMed  Google Scholar 

  24. Carmona, F. D. et al. A large-scale genetic analysis reveals a strong contribution of the HLA Class II region to giant cell arteritis susceptibility. Am. J. Hum. Genet. 96, 565–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mackie, S. L. et al. Association of HLA-DRB1 amino acid residues with giant cell arteritis: genetic association study, meta-analysis and geo-epidemiological investigation. Arthritis Res. Ther. 17, 1–14 (2015).

    Article  CAS  Google Scholar 

  26. Weyand, C. M., Hunder, N. N. H., Hicok, K. C., Hunder, G. G. & Goronzy, J. J. HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum. 37, 514–520 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Carmona, F. D., González-Gay, M. A. & Martín, J. Genetic component of giant cell arteritis. Rheumatology 53, 6–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. González-Gay, M. A., Amoli, M. M., Garcia-Porrua, C. & Ollier, W. E. R. Genetic markers of disease susceptibility and severity in giant cell arteritis and polymyalgia rheumatica. Semin. Arthritis Rheum. 33, 38–48 (2003).

    Article  PubMed  Google Scholar 

  29. Ma-Krupa, W. et al. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J. Exp. Med. 199, 173–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, J. et al. Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circ. Res. 104, 488–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knab, K., Chambers, D. & Krönke, G. Synovial macrophage and fibroblast heterogeneity in joint homeostasis and inflammation. Front. Med. 9, 930 (2022).

    Article  Google Scholar 

  33. Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Mackie, S. L., Owen, C. E., Buchanan, R. R. C. & McGonagle, D. A shared basis for overlapping immunopathologies in giant cell arteritis and polymyalgia rheumatica. Lancet Rheumatol. 3, e826–e829 (2021).

    Article  CAS  Google Scholar 

  35. van Sleen, Y. et al. Leukocyte dynamics reveal a persistent myeloid dominance in giant cell arteritis and polymyalgia rheumatica. Front. Immunol. 10, 1981 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samson, M. et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 64, 3788–3798 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Samson, M. et al. Involvement and prognosis value of CD8+ T cells in giant cell arteritis. J. Autoimmun. 72, 73–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Reitsema, R. D. et al. Contribution of pathogenic T helper 1 and 17 cells to bursitis and tenosynovitis in polymyalgia rheumatica. Front. Immunol. 13, 1–11 (2022).

    Article  Google Scholar 

  39. Terrier, B. et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 64, 2001–2011 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van der Geest, K. S. M. et al. Serum markers associated with disease activity in giant cell arteritis and polymyalgia rheumatica. Rheumatology 54, 1397–1402 (2015).

    Article  PubMed  Google Scholar 

  42. Dasgupta, B. & Panayi, G. S. Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Rheumatology 29, 456–458 (1990).

    Article  CAS  Google Scholar 

  43. Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Bonelli, M. et al. Tocilizumab in patients with new onset polymyalgia rheumatica (PMR-SPARE): a phase 2/3 randomised controlled trial. Ann. Rheum. Dis. 81, 838–844 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Devauchelle-Pensec, V. et al. Effect of tocilizumab on disease activity in patients with active polymyalgia rheumatica receiving glucocorticoid therapy: a randomized clinical trial. J. Am. Med. Assoc. 328, 1053–1062 (2022).

    Article  CAS  Google Scholar 

  46. Jiemy, W. F. et al. Distinct macrophage phenotypes skewed by local granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are associated with tissue destruction and intimal hyperplasia in giant cell arteritis. Clin. Transl. Immunol. 9, e1164 (2020).

    Article  CAS  Google Scholar 

  47. van Sleen, Y. et al. A distinct macrophage subset mediating tissue destruction and neovascularization in giant cell arteritis: implication of the YKL-40/interleukin-13 receptor α2 axis. Arthritis Rheumatol. 73, 2327–2337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meliconi, R. et al. Leukocyte infiltration in synovial tissue from the shoulder of patients with polymyalgia rheumatica. Quantitative analysis and influence of corticosteroid treatment. Arthritis Rheum. 39, 1199–1207 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Jiemy, W. F. et al. Expression of interleukin-6 in synovial tissue of patients with polymyalgia rheumatica. Ann. Rheum. Dis. 82, 440–442 (2022).

    Article  PubMed  Google Scholar 

  50. Corbera-Bellalta, M. et al. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann. Rheum. Dis. 81, 524–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Jiemy, W. F. et al. Proinflammatory monocytes and macrophages in synovial fluid and bursal tissue of patients with polymyalgia rheumatica: potent producers of IL-6 and GM-CSF. Ann. Rheum. Dis. 81, 8–9 (2022).

    Article  Google Scholar 

  52. Szekanecz, Z. et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 17, 585–595 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Maz, M. et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis. Arthritis Care Res. 73, 1071–1087 (2021).

    Article  Google Scholar 

  54. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 69, 837–845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cid, M. C. et al. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 653–661 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Venhoff, N. et al. Efficacy and safety of secukinumab in patients with giant cell arteritis: study protocol for a randomized, parallel group, double-blind, placebo-controlled phase II trial. Trials 22, 543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoffman, G. S. et al. A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate treatment for giant cell arteritis. Arthritis Rheum. 46, 1309–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Spiera, R. F. et al. A prospective, double-blind, randomized, placebo-controlled trial of methotrexate in the treatment of giant cell arteritis (GCA). Clin. Exp. Rheumatol. 19, 495–501 (2001).

    CAS  PubMed  Google Scholar 

  59. Mahr, A. D. et al. Adjunctive methotrexate for treatment of giant cell arteritis: an individual patient data meta-analysis. Arthritis Rheum. 56, 2789–2797 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Tomelleri, A. et al. Long-term efficacy and safety of leflunomide in large-vessel giant-cell arteritis: a single centre ten-year experience. J. Clin. Rheumatol. 28, e297–e300 (2022).

    Article  PubMed  Google Scholar 

  61. Hočevar, A., Ješe, R., Rotar, Ž. & Tomšič, M. Does leflunomide have a role in giant cell arteritis? An open-label study. Clin. Rheumatol. 38, 291–296 (2019).

    Article  PubMed  Google Scholar 

  62. Das, S. et al. Efficacy of leflunomide as a steroid-sparing agent in treatment of Indian giant cell arteritis patients: a 2-year follow-up study. Int. J. Rheum. Dis. 25, 650–658 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Coath, F. et al. Giant cell arteritis: new concepts, treatments and the unmet need that remains. Rheumatology 58, 1123–1125 (2019).

    Article  PubMed  Google Scholar 

  64. Higashida-Konishi, M. et al. Giant cell arteritis successfully treated with subcutaneous tocilizumab monotherapy. Rheumatol. Int. 43, 545–549 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Saito, S. et al. Tocilizumab monotherapy for large vessel vasculitis: results of 104-week treatment of a prospective, single-centre, open study. Rheumatology 59, 1617–1621 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Jogimahanti, A. V., Kini, A. T., Irwin, L. E. & Lee, A. G. The cost-effectiveness of tocilizumab (Actemra) therapy in giant cell arteritis. J. Neuroophthalmol. 41, 342–350 (2021).

    Article  PubMed  Google Scholar 

  67. Stone, J. H. et al. Long-term effect of tocilizumab in patients with giant cell arteritis: open-label extension phase of the giant cell arteritis actemra (GiACTA) trial. Lancet Rheumatol. 3, e328–e336 (2021).

    Article  CAS  Google Scholar 

  68. Tomelleri, A. et al. Effectiveness of a two-year tapered course of tocilizumab in patients with giant cell arteritis: a single-centre prospective study. Semin. Arthritis Rheum. 59, 152174 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Tomelleri, A. et al. Disease stratification in giant cell arteritis to reduce relapses and prevent long-term vascular damage. Lancet Rheumatol. 3, e886–e895 (2021).

    Article  CAS  Google Scholar 

  70. Caporali, R. et al. Prednisone plus methotrexate for polymyalgia rheumatica: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 141, 493–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Van Der Veen, M. J., Dinant, H. J., Van Booma-Frankfort, C., Van Albada-Kuipers, G. A. & Bijlsma, J. W. J. Can methotrexate be used as a steroid sparing agent in the treatment of polymyalgia rheumatica and giant cell arteritis? Ann. Rheum. Dis. 55, 218 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nazarinia, A. M., Moghimi, J. & Toussi, J. Efficacy of methotrexate in patients with polymyalgia rheumatica. Koomesh 14, 265–270 (2013).

    Google Scholar 

  73. Ferraccioli, G., Salaffi, F., De Vita, S., Casatta, L. & Bartoli, E. Methotrexate in polymyalgia rheumatica: preliminary results of an open, randomized study. J. Rheumatol. 23, 624–628 (1996).

    CAS  PubMed  Google Scholar 

  74. Adizie, T., Christidis, D., Dharmapaliah, C., Borg, F. & Dasgupta, B. Efficacy and tolerability of leflunomide in difficult-to-treat polymyalgia rheumatica and giant cell arteritis: a case series. Int. J. Clin. Pract. 66, 906–909 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Spiera, R. et al. Sarilumab in patients with relapsing polymyalgia rheumatica: a phase 3, multicenter, randomized, double blind, placebo controlled trial (SAPHYR) [abstract]. Arthritis Rheumatol. 74, 1676 (2022).

    Google Scholar 

  76. Marsman, D. E., den Broeder, N., van den Hoogen, F. H. J., den Broeder, A. A. & van der Maas, A. Efficacy of rituximab in patients with polymyalgia rheumatica: a double-blind, randomised, placebo-controlled, proof-of-concept trial. Lancet Rheumatol. 3, e758–e766 (2021).

    Article  CAS  Google Scholar 

  77. Dejaco, C., Duftner, C., Buttgereit, F., Matteson, E. L. & Dasgupta, B. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatology 56, 506–515 (2017).

    CAS  PubMed  Google Scholar 

  78. Schmidt, W. A. Ultrasound in the diagnosis and management of giant cell arteritis. Rheumatology 57, ii22–ii31 (2018).

    Article  PubMed  Google Scholar 

  79. Biousse, V. & Newman, N. J. Ischemic optic neuropathies. N. Engl. J. Med. 372, 2428–2436 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Salvarani, C. et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Care Res. 53, 293–297 (2005).

    Article  Google Scholar 

  81. Cid, M. C. et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum. 41, 26–32 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. van der Geest, K. S. M. et al. Ultrasonographic Halo Score in giant cell arteritis: association with intimal hyperplasia and ischaemic sight loss. Rheumatology 60, 4361–4366 (2021).

    Article  PubMed  Google Scholar 

  83. Makkuni, D. et al. Is intimal hyperplasia a marker of neuro-ophthalmic complications of giant cell arteritis? Rheumatology 47, 488–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Van Der Geest, K. S. M. M. et al. Novel ultrasonographic Halo Score for giant cell arteritis: assessment of diagnostic accuracy and association with ocular ischaemia. Ann. Rheum. Dis. 79, 393–399 (2019).

    Article  Google Scholar 

  85. Vodopivec, I. & Rizzo, J. F. Ophthalmic manifestations of giant cell arteritis. Rheumatology 57, ii63–ii72 (2018).

    Article  PubMed  Google Scholar 

  86. Hayreh, S. S. Giant cell arteritis: its ophthalmic manifestations. Indian J. Ophthalmol. 69, 227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patil, P. et al. Fast track pathway reduces sight loss in giant cell arteritis: results of a longitudinal observational cohort study. Clin. Exp. Rheumatol. 33, S-103–S-106 (2015).

    Google Scholar 

  88. Gonzalez-Gay, M. A. et al. Strokes at time of disease diagnosis in a series of 287 patients with biopsy-proven giant cell arteritis. Medicine 88, 227–235 (2009).

    Article  PubMed  Google Scholar 

  89. De Boysson, H. et al. Giant cell arteritis-related stroke: a retrospective multicenter case-control study. J. Rheumatol. 44, 297–303 (2017).

    Article  PubMed  Google Scholar 

  90. Kermani, T. A. & Dasgupta, B. Current and emerging therapies in large-vessel vasculitis. Rheumatology 57, 1513–1524 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Hamrin, B., Jonsson, N. & Landberg, T. Involvement of large vessels in polymyalgia arteritica. Lancet 285, 1193–1196 (1965).

    Article  Google Scholar 

  92. Espitia, O. et al. Comparison of idiopathic (isolated) aortitis and giant cell arteritis-related aortitis. A French retrospective multicenter study of 117 patients. Autoimmun. Rev. 15, 571–576 (2016).

    Article  PubMed  Google Scholar 

  93. Almeida-Morais, L. et al. Acute upper limb ischemia, a rare presentation of giant cell arteritis. Rev. Port. Cardiol. 35, 237.e1–237.e4 (2016).

    Article  PubMed  Google Scholar 

  94. Dejaco, C., Duftner, C., Dasgupta, B., Matteson, E. L. & Schirmer, M. Polymyalgia rheumatica and giant cell arteritis: management of two diseases of the elderly. Aging Health 7, 633–645 (2011).

    Article  Google Scholar 

  95. Blockmans, D. et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 55, 131–137 (2006).

    Article  PubMed  Google Scholar 

  96. Muratore, F. et al. Large-vessel giant cell arteritis: a cohort study. Rheumatology 54, 463–470 (2015).

    Article  PubMed  Google Scholar 

  97. Monti, S. et al. Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis: focus on giant cell arteritis. RMD Open 5, e001003 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nesher, G., Nesher, R., Mates, M., Sonnenblick, M. & Breuer, G. S. Giant cell arteritis: intensity of the initial systemic inflammatory response and the course of the disease. Clin. Exp. Rheumatol. 26 (3 Supp 49), S30–S34 (2008).

    CAS  PubMed  Google Scholar 

  99. Hutchings, A. et al. Clinical outcomes, quality of life, and diagnostic uncertainty in the first year of polymyalgia rheumatica. Arthritis Care Res. 57, 803–809 (2007).

    Article  Google Scholar 

  100. Ramon, A. et al. The frequency of occult solid malignancy in patients with polymyalgia rheumatica-like symptoms. Ther. Adv. Musculoskelet. Dis. 13, 1759720X20984275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lavado-Pérez, C. et al. 18F-FDG PET/CT for the detection of large vessel vasculitis in patients with polymyalgia rheumatica. Rev. Esp. Med. Nucl. Imagen Mol. 34, 275–281 (2015).

    PubMed  Google Scholar 

  102. Prieto-Peña, D. et al. Predictors of positive 18F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica. Semin. Arthritis Rheum. 48, 720–727 (2019).

    Article  PubMed  Google Scholar 

  103. Noval Menéndez, J., Serrano, M. T. C., Nuño Mateo, F. J. & Morís de la Tassa, J. Distal musculo-skeletal manifestations in rheumatic polymyalgia. Rev. Clin. Esp. 202, 385–387 (2002).

    Article  PubMed  Google Scholar 

  104. Pease, C. T. et al. Polymyalgia rheumatica can be distinguished from late onset rheumatoid arthritis at baseline: results of a 5-yr prospective study. Rheumatology 48, 123–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Cimmino, M. A., Parodi, M., Zampogna, G., Barbieri, F. & Garlaschi, G. Polymyalgia rheumatica is associated with extensor tendon tenosynovitis but not with synovitis of the hands: a magnetic resonance imaging study. Rheumatology 50, 494–499 (2011).

    Article  PubMed  Google Scholar 

  106. Karmacharya, P. et al. RS3PE revisited: a systematic review and meta-analysis of 331 cases. Clin. Exp. Rheumatol. 34, 404–415 (2016).

    PubMed  Google Scholar 

  107. Owen, C. E. et al. Fusion of positron emission tomography/computed tomography with magnetic resonance imaging reveals hamstring peritendonitis in polymyalgia rheumatica. Rheumatology 57, 345–353 (2018).

    Article  PubMed  Google Scholar 

  108. Cimmino, M. A. et al. High frequency of capsular knee involvement in polymyalgia rheumatica/giant cell arteritis patients studied by positron emission tomography. Rheumatology 52, 1865–1872 (2013).

    Article  PubMed  Google Scholar 

  109. Salvarani, C. et al. Acute-phase reactants and the risk of relapse/recurrence in polymyalgia rheumatica: a prospective followup study. Arthritis Care Res. 53, 33–38 (2005).

    Article  Google Scholar 

  110. Kimura, M. et al. Clinical characteristics of patients with remitting seronegative symmetrical synovitis with pitting edema compared to patients with pure polymyalgia rheumatica. J. Rheumatol. 39, 148–153 (2012).

    Article  PubMed  Google Scholar 

  111. Caporali, R. et al. Presenting features of polymyalgia rheumatica (PMR) and rheumatoid arthritis with PMR-like onset: a prospective study. Ann. Rheum. Dis. 60, 1021–1024 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marzo-Ortega, H. et al. Evidence for a different anatomic basis for joint disease localization in polymyalgia rheumatica in comparison with rheumatoid arthritis. Arthritis Rheum. 56, 3496–3501 (2007).

    Article  PubMed  Google Scholar 

  113. Salvarani, C. et al. Distal musculoskeletal manifestations in polymyalgia rheumatica: a prospective follow-up study. Arthritis Rheum. 41, 1221–1226 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Hernández-Rodríguez, J. et al. A strong initial systemic inflammatory response is associated with higher corticosteroid requirements and longer duration of therapy in patients with giant-cell arteritis. Arthritis Rheum. 47, 29–35 (2002).

    Article  PubMed  Google Scholar 

  115. Burja, B. et al. Utility of serological biomarkers for giant cell arteritis in a large cohort of treatment-naïve patients. Clin. Rheumatol. 38, 317–329 (2019).

    Article  PubMed  Google Scholar 

  116. Hocevar, A. et al. Do early diagnosis and glucocorticoid treatment decrease the risk of permanent visual loss and early relapses in giant cell arteritis. Medicine 95, e3210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Restuccia, G. et al. Long-term remission in biopsy proven giant cell arteritis: a retrospective cohort study. J. Autoimmun. 77, 39–44 (2017).

    Article  PubMed  Google Scholar 

  118. Bellan, M. et al. Role of positron emission tomography in the assessment of disease burden and risk of relapse in patients affected by giant cell arteritis. Clin. Rheumatol. 39, 1277–1281 (2020).

    Article  PubMed  Google Scholar 

  119. Martinez-Lado, L. et al. Relapses and recurrences in giant cell arteritis: a population-based study of patients with biopsy-proven disease from Northwestern Spain. Medicine 90, 186–193 (2011).

    Article  PubMed  Google Scholar 

  120. Prieto-González, S. et al. Serum osteopontin: a biomarker of disease activity and predictor of relapsing course in patients with giant cell arteritis. Potential clinical usefulness in tocilizumab-treated patients. RMD Open. 3, e000570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Van Sleen, Y. et al. Markers of angiogenesis and macrophage products for predicting disease course and monitoring vascular inflammation in giant cell arteritis. Rheumatology 58, 1383–1392 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nadkarni, S. et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ. Res. 114, 242–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Espígol-Frigolé, G. et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann. Rheum. Dis. 72, 1481–1487 (2013).

    Article  PubMed  Google Scholar 

  124. Cid, M. C. et al. Association between increased CCL2 (MCP-1) expression in lesions and persistence of disease activity in giant-cell arteritis. Rheumatology 45, 1356–1363 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Hernández-Rodríguez, J. et al. Tissue production of pro-inflammatory cytokines (IL-1β, TNFα and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology 43, 294–301 (2004).

    Article  PubMed  Google Scholar 

  126. van der Geest, K. S. M. et al. What is the current evidence for disease subsets in giant cell arteritis? Arthritis Rheumatol. 70, 1366–1376 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Esen, I. et al. Plasma pyruvate kinase M2 as a marker of vascular inflammation in giant cell arteritis. Rheumatology 61, 3060–3070 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Muratore, F. et al. Aortic dilatation in patients with large vessel vasculitis: a longitudinal case control study using PET/CT. Semin. Arthritis Rheum. 48, 1074–1082 (2019).

    Article  PubMed  Google Scholar 

  129. Bilici Salman, R. et al. Diagnostic utility of serum biomarkers in large vessel vasculitis and their correlation with positron emission tomography. Mod. Rheumatol. 32, 938–945 (2022).

    Article  PubMed  Google Scholar 

  130. Rodriguez-Pla, A. et al. Evaluation of potential serum biomarkers of disease activity in diverse forms of vasculitis. J. Rheumatol. 47, 1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Berger, C. T., Rebholz-Chaves, B., Recher, M., Manigold, T. & Daikeler, T. Serial IL-6 measurements in patients with tocilizumab-treated large-vessel vasculitis detect infections and may predict early relapses. Ann. Rheum. Dis. 78, 1012–1014 (2019).

    Article  PubMed  Google Scholar 

  133. Cantini, F. et al. Erythrocyte sedimentation rate and C-reactive protein in the evaluation of disease activity and severity in polymyalgia rheumatica: a prospective follow-up study. Semin. Arthritis Rheum. 30, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Myklebust, G. & Gran, J. T. Prednisolone maintenance dose in relation to starting dose in the treatment of polymyalgia rheumatica and temporal arteritis. A prospective two-year study in 273 patients. Scand. J. Rheumatol. 30, 260–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Van Sleen, Y. et al. High angiopoietin-2 levels associate with arterial inflammation and long-term glucocorticoid requirement in polymyalgia rheumatica. Rheumatology 59, 176–184 (2020).

    PubMed  Google Scholar 

  136. Owen, C. E. et al. Neutrophil to lymphocyte ratio predicts glucocorticoid resistance in polymyalgia rheumatica. Int. J. Rheum. Dis. 24, 56–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. van Sleen, Y. et al. Angiopoietin-2/-1 ratios and MMP-3 levels as an early warning sign for the presence of giant cell arteritis in patients with polymyalgia rheumatica. Arthritis Res. Ther. 24, 65 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. van der Geest, K. S. M. et al. Diagnostic value of 18FFDG-PET/CT in polymyalgia rheumatica: a systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 48, 1876–1889 (2021).

    Article  PubMed  Google Scholar 

  139. Dejaco, C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann. Rheum. Dis. 77, 636–643 (2018).

    Article  PubMed  Google Scholar 

  140. Sugihara, T. et al. Associated factors of poor treatment outcomes in patients with giant cell arteritis: clinical implication of large vessel lesions. Arthritis Res. Ther. 22, 1–12 (2020).

    Article  Google Scholar 

  141. Blockmans, D. et al. Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology 46, 672–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Czihal, M. et al. Impact of cranial and axillary/subclavian artery involvement by color duplex sonography on response to treatment in giant cell arteritis. J. Vasc. Surg. 61, 1285–1291 (2015).

    Article  PubMed  Google Scholar 

  143. De Boysson, H. et al. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis. Medicine 95, e3851 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. de Boysson, H. et al. Different patterns and specific outcomes of large-vessel involvements in giant cell arteritis. J. Autoimmun. 103, 102283 (2019).

    Article  PubMed  Google Scholar 

  145. de Boysson, H. et al. Large-vessel involvement and aortic dilation in giant-cell arteritis. A multicenter study of 549 patients. Autoimmun. Rev. 17, 391–398 (2018).

    Article  PubMed  Google Scholar 

  146. Sammel, A. M. et al. Cranial and large vessel activity on positron emission tomography scan at diagnosis and 6 months in giant cell arteritis. Int. J. Rheum. Dis. 23, 582–588 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Grayson, P. C. et al. 18F-fluorodeoxyglucose–positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 70, 439–449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Meller, J. et al. Early diagnosis and follow-up of aortitis with [18F]FDG PET and MRI. Eur. J. Nucl. Med. Mol. Imaging 30, 730–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Sebastian, A. et al. Efficacy and safety of tocilizumab in giant cell arteritis: a single centre NHS experience using imaging (ultrasound and PET-CT) as a diagnostic and monitoring tool. RMD Open 6, e001417 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Camellino, D., Duftner, C. & Dejaco, C. New insights into the role of imaging in polymyalgia rheumatica. Rheumatology 60, 1016–1033 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Salvarani, C. et al. Cervical interspinous bursitis in active polymyalgia rheumatica. Ann. Rheum. Dis. 67, 758–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Rehak, Z. et al. PET/CT imaging in polymyalgia rheumatica: praepubic 18F-FDG uptake correlates with pectineus and adductor longus muscles enthesitis and with tenosynovitis. Radiol. Oncol. 51, 8–14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Laporte, J.-P. et al. Localized myofascial inflammation revealed by magnetic resonance imaging in recent-onset polymyalgia rheumatica and effect of tocilizumab therapy. J. Rheumatol. 46, 1619–1626 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Huwart, A. et al. Ultrasonography and magnetic resonance imaging changes in patients with polymyalgia rheumatica treated by tocilizumab. Arthritis Res. Ther. 20, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Miceli, M. C. et al. Baseline shoulder ultrasonography is not a predictive marker of response to glucocorticoids in patients with polymyalgia rheumatica: a 12-month follow-up study. J. Rheumatol. 44, 241–247 (2017).

    Article  PubMed  Google Scholar 

  156. Ayano, M. et al. Shoulder ultrasound and serum lactate dehydrogenase predict inadequate response to glucocorticoid treatment in patients with polymyalgia rheumatica. Rheumatol. Int. 40, 1101–1109 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Macchioni, P. L., Catanoso, M. G., Pipitone, N., Boiardi, L. & Salvarani, C. Longitudinal examination with shoulder ultrasound of patients with polymyalgia rheumatica. Rheumatology 48, 1566–1569 (2009).

    Article  PubMed  Google Scholar 

  158. Nakamura, H. et al. Gadolinium-enhanced magnetic resonance imaging in shoulders contributes accurate diagnosis and predicting recurrence to patients with polymyalgia rheumatica. Clin. Exp. Rheumatol. 39, 84–90 (2021).

    Article  PubMed  Google Scholar 

  159. Mackie, S. L. et al. Whole-body MRI of patients with polymyalgia rheumatica identifies a distinct subset with complete patient-reported response to glucocorticoids. Ann. Rheum. Dis. 74, 2188–2192 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Giraud, N., Prati, C., Wendling, D. & Verhoeven, F. Prognostic value of 18F-fluorodeoxyglucose PET-CT score at baseline on the therapeutic response to prednisone in patients with polymyalgia rheumatica. Joint Bone Spine 88, 2020–2021 (2021).

    Article  Google Scholar 

  161. van der Geest, K. S. M. et al. Positron emission tomography imaging in vasculitis. Cardiol. Clin. 41, 251–265 (2023).

    Article  PubMed  Google Scholar 

  162. Bley, T. A. et al. Comparison of duplex sonography and high-resolution magnetic resonance imaging in the diagnosis of giant cell (temporal) arteritis. Arthritis Rheum. 58, 2574–2578 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Chrysidis, S., Lage-Hansen, P. R., Svendsen, N. & Diamantopoulos, A. P. The fast-track outpatient clinic significantly decreases hospitalisation rates among polymyalgia rheumatica patients. BMC Rheumatol. 5, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nguyen, J. T. et al. Economic and objective burden of caregiving on informal caregivers of patients with systemic vasculitis. Musculoskelet. Care 17, 282–287 (2019).

    Article  Google Scholar 

  165. De Smit, E., Palmer, A. J. & Hewitt, A. W. Projected worldwide disease burden from giant cell arteritis by 2050. J. Rheumatol. 42, 119–125 (2015).

    Article  PubMed  Google Scholar 

  166. Diamantopoulos, A. P., Haugeberg, G., Lindland, A. & Myklebust, G. The fast-track ultrasound clinic for early diagnosis of giant cell arteritis significantly reduces permanent visual impairment: towards a more effective strategy to improve clinical outcome in giant cell arteritis? Rheumatology 55, 66–70 (2016).

    Article  PubMed  Google Scholar 

  167. Sarnes, E. et al. Incidence and US costs of corticosteroid-associated adverse events: a systematic literature review. Clin. Ther. 33, 1413–1432 (2011).

    Article  PubMed  Google Scholar 

  168. Robson, J. C. et al. The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Ann. Rheum. Dis. 74, 129–135 (2015).

    Article  PubMed  Google Scholar 

  169. Stone, W. M. & Fankhauser, G. T. Inflammatory aneurysms treated with EVAR. Semin. Vasc. Surg. 25, 227–231 (2012).

    Article  PubMed  Google Scholar 

  170. Broder, M. S. et al. Corticosteroid-related adverse events in patients with giant cell arteritis: a claims-based analysis. Semin. Arthritis Rheum. 46, 246–252 (2016).

    Article  PubMed  Google Scholar 

  171. Petri, H., Nevitt, A., Sarsour, K., Napalkov, P. & Collinson, N. Incidence of giant cell arteritis and characteristics of patients: data-driven analysis of comorbidities. Arthritis Care Res. 67, 390–395 (2015).

    Article  CAS  Google Scholar 

  172. Manson, S. C., Brown, R. E., Cerulli, A. & Vidaurre, C. F. The cumulative burden of oral corticosteroid side effects and the economic implications of steroid use. Respir. Med. 103, 975–994 (2009).

    Article  PubMed  Google Scholar 

  173. Van Staa, T. P., Leufkens, H. G. M., Abenhaim, L., Zhang, B. & Cooper, C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology 39, 1383–1389 (2000).

    Article  PubMed  Google Scholar 

  174. Kanis, J. A., Stevenson, M., McCloskey, E. V., Davis, S. & Lloyd-Jones, M. Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis. Health Technol. Assess. 11, 1–231 (2007).

    Article  Google Scholar 

  175. Sebastian, A. et al. Halo score (temporal artery, its branches and axillary artery) as a diagnostic, prognostic and disease monitoring tool for Giant Cell Arteritis (GCA). BMC Rheumatol. 4, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.D., A.T., K.S.M.v.d.G., M.A.K., A.S., F.C., D.B. and Y.v.S researched data for the article. B.D., A.T., K.S.M.v.d.G., M.A.K., A.S., F.C. and C.D. contributed substantially to discussion of the content. B.D., A.T., K.S.M.v.d.G., M.A.K., A.S., F.C. and Y.v.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bhaskar Dasgupta.

Ethics declarations

Competing interests

K.S.M.v.d.G. declares that he has received grants from the Mandema Stipend and the FOREUM Foundation for Research in Rheumatology and personal fees from Roche and AbbVie, outside the submitted work. B.D. declares that he has received consulting fees from Chugai, Roche and Sanofi and sponsorship grants for international meetings and workshops with AbbVie, GlaxoSmithKline, Roche and Sanofi. C.D. declares that has he has received consulting and/or speaker’s fees from AbbVie, Eli Lilly, Galapagos, Janssen, Novartis, Pfizer, Roche and Sanofi, all unrelated to this manuscript. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks C. Owen; C. Marvisi, who co-reviewed with C. Salvarani; C. Salvarani; and W. Schmidt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomelleri, A., van der Geest, K.S.M., Khurshid, M.A. et al. Disease stratification in GCA and PMR: state of the art and future perspectives. Nat Rev Rheumatol 19, 446–459 (2023). https://doi.org/10.1038/s41584-023-00976-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00976-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing