Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases

Abstract

Immune-checkpoint inhibitors (ICIs) have dramatically changed the management of advanced cancers. Designed to enhance the antitumour immune response, they can also cause off-target immune-related adverse events (irAEs), which are sometimes severe. Although the efficacy of ICIs suggests that they could have wide-ranging benefits, clinical trials of the drugs have so far excluded patients with pre-existing autoimmune disease. However, evidence is accumulating with regard to the use of ICIs in this ‘at-risk’ population, with retrospective data suggesting that they have an acceptable safety profile, but that there is a risk of disease flare or other irAE occurrence. The management of immunosuppressive drugs at ICI initiation in patients with autoimmune disease (or later in instances of disease flare or irAE) remains a question of particular interest in clinical practice, in which there is always a search for the balance between protecting against autoimmunity and ensuring a good tumour response. Although temporary use of immunosuppressants seems safe, prolonged use or use at ICI initiation might hamper the antitumour immune response, prompting clinicians to use the minimal efficient immunosuppressive regimen. However, a new paradigm is emerging, in which inhibitors of TNF or IL-6 could have synergistic effects with ICIs on tumour response, while also preventing severe irAEs. If confirmed, this ‘decoupling’ effect on toxicity and efficacy could change therapeutic practice in this field. Knowledge of the current use of ICIs in patients with pre-existing autoimmune disease, particularly with regard to the use of immunosuppressive drugs and/or biologic DMARDs, can help to guide clinical practice.

Key points

  • Immune-checkpoint inhibitors (ICIs) should be offered to patients with pre-existing autoimmune disease who have advanced cancer, within the process of shared decision-making.

  • High risk of (generally mild) flare (up to 75%) is reported for patients with pre-existing rheumatoid arthritis, polymyalgia rheumatica and psoriatic arthritis following ICI initiation.

  • ICI-mediated immune toxicity is mostly manageable with glucocorticoids, and rarely requires DMARDs in patients with pre-existing autoimmune disease.

  • A minimal immunosuppressive regimen should be reached at ICI initiation, but selective therapies should be used for active and severe pre-existing autoimmune disease.

  • Basic and clinical research are needed to better understand the pathophysiology underlying ICI-induced autoimmune disease flare compared with immune-related adverse events, and to identify predictive factors of immune toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action of immune-checkpoint inhibitors.
Fig. 2: Factors potentially involved in the pathogenesis of immune-related adverse events.

Similar content being viewed by others

References

  1. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Manson, G. et al. Worsening and newly diagnosed paraneoplastic syndromes following anti-PD-1 or anti-PD-L1 immunotherapies, a descriptive study. J. Immunother. Cancer 7, 337 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdel-Wahab, N., Shah, M., Lopez-Olivo, M. A. & Suarez-Almazor, M. E. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann. Intern. Med. 168, 121–130 (2018).

    Article  PubMed  Google Scholar 

  4. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Nocturne, G. & Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. Rev. Rheumatol. 14, 133–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Franks, A. L. & Slansky, J. E. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer. Res. 32, 1119–1136 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Askling, J. et al. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann. Rheum. Dis. 64, 1414–1420 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dreyer, L. et al. Incidences of overall and site specific cancers in TNFα inhibitor treated patients with rheumatoid arthritis and other arthritides — a follow-up study from the DANBIO Registry. Ann. Rheum. Dis. 72, 79–82 (2013).

    Article  PubMed  Google Scholar 

  9. Mercer, L. K. et al. Risk of lymphoma in patients exposed to antitumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 76, 497–503 (2017).

    Article  PubMed  Google Scholar 

  10. Mercer, L. K. et al. Risk of solid cancer in patients exposed to anti-tumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 74, 1087–1093 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Seror, R. & Mariette, X. Malignancy and the risks of biologic therapies: current status. Rheum. Dis. Clin. North. Am. 43, 43–64 (2017).

    Article  PubMed  Google Scholar 

  12. Mariette, X. et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann. Rheum. Dis. 70, 1895–1904 (2011).

    Article  PubMed  Google Scholar 

  13. De Cock, D. & Hyrich, K. Malignancy and rheumatoid arthritis: epidemiology, risk factors and management. Best. Pract. Res. Clin. Rheumatol. 32, 869–886 (2018).

    Article  PubMed  Google Scholar 

  14. Lopez-Olivo, M. A. et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA 308, 898–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Manger, B. & Schett, G. Rheumatic paraneoplastic syndromes — a clinical link between malignancy and autoimmunity. Clin. Immunol. 186, 67–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Moinzadeh, P. et al. Association of anti-RNA polymerase III autoantibodies and cancer in scleroderma. Arthritis Res. Ther. 16, R53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joseph, C. G. et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343, 152–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Yadav, S. et al. Autoantibodies as diagnostic and prognostic cancer biomarker: detection techniques and approaches. Biosens. Bioelectron. 139, 111315 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Gajewski, T. F., Fuertes, M., Spaapen, R., Zheng, Y. & Kline, J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 23, 286–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura, N., Ohtsuka, M., Kikuchi, N. & Yamamoto, T. Exacerbation of psoriasis during nivolumab therapy for metastatic melanoma. Acta Derm. Venereol. 96, 259–260 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, C. et al. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J. Autoimmun. 104, 102333 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirsch, L., Zitvogel, L., Eggermont, A. & Marabelle, A. PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade. Br. J. Cancer 120, 3–5 (2019).

    Article  PubMed  Google Scholar 

  29. Wolchok, J. D. et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 40, 127–137 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Yoest, J. M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: a short review. Immunotargets Ther. 6, 73–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, W., Wang, G., Wang, Y., Riese, M. J. & You, M. Uncoupling therapeutic efficacy from immune-related adverse events in immune checkpoint blockade. iScience 23, 101580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdel-Wahab, N., Shah, M. & Suarez-Almazor, M. E. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One 11, e0160221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Belkhir, R. et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann. Rheum. Dis. 76, 1747–1750 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warner, B. M. et al. Sicca syndrome associated with immune checkpoint inhibitor therapy. Oncologist 24, 1259–1269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carbonnel, F. et al. Inflammatory bowel disease and cancer response due to anti-CTLA-4: is it in the flora? Semin. Immunopathol. 39, 327–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Calabrese, L. H., Calabrese, C. & Cappelli, L. C. Rheumatic immune-related adverse events from cancer immunotherapy. Nat. Rev. Rheumatol. 14, 569–579 (2018).

    Article  PubMed  Google Scholar 

  40. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, e002435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jing, Y. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 11, 4946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908–918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Subudhi, S. K. et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl Acad. Sci. USA 113, 11919–11924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oh, D. Y. et al. Immune toxicities elicited by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 77, 1322–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Lozano, A. X. et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. https://doi.org/10.1038/s41591-021-01623-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    Article  PubMed  Google Scholar 

  52. Läubli, H. et al. The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. Oncoimmunology 7, e1386362 (2018).

    Article  PubMed  Google Scholar 

  53. Kim, K. H. et al. Immune-related adverse events are clustered into distinct subtypes by T-cell profiling before and early after anti-PD-1 treatment. Oncoimmunology 9, 1722023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grigoriou, M. et al. Regulatory T-cell transcriptomic reprogramming characterizes adverse events by checkpoint inhibitors in solid tumors. Cancer Immunol. Res. 9, 726–734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonugunta, A. S. et al. Humoral and cellular correlates of a novel immune-related adverse event and its treatment. J. Immunother. Cancer 9, e003585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reschke, R. et al. Distinct immune signatures indicative of treatment response and immune-related adverse events in melanoma patients under immune checkpoint inhibitor therapy. Int. J. Mol. Sci. 22, 8017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, R. et al. High-dimensional analyses of checkpoint-inhibitor related arthritis synovial fluid cells reveal a unique, proliferating CD38hi cytotoxic CD8 T cell population induced by type I IFN [abstract]. Arthritis Rheumatol. 72 (Suppl. 10): abstract 1443 (2020).

  60. Murray-Brown, W. et al. Nivolumab-induced synovitis is characterized by florid T cell infiltration and rapid resolution with synovial biopsy-guided therapy. J. Immunother. Cancer 8, e000281 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Patel, A. J. et al. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat. Commun. 13, 3148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Moel, E. C. et al. Autoantibody development under treatment with immune-checkpoint inhibitors. Cancer Immunol. Res. 7, 6–11 (2019).

    Article  PubMed  Google Scholar 

  64. Huang, Y.-T., Chen, Y.-P., Lin, W.-C., Su, W.-C. & Sun, Y.-T. Immune checkpoint inhibitor-induced myasthenia gravis. Front. Neurol. 11, 634 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kobayashi, T. et al. Patients with antithyroid antibodies are prone to develop destructive thyroiditis by nivolumab: a prospective study. J. Endocr. Soc. 2, 241–251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mammen, A. L. et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 78, 150–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lim, S. Y. et al. Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1-based immunotherapy. Clin. Cancer Res. 25, 1557–1563 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Husain, B. et al. Inflammatory markers in autoimmunity induced by checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 147, 1623–1630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y. N. et al. Elevated levels of IL-17A and IL-35 in plasma and bronchoalveolar lavage fluid are associated with checkpoint inhibitor pneumonitis in patients with non-small cell lung cancer. Oncol. Lett. 20, 611–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan, S. et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br. J. Cancer 120, 63–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra45 (2014).

    Article  PubMed  Google Scholar 

  73. Cappelli, L. C., Dorak, M. T., Bettinotti, M. P., Bingham, C. O. & Shah, A. A. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis. Rheumatology 58, 476–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Hasan Ali, O. et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 107, 8–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Wölffer, M. et al. Biomarkers associated with immune-related adverse events under checkpoint inhibitors in metastatic melanoma. Cancers 14, 302 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    Article  PubMed  Google Scholar 

  79. Lee, B. et al. The use of ipilimumab in patients with rheumatoid arthritis and metastatic melanoma. Ann. Oncol. 27, 1174–1177 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Gutzmer, R. et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur. J. Cancer 75, 24–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Danlos, F.-X. et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91, 21–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Mitchell, E. L. et al. Rheumatic immune-related adverse events secondary to anti-programmed death-1 antibodies and preliminary analysis on the impact of corticosteroids on anti-tumour response: a case series. Eur. J. Cancer 105, 88–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Richter, M. D. et al. Brief report: cancer immunotherapy in patients with preexisting rheumatic disease: the Mayo Clinic experience. Arthritis Rheumatol. 70, 356–360 (2018).

    Article  PubMed  Google Scholar 

  85. Leonardi, G. C. et al. Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J. Clin. Oncol. 36, 1905–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kähler, K. C. et al. Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders. Cancer Immunol. Immunother. 67, 825–834 (2018).

    Article  PubMed  Google Scholar 

  87. Cortellini, A. et al. Clinical outcomes of patients with advanced cancer and pre-existing autoimmune diseases treated with anti-programmed death-1 immunotherapy: a real-world transverse study. Oncologist 24, e327–e337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tison, A. et al. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune disease: a nationwide, multicenter cohort study. Arthritis Rheumatol. 71, 2100–2111 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Martinez Chanza, N. et al. Safety and efficacy of immune checkpoint inhibitors in advanced urological cancers with pre-existing autoimmune disorders: a retrospective international multicenter study. J. Immunother. Cancer 8, e000538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Abu-Sbeih, H. et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J. Clin. Oncol. 38, 576–583 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Loriot, Y. et al. Safety and efficacy of atezolizumab in patients with autoimmune disease: subgroup analysis of the SAUL study in locally advanced/metastatic urinary tract carcinoma. Eur. J. Cancer 138, 202–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Efuni, E. et al. Risk of toxicity after initiating immune checkpoint inhibitor treatment in patients with rheumatoid arthritis. J. Clin. Rheumatol. 27, 267–271 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hoa, S. et al. Preexisting autoimmune disease and immune-related adverse events associated with anti-PD-1 cancer immunotherapy: a national case series from the Canadian Research Group of Rheumatology in Immuno-Oncology. Cancer Immunol. Immunother. 70, 2197–2207 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Tully, K. H. et al. Risk of immune-related adverse events in melanoma patients with preexisting autoimmune disease treated with immune checkpoint inhibitors: a population-based study using SEER-medicare data. Am. J. Clin. Oncol. 44, 413–418 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. van der Kooij, M. K. et al. Safety and efficacy of checkpoint inhibition in patients with melanoma and preexisting autoimmune disease: a cohort study. Ann. Intern. Med. 174, 641–648 (2021).

    Article  PubMed  Google Scholar 

  96. Bhatlapenumarthi, V., Patwari, A. & Harb, A. J. Immune-related adverse events and immune checkpoint inhibitor tolerance on rechallenge in patients with irAEs: a single-center experience. J. Cancer Res. Clin. Oncol. 147, 2789–2800 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Yeung, C. et al. Safety and clinical outcomes of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune diseases. J. Immunother. 44, 362–370 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Panhaleux, M. et al. Anti-programmed death ligand 1 immunotherapies in cancer patients with pre-existing systemic sclerosis: a postmarketed phase IV safety assessment study. Eur. J. Cancer 160, 134–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Ansel, S., Rulach, R., Trotter, N. & Steele, N. Pembrolizumab for advanced non-small cell lung cancer (NSCLC): impact of autoimmune comorbidity and outcomes following treatment completion. J. Oncol. Pharm. Pract. https://doi.org/10.1177/10781552221079356 (2022).

    Article  PubMed  Google Scholar 

  100. Gulati, N. et al. Preexisting immune-mediated inflammatory disease is associated with improved survival and increased toxicity in melanoma patients who receive immune checkpoint inhibitors. Cancer Med. 10, 7457–7465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brown, L. J. et al. Combination anti-PD1 and ipilimumab therapy in patients with advanced melanoma and pre-existing autoimmune disorders. J. Immunother. Cancer 9, e002121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu, C., Zhong, L., Wu, Q., Lin, S. & Xie, X. The safety and efficacy of immune-checkpoint inhibitors in patients with cancer and pre-existing autoimmune diseases. Immunotherapy 13, 527–539 (2021).

    Article  PubMed  Google Scholar 

  103. Kostine, M. et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann. Rheum. Dis. 80, 36–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Klavdianou, K., Melissaropoulos, K., Filippopoulou, A. & Daoussis, D. Should we be afraid of immune check point inhibitors in cancer patients with pre-existing rheumatic diseases? Immunotherapy in pre-existing rheumatic diseases. Mediterr. J. Rheumatol. 32, 218–226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nishino, M., Giobbie-Hurder, A., Hatabu, H., Ramaiya, N. H. & Hodi, F. S. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol. 2, 1607–1616 (2016).

    Article  PubMed  Google Scholar 

  106. Jaberg-Bentele, N. F., Kunz, M., Abuhammad, S. & Dummer, R. Flare-up of rheumatoid arthritis by anti-CTLA-4 antibody but not by anti-PD1 therapy in a patient with metastatic melanoma. Case Rep. Dermatol. 9, 65–68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Benson, Z., Gordon, S., Nicolato, P. & Poklepovic, A. Immunotherapy for metastatic melanoma with right atrial involvement in a patient with rheumatoid arthritis. Case Rep. Oncol. Med. 2017, 8095601 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Thomas, R., Patel, H. & Scott, J. Dermatomyositis flare with immune checkpoint inhibitor therapy for melanoma. Cureus 13, e14387 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Ghosh, N. et al. Lower baseline autoantibody levels are associated with immune-related adverse events from immune checkpoint inhibition. J. Immunother. Cancer 10, e004008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sakakida, T. et al. Safety and efficacy of PD-1/PD-L1 blockade in patients with preexisting antinuclear antibodies. Clin. Transl. Oncol. 22, 919–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Toi, Y. et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 5, 376–383 (2019).

    Article  PubMed  Google Scholar 

  113. Wang, D. et al. Immune-related adverse events predict the efficacy of immune checkpoint inhibitors in lung cancer patients: a meta-analysis. Front. Oncol. 11, 631949 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hussaini, S. et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors — a systematic review and meta-analysis. Cancer Treat. Rev. 92, 102134 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Teulings, H.-E. et al. Vitiligo-like depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J. Clin. Oncol. 33, 773–781 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Yee, C. et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med. 192, 1637–1644 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Strehl, C. & Buttgereit, F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol. Cell. Endocrinol. 380, 32–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Fucà, G. et al. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open 4, e000457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Draghi, A. et al. Differential effects of corticosteroids and anti-TNF on tumor-specific immune responses: implications for the management of irAEs. Int. J. Cancer 145, 1408–1413 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Brown, P. M., Pratt, A. G. & Isaacs, J. D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol. 12, 731–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Downey, S. G. et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res. 13, 6681–6688 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schadendorf, D. et al. Efficacy and safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J. Clin. Oncol. 35, 3807–3814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Paz-Ares, L. G. et al. First-line nivolumab plus ipilimumab in advanced NSCLC: 4-year outcomes from the randomized, open-label, phase 3 CheckMate 227 Part 1 Trial. J. Thorac. Oncol. 17, 289–308 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Reck, M. et al. First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: CheckMate 9LA 2-year update. ESMO Open 6, 100273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Waterhouse, D. M. et al. Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153. J. Clin. Oncol. 38, 3863–3873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bilger, G. et al. Discontinuation of immune checkpoint inhibitor (ICI) above 18 months of treatment in real-life patients with advanced non-small cell lung cancer (NSCLC): INTEPI, a multicentric retrospective study. Cancer Immunol. Immunother. https://doi.org/10.1007/s00262-021-03114-z (2021).

    Article  PubMed  Google Scholar 

  129. Chatzidionysiou, K., Liapi, M., Tsakonas, G., Gunnarsson, I. & Catrina, A. Treatment of rheumatic immune-related adverse events due to cancer immunotherapy with immune checkpoint inhibitors — is it time for a paradigm shift? Clin. Rheumatol. 40, 1687–1695 (2021).

    Article  PubMed  Google Scholar 

  130. Chen, A. Y., Wolchok, J. D. & Bass, A. R. TNF in the era of immune checkpoint inhibitors: friend or foe? Nat. Rev. Rheumatol. 17, 213–223 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Lesage, C. et al. Incidence and clinical impact of anti-TNFα treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the Mecolit Survey. J. Immunother. 42, 175–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. et al. Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. J. Immunother. Cancer 6, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Verheijden, R. J. et al. Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the Dutch Melanoma Treatment Registry. Clin. Cancer Res. 26, 2268–2274 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Zou, F. et al. Efficacy and safety of vedolizumab and infliximab treatment for immune-mediated diarrhea and colitis in patients with cancer: a two-center observational study. J. Immunother. Cancer 9, e003277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Laino, A. S. et al. Serum interleukin-6 and C-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition. J. Immunother. Cancer 8, e000842 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Campochiaro, C. et al. Tocilizumab for the treatment of immune-related adverse events: a systematic literature review and a multicentre case series. Eur. J. Intern. Med. 93, 87–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Weber, J. S. et al. 1040 O Phase II trial of ipilimumab, nivolumab and tocilizumab for unresectable metastatic melanoma. Ann. Oncol. 32, S869 (2021).

    Article  Google Scholar 

  141. Lebbé, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 Trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Delyon, J. & Lebbe, C. IL-6 blockade in cancer patients treated with immune checkpoint blockade: a win-win strategy. Cancer Cell 40, 450–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Haanen, J. B. A. G. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv264–iv266 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Thompson, J. A. et al. Management of immunotherapy-related toxicities, version 1.2019. J. Natl Compr. Canc. Netw. 17, 255–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Kennedy, L. C., Bhatia, S., Thompson, J. A. & Grivas, P. Preexisting autoimmune disease: implications for immune checkpoint inhibitor therapy in solid tumors. J. Natl Compr. Canc. Netw. 17, 750–757 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Haanen, J. et al. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann. Oncol. 31, 724–744 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Michot, J.-M. et al. The 2016–2019 ImmunoTOX assessment board report of collaborative management of immune-related adverse events, an observational clinical study. Eur. J. Cancer 130, 39–50 (2020).

    Article  PubMed  Google Scholar 

  149. Naidoo, J. et al. A multidisciplinary toxicity team for cancer immunotherapy-related adverse events. J. Natl Compr. Canc. Netw. 17, 712–720 (2019).

    Article  PubMed  Google Scholar 

  150. Calabrese, L. & Mariette, X. The evolving role of the rheumatologist in the management of immune-related adverse events (irAEs) caused by cancer immunotherapy. Ann. Rheum. Dis. 77, 162–164 (2018).

    Article  PubMed  Google Scholar 

  151. Nabel, C. S. et al. Anti-PD-1 immunotherapy-induced flare of a known underlying relapsing vasculitis mimicking recurrent cancer. Oncologist 24, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamada, T. et al. Non-small cell lung cancer treated by an anti-programmed cell death-1 antibody without a flare-up of preexisting granulomatosis with polyangiitis. Intern. Med. 58, 3129–3132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Maul, L. V., Weichenthal, M., Kähler, K. C. & Hauschild, A. Successful anti-PD-1 antibody treatment in a metastatic melanoma patient with known severe autoimmune disease. J. Immunother. 39, 188–190 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.T., S.G., L.C., D.C. and M.K. researched data for the article and made substantial contributions to discussions of the content. A.T., S.G. and M.K. wrote the article. A.T., S.G., L.C., D.C. and M.K. contributed to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Marie Kostine.

Ethics declarations

Competing interests

L.C. reports consultancy and receipt of an honorarium from Novartis and Bristol Myers Squibb. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks A. Bass, L. Cappelli and M. Suarez-Almazor for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tison, A., Garaud, S., Chiche, L. et al. Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases. Nat Rev Rheumatol 18, 641–656 (2022). https://doi.org/10.1038/s41584-022-00841-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00841-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer