Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TNF in the era of immune checkpoint inhibitors: friend or foe?

Abstract

Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs.

Key points

  • Different arms of the immune response are important for autoimmune versus anticancer activities, and TNF inhibitors restrain some of these arms while promoting or having a neutral effect on others.

  • Preclinical studies provide evidence that short courses of TNF inhibitors, despite their efficacy in ameliorating immune-related adverse events (irAEs), do not restrain the anticancer effects of immune checkpoint inhibitors (ICIs).

  • TNF inhibitor treatment of rheumatic diseases does not seem to increase the risk of cancer, except for non-melanoma skin cancer and possibly lymphoma.

  • Short courses of TNF inhibitors are likely to be safe in the treatment of ICI-associated irAEs, but data on the safety of long-term TNF inhibitor use for irAEs are lacking.

  • Clinical studies that directly assess the effect of TNF inhibitor treatment on ICI efficacy are required to draw conclusions regarding the safety of TNF inhibitor treatment for irAEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pro-tumour and antitumour effects of TNF inhibition and immune checkpoint inhibition.

Similar content being viewed by others

References

  1. Arnaud-Coffin, P. et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 145, 639–648 (2019).

    CAS  PubMed  Google Scholar 

  2. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  3. Chan, K. K. & Bass, A. R. Autoimmune complications of immunotherapy: pathophysiology and management. BMJ 369, m736 (2020).

    PubMed  Google Scholar 

  4. Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015).

    PubMed  Google Scholar 

  5. Kostine, M. et al. Rheumatic disorders associated with immune checkpoint inhibitors in patients with cancer-clinical aspects and relationship with tumour response: a single-centre prospective cohort study. Ann. Rheum. Dis. 77, 393–398 (2018).

    CAS  PubMed  Google Scholar 

  6. Cappelli, L. C. et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin. Arthritis Rheum. 48, 553–557 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Ghosh, N. et al. Checkpoint inhibitor-associated arthritis: a systematic review of case reports and case series. J. Clin. Rheumatol. https://doi.org/10.1097/RHU.0000000000001370 (2020).

    Article  Google Scholar 

  8. Thompson, J. A. et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020: featured Updates to the NCCN Guidelines. J. Natl Compr. Cancer Netw. 18, 230–241 (2020).

    CAS  Google Scholar 

  9. Smith, M. H. & Bass, A. R. Arthritis after cancer immunotherapy: symptom duration and treatment response. Arthritis Care Res. 71, 362–366 (2019).

    CAS  Google Scholar 

  10. Braaten, T. J. et al. Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation. Ann. Rheum. Dis. 79, 332–338 (2019).

    PubMed  Google Scholar 

  11. Kim, S. T. et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann. Rheum. Dis. 76, 2061–2064 (2017).

    PubMed  Google Scholar 

  12. Roberts, J. et al. Hydroxychloroquine is a safe and effective steroid-sparing agent for immune checkpoint inhibitor-induced inflammatory arthritis. Clin. Rheumatol. 38, 1513–1519 (2019).

    PubMed  Google Scholar 

  13. Teulings, H. E. et al. Vitiligo-like depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J. Clin. Oncol. 33, 773–781 (2015).

    CAS  PubMed  Google Scholar 

  14. Zhou, X. et al. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 18, 87 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haratani, K. et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol. 4, 374–378 (2018).

    PubMed  Google Scholar 

  16. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Marthey, L. et al. Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease. J. Crohns Colitis 10, 395–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Faje, A. T. et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 124, 3706–3714 (2018).

    CAS  PubMed  Google Scholar 

  20. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    CAS  PubMed  Google Scholar 

  21. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nauts, H. C., Swift, W. E. & Coley, B. L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 6, 205–216 (1946).

    CAS  PubMed  Google Scholar 

  23. Shear, M. J. & Perrault, A. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J. Natl Cancer Inst. 4, 461–476 (1944).

    CAS  Google Scholar 

  24. O’Malley, W. E., Achinstein, B. & Shear, M. J. Journal of the National Cancer Institute, Vol. 29, 1962: Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr. Rev. 46, 389–391 (1988).

    PubMed  Google Scholar 

  25. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    CAS  PubMed  Google Scholar 

  26. Fransen, L. et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res. 13, 4417–4429 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).

    CAS  PubMed  Google Scholar 

  28. Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNFα antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    CAS  PubMed  Google Scholar 

  29. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gamm, H., Lindemann, A., Mertelsmann, R. & Herrmann, F. Phase I trial of recombinant human tumour necrosis factor α in patients with advanced malignancy. Eur. J. Cancer 27, 856–863 (1991).

    CAS  PubMed  Google Scholar 

  31. Arican, O., Aral, M., Sasmaz, S. & Ciragil, P. Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. 2005, 273–279 (2005).

    PubMed  PubMed Central  Google Scholar 

  32. Waters, J. P., Pober, J. S. & Bradley, J. R. Tumour necrosis factor and cancer. J. Pathol. 230, 241–248 (2013).

    CAS  PubMed  Google Scholar 

  33. Robaye, B., Mosselmans, R., Fiers, W., Dumont, J. E. & Galand, P. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am. J. Pathol. 138, 447–453 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    CAS  PubMed  Google Scholar 

  35. Wu, H., Tschopp, J. & Lin, S. C. Smac mimetics and TNFα: a dangerous liaison? Cell 131, 655–658 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratner, A. & Clark, W. R. Role of TNF-α in CD8+ cytotoxic T lymphocyte-mediated lysis. J. Immunol. 150, 4303–4314 (1993).

    CAS  PubMed  Google Scholar 

  37. Caron, G. et al. Human NK cells constitutively express membrane TNF-α (mTNFα) and present mTNFα-dependent cytotoxic activity. Eur. J. Immunol. 29, 3588–3595 (1999).

    CAS  PubMed  Google Scholar 

  38. Freedman, M. H. et al. Central role of tumour necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukaemia. Br. J. Haematol. 80, 40–48 (1992).

    CAS  PubMed  Google Scholar 

  39. Fràter-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. & Böhlen, P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl Acad. Sci. USA 84, 5277–5281 (1987).

    PubMed  PubMed Central  Google Scholar 

  40. Li, B. et al. Low levels of tumor necrosis factor α increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 69, 338–348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med. 5, 828–831 (1999).

    CAS  PubMed  Google Scholar 

  42. Starcher, B. Role for tumour necrosis factor-α receptors in ultraviolet-induced skin tumours. Br. J. Dermatol. 142, 1140–1147 (2000).

    CAS  PubMed  Google Scholar 

  43. Karabela, S. P. et al. Neutralization of tumor necrosis factor bioactivity ameliorates urethane-induced pulmonary oncogenesis in mice. Neoplasia 13, 1143–1151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Senthilkumar, C., Niranjali, S., Jayanthi, V., Ramesh, T. & Devaraj, H. Molecular and histological evaluation of tumor necrosis factor-α expression in Helicobacter pylori-mediated gastric carcinogenesis. J. Cancer Res. Clin. Oncol. 137, 577–583 (2011).

    CAS  PubMed  Google Scholar 

  46. Suganuma, M., Kuzuhara, T., Yamaguchi, K. & Fujiki, H. Carcinogenic role of tumor necrosis factor-α inducing protein of Helicobacter pylori in human stomach. J. Biochem. Mol. Biol. 39, 1–8 (2006).

    CAS  PubMed  Google Scholar 

  47. Wilson, A. G., Symons, J. A., McDowell, T. L., McDevitt, H. O. & Duff, G. W. Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation. Proc. Natl Acad. Sci. USA 94, 3195–3199 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Louis, E. et al. Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin. Exp. Immunol. 113, 401–406 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo, X. F. et al. TNF-α-308 polymorphism and risk of digestive system cancers: a meta-analysis. World J. Gastroenterol. 19, 9461–9471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, L. et al. Association between Tumor necrosis factor-alpha gene polymorphisms and prostate cancer risk: a meta-analysis. Diagn. Pathol. 9, 74 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    CAS  PubMed  Google Scholar 

  52. Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol. 27, 55–62 (2015).

    CAS  PubMed  Google Scholar 

  53. Bradley, J. R. TNF-mediated inflammatory disease. J. Pathol. 214, 149–160 (2008).

    CAS  PubMed  Google Scholar 

  54. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2016).

    CAS  PubMed  Google Scholar 

  55. Apostolaki, M., Armaka, M., Victoratos, P. & Kollias, G. Cellular mechanisms of TNF function in models of inflammation and autoimmunity. Curr. Dir. Autoimmun. 11, 1–26 (2010).

    CAS  PubMed  Google Scholar 

  56. Gordon, C., Ranges, G. E., Greenspan, J. S. & Wofsy, D. Chronic therapy with recombinant tumor necrosis factor-α in autoimmune NZB/NZW F1 mice. Clin. Immunol. Immunopathol. 52, 421–434 (1989).

    CAS  PubMed  Google Scholar 

  57. Jacob, C. O., Aiso, S., Michie, S. A., McDevitt, H. O. & Acha-Orbea, H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-α and interleukin 1. Proc. Natl Acad. Sci. USA 87, 968–972 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cope, A. P. et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J. Exp. Med. 185, 1573–1584 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chu, C. Q., Field, M., Feldmann, M. & Maini, R. N. Localization of tumor necrosis factor α in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum. 34, 1125–1132 (1991).

    CAS  PubMed  Google Scholar 

  60. Alsalameh, S. et al. Distribution of TNF-α, TNF-R55 and TNF-R75 in the rheumatoid synovial membrane: TNF receptors are localized preferentially in the lining layer; TNF-α is distributed mainly in the vicinity of TNF receptors in the deeper layers. Scand. J. Immunol. 49, 278–285 (1999).

    CAS  PubMed  Google Scholar 

  61. Kunisch, E. et al. Predominant activation of MAP kinases and pro-destructive/pro-inflammatory features by TNF α in early-passage synovial fibroblasts via TNF receptor-1: failure of p38 inhibition to suppress matrix metalloproteinase-1 in rheumatoid arthritis. Ann. Rheum. Dis. 66, 1043–1051 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Notley, C. A. et al. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J. Exp. Med. 205, 2491–2497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hull, D. N. et al. Increase in circulating Th17 cells during anti-TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid arthritis. Arthritis Res. Ther. 18, 303 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor α blockade in patients with rheumatoid arthritis. Arthritis Rheum. 43, 38–47 (2000).

    CAS  PubMed  Google Scholar 

  65. Koelink, P. J. et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut 69, 1053–1063 (2020).

    CAS  PubMed  Google Scholar 

  66. Housley, W. J. et al. Natural but not inducible regulatory T cells require TNF-α signaling for in vivo function. J. Immunol. 186, 6779–6787 (2011).

    CAS  PubMed  Google Scholar 

  67. Punit, S. et al. Tumor necrosis factor receptor 2 restricts the pathogenicity of CD8+ T cells in mice with colitis. Gastroenterology 149, 993–1005.e2 (2015).

    CAS  PubMed  Google Scholar 

  68. Chen, X. et al. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Sci. Rep. 6, 32834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Murray-Brown, W. et al. Nivolumab-induced synovitis is characterized by florid T cell infiltration and rapid resolution with synovial biopsy-guided therapy. J. Immunother. Cancer 8, e000281 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lesage, C. et al. Incidence and clinical impact of anti-TNFα treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the mecolit survey. J. Immunother. 42, 175–179 (2019).

    CAS  PubMed  Google Scholar 

  72. Wang, Y. et al. Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. J. Immunother. Cancer 6, 37 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Verheijden, R. J. et al. Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1 treated patients in the Dutch Melanoma Treatment Registry. Clin. Cancer Res. 26, 2268–2274 (2020).

    CAS  PubMed  Google Scholar 

  74. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    CAS  PubMed  Google Scholar 

  75. Sznol, M. et al. Pooled analysis safety profile of nivolumab and ipilimumab combination therapy in patients with advanced melanoma. J. Clin. Oncol. 35, 3815–3822 (2017).

    CAS  PubMed  Google Scholar 

  76. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Eggermont, A. M. M. et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 6, 519–527 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bridge, J. A., Lee, J. C., Daud, A., Wells, J. W. & Bluestone, J. A. Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin cancer. Front. Med. 5, 351 (2018).

    Google Scholar 

  80. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Baecklund, E., Smedby, K. E., Sutton, L. A., Askling, J. & Rosenquist, R. Lymphoma development in patients with autoimmune and inflammatory disorders–what are the driving forces? Semin. Cancer Biol. 24, 61–70 (2014).

    CAS  PubMed  Google Scholar 

  82. Smitten, A. L., Simon, T. A., Hochberg, M. C. & Suissa, S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. Arthritis Res. Ther. 10, R45 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Pouplard, C. et al. Risk of cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies. J. Eur. Acad. Dermatol. Venereol. 27 (Suppl. 3), 36–46 (2013).

    PubMed  Google Scholar 

  84. Deepak, P. et al. T-cell non-Hodgkin’s lymphomas reported to the FDA AERS with tumor necrosis factor-α (TNF-α) inhibitors: results of the REFURBISH study. Am. J. Gastroenterol. 108, 99–105 (2013).

    CAS  PubMed  Google Scholar 

  85. Solomon, D. H. et al. Adverse effects of low-dose methotrexate: a randomized trial. Ann. Intern. Med. 172, 369–380 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. Solomon, D. H., Mercer, E. & Kavanaugh, A. Observational studies on the risk of cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: a review of their methodologies and results. Arthritis Rheum. 64, 21–32 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Askling, J. et al. Anti-tumour necrosis factor therapy in rheumatoid arthritis and risk of malignant lymphomas: relative risks and time trends in the Swedish biologics register. Ann. Rheum. Dis. 68, 648–653 (2009).

    CAS  PubMed  Google Scholar 

  88. Nyboe Andersen, N. et al. Association between tumor necrosis factor-α antagonists and risk of cancer in patients with inflammatory bowel disease. JAMA 311, 2406–2413 (2014).

    PubMed  Google Scholar 

  89. Haynes, K. et al. Tumor necrosis factor α inhibitor therapy and cancer risk in chronic immune-mediated diseases. Arthritis Rheum. 65, 48–58 (2013).

    CAS  PubMed  Google Scholar 

  90. de La Forest Divonne, M., Gottenberg, J. E. & Salliot, C. Safety of biologic DMARDs in RA patients in real life: a systematic literature review and meta-analyses of biologic registers. Joint Bone Spine 84, 133–140 (2017).

    Google Scholar 

  91. Hellgren, K. et al. Risk of solid cancers overall and by subtypes in patients with psoriatic arthritis treated with TNF inhibitors — a Nordic cohort study. Rheumatology https://doi.org/10.1093/rheumatology/keaa828 (2021).

    Article  PubMed  Google Scholar 

  92. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    CAS  PubMed  Google Scholar 

  93. Dixon, W. & Silman, A. Is there an association between anti-TNF monoclonal antibody therapy in rheumatoid arthritis and risk of malignancy and serious infection? Commentary on the meta-analysis by Bongartz et al. Arthritis Res. Ther. 8, 111 (2006).

    PubMed  PubMed Central  Google Scholar 

  94. Dommasch, E. D. et al. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J. Am. Acad. Dermatol. 64, 1035–1050 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lichtenstein, G. R. et al. A pooled analysis of infections, malignancy, and mortality in infliximab- and immunomodulator-treated adult patients with inflammatory bowel disease. Am. J. Gastroenterol. 107, 1051–1063 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maneiro, J. R., Souto, A. & Gomez-Reino, J. J. Risks of malignancies related to tofacitinib and biological drugs in rheumatoid arthritis: systematic review, meta-analysis, and network meta-analysis. Semin. Arthritis Rheum. 47, 149–156 (2017).

    CAS  PubMed  Google Scholar 

  97. Hou, L. Q. et al. The comparative safety of TNF inhibitors in ankylosing spondylitis — a meta-analysis update of 14 randomized controlled trials. Clin. Rev. Allergy Immunol. 54, 234–243 (2018).

    CAS  PubMed  Google Scholar 

  98. Beukelman, T. et al. Risk of malignancy associated with paediatric use of tumour necrosis factor inhibitors. Ann. Rheum. Dis. 77, 1012–1016 (2018).

    CAS  PubMed  Google Scholar 

  99. Jung, S. M., Kwok, S. K., Ju, J. H., Park, Y. B. & Park, S. H. Risk of malignancy in patients with rheumatoid arthritis after anti-tumor necrosis factor therapy: results from Korean National Health Insurance claims data. Korean J. Intern. Med. 34, 669–677 (2019).

    CAS  PubMed  Google Scholar 

  100. Silva, F. et al. Solid malignancies among etanercept-treated patients with granulomatosis with polyangiitis (Wegener’s): long-term followup of a multicenter longitudinal cohort. Arthritis Rheum. 63, 2495–2503 (2011).

    PubMed  PubMed Central  Google Scholar 

  101. Diak, P. et al. Tumor necrosis factor α blockers and malignancy in children: forty-eight cases reported to the Food and Drug Administration. Arthritis Rheum. 62, 2517–2524 (2010).

    PubMed  Google Scholar 

  102. FDA. FDA Drug Safety Communication: Safety Review update on reports of hepatosplenic T-cell lymphoma in adolescents and young adults receiving tumor necrosis factor (TNF) blockers, azathioprine and/or mercaptopurine http://wayback.archive-it.org/7993/20170112031812/http:/www.fda.gov/Drugs/DrugSafety/ucm250913.htm (2011).

  103. Lemaitre, M. et al. Association between use of thiopurines or tumor necrosis factor antagonists alone or in combination and risk of lymphoma in patients with inflammatory bowel disease. JAMA 318, 1679–1686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolfe, F. & Michaud, K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum. 56, 1433–1439 (2007).

    CAS  PubMed  Google Scholar 

  105. Hellgren, K. et al. Rheumatoid arthritis and risk of malignant lymphoma: is the risk still increased? Arthritis Rheumatol. 69, 700–708 (2017).

    CAS  PubMed  Google Scholar 

  106. Mercer, L. K. et al. Risk of lymphoma in patients exposed to antitumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 76, 497–503 (2017).

    PubMed  Google Scholar 

  107. Hyams, J. S. et al. Infliximab is not associated with increased risk of malignancy or hemophagocytic lymphohistiocytosis in pediatric patients with inflammatory bowel disease. Gastroenterology 152, 1901–1914.e1903 (2017).

    PubMed  Google Scholar 

  108. Raaschou, P., Simard, J. F., Holmqvist, M., Askling, J. & Group, A. S. Rheumatoid arthritis, anti-tumour necrosis factor therapy, and risk of malignant melanoma: nationwide population based prospective cohort study from Sweden. BMJ 346, f1939 (2013).

    PubMed  Google Scholar 

  109. Mercer, L. K. et al. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics: results from a collaborative project of 11 European biologic registers. Ann. Rheum. Dis. 76, 386–391 (2017).

    PubMed  Google Scholar 

  110. Hellgren, K. et al. Cancer risk in patients with spondyloarthritis treated with TNF inhibitors: a collaborative study from the ARTIS and DANBIO registers. Ann. Rheum. Dis. 76, 105–111 (2017).

    CAS  PubMed  Google Scholar 

  111. Lopez-Olivo, M. A. et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA 308, 898–908 (2012).

    CAS  PubMed  Google Scholar 

  112. Peleva, E. et al. Risk of cancer in patients with psoriasis on biological therapies: a systematic review. Br. J. Dermatol. 178, 103–113 (2018).

    CAS  PubMed  Google Scholar 

  113. Wang, J. L. et al. Risk of non-melanoma skin cancer for rheumatoid arthritis patients receiving TNF antagonist: a systematic review and meta-analysis. Clin. Rheumatol. 39, 769–778 (2019).

    PubMed  Google Scholar 

  114. Scott, F. I. et al. Risk of nonmelanoma skin cancer associated with the use of immunosuppressant and biologic agents in patients with a history of autoimmune disease and nonmelanoma skin cancer. JAMA Dermatol. 152, 164–172 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Raaschou, P., Söderling, J., Turesson, C. & Askling, J. Tumor necrosis factor inhibitors and cancer recurrence in swedish patients with rheumatoid arthritis: a nationwide population-based cohort study. Ann. Intern. Med. 169, 291–299 (2018).

    PubMed  Google Scholar 

  116. Silva-Fernández, L. et al. The incidence of cancer in patients with rheumatoid arthritis and a prior malignancy who receive TNF inhibitors or rituximab: results from the British Society for Rheumatology Biologics Register-Rheumatoid Arthritis. Rheumatology 55, 2033–2039 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 e1117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zappasodi, R. et al. Non-conventional inhibitory CD4+Foxp3PD-1hi T cells as a biomarker of immune checkpoint blockade activity. Cancer Cell 33, 1017–1032.e1017 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 5, eaay1863 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ham, B., Fernandez, M. C., D’Costa, Z. & Brodt, P. The diverse roles of the TNF axis in cancer progression and metastasis. Trends Cancer Res. 11, 1–27 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    CAS  PubMed  Google Scholar 

  126. Kim, E. Y., Teh, S. J., Yang, J., Chow, M. T. & Teh, H. S. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth. J. Immunol. 183, 6051–6057 (2009).

    CAS  PubMed  Google Scholar 

  127. Bertrand, F. et al. Blocking tumor necrosis factor α enhances CD8 T-cell-dependent immunity in experimental melanoma. Cancer Res. 75, 2619–2628 (2015).

    CAS  PubMed  Google Scholar 

  128. Zheng, Y. et al. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. J. Transl Med. 17, 165 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Ivagnes, A. et al. TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. Oncoimmunology 7, e1386826 (2018).

    PubMed  Google Scholar 

  130. Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J. Clin. Invest. 120, 4558–4568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zanin-Zhorov, A. et al. Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zaragoza, B. et al. Suppressive activity of human regulatory T cells is maintained in the presence of TNF. Nat. Med. 22, 16–17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bilate, A. M. & Lafaille, J. J. Can TNF-α boost regulatory T cells? J. Clin. Invest. 120, 4190–4192 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, X. et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180, 6467–6471 (2008).

    CAS  PubMed  Google Scholar 

  135. Govindaraj, C. et al. Impaired Th1 immunity in ovarian cancer patients is mediated by TNFR2+ Tregs within the tumor microenvironment. Clin. Immunol. 149, 97–110 (2013).

    CAS  PubMed  Google Scholar 

  136. Chopra, M. et al. Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis 34, 1296–1303 (2013).

    CAS  PubMed  Google Scholar 

  137. Torrey, H. et al. Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated Tregs. Sci. Signal. 10, eaaf8608 (2017).

    PubMed  Google Scholar 

  138. Torrey, H. et al. Targeted killing of TNFR2-expressing tumor cells and Tregs by TNFR2 antagonistic antibodies in advanced Sézary syndrome. Leukemia 33, 1206–1218 (2019).

    CAS  PubMed  Google Scholar 

  139. Chen, X. et al. Expression of costimulatory TNFR2 induces resistance of CD4+FoxP3 conventional T cells to suppression by CD4+FoxP3+ regulatory T cells. J. Immunol. 185, 174–182 (2010).

    CAS  PubMed  Google Scholar 

  140. Charles, K. A. et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011–3023 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nunez, S. et al. T helper type 17 cells contribute to anti-tumour immunity and promote the recruitment of T helper type 1 cells to the tumour. Immunology 139, 61–71 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122, 4094–4104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sade-Feldman, M. et al. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38, 541–554 (2013).

    CAS  PubMed  Google Scholar 

  145. Ren, G. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 11, 812–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    CAS  PubMed  Google Scholar 

  149. Kim, E. Y. & Teh, H. S. Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J. Immunol. 173, 4500–4509 (2004).

    CAS  PubMed  Google Scholar 

  150. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192, 1535–1544 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Maney, N. J., Reynolds, G., Krippner-Heidenreich, A. & Hilkens, C. M. U. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J. Immunol. 193, 4914–4923 (2014).

    CAS  PubMed  Google Scholar 

  153. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    CAS  PubMed  Google Scholar 

  154. Castro, F., Cardoso, A. P., Goncalves, R. M., Serre, K. & Oliveira, M. J. Interferon-γ at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Koch, J., Steinle, A., Watzl, C. & Mandelboim, O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 34, 182–191 (2013).

    CAS  PubMed  Google Scholar 

  156. Marzo, A. L. et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J. Immunol. 165, 6047–6055 (2000).

    CAS  PubMed  Google Scholar 

  157. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  158. Dobrzanski, M. J. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front. Oncol. 3, 63 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Briscoe, D. M., Cotran, R. S. & Pober, J. S. Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3+ T cell infiltration. J. Immunol. 149, 2954–2960 (1992).

    CAS  PubMed  Google Scholar 

  160. Li, M. O. & Flavell, R. A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    CAS  PubMed  Google Scholar 

  162. Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6, 1670–1690 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of J.D.W. is funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. J.D.W. is also affiliated with: Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA. The authors would like to thank L.B. Ivashkiv at the Hospital for Special Surgery for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.Y.C. and A.R.B. researched data for the article and wrote the article. All authors made substantial contributions to discussions of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Anne R. Bass.

Ethics declarations

Competing interests

J.D.W. is a consultant for Adaptive Biotech, Amgen, Apricity, Arsenal, Ascentage Pharma, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, F Star, Imvaq, Kyowa Hakko Kirin, Merck, Neon Therapeutics, Psioxus, Recepta, Sellas, Serametrix, Surface Oncology, Syndax and Syntalogic, Takara Bio, Trieza and Truvax; receives research support from AstraZeneca, Bristol Myers Squibb and Sephora; and has equity in Adaptive Biotechnologies, Apricity, Arsenal, BeiGene, Imvaq, Linnaeus, Tizona Pharmaceuticals. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks L. Cappelli, M. Suarez-Almazor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A.Y., Wolchok, J.D. & Bass, A.R. TNF in the era of immune checkpoint inhibitors: friend or foe?. Nat Rev Rheumatol 17, 213–223 (2021). https://doi.org/10.1038/s41584-021-00584-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00584-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer