Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin-2 and regulatory T cells in rheumatic diseases

Abstract

Failure of regulatory T (Treg) cells to properly control immune responses leads invariably to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, especially in the context of inflammation, has been documented in many human autoimmune diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low-dose natural IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in early clinical trials. Genetically modified IL-2 with an extended half-life and increased selectivity for Treg cells is now in clinical development. Administration of IL-2 combined with therapies targeting other pathways involved in the expression of autoimmune diseases should further enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical success of IL-2 treatment should bring the use of this cytokine to the forefront of biological treatments for autoimmune diseases.

Key points

  • Dysregulation of regulatory T (Treg) cells and a consequent inability to correctly control immune responses leads invariably to autoimmunity and organ damage.

  • Numerical or functional impairment of Treg cells, especially in the context of inflammation, occurs in many human autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus (SLE).

  • Restoration of the immune balance by restoring Treg cell numbers and/or function is therefore the basis of therapeutic efforts to restore tolerance and mitigate tissue inflammation and injury.

  • Low-dose IL-2 (0.3–3 MIU daily in humans) is now an established therapy in autoimmune diseases; it stimulates mainly Treg cells and is well tolerated.

  • Most studies of low-dose IL-2 in SLE have shown a clinically significant improvement (as assessed by the SLE Disease Activity Index (SLEDAI) or the SLE Responder Index 4 (SRI-4)) and a reduction in concomitant prednisone of ≥50% in 44–67% of patients.

  • Genetically modified IL-2 proteins (‘muteins’) or IL-2–anti-IL-2R antibody complexes with an extended half-life and increased selectivity for Treg cells are now in clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-2 signalling pathways and formulations.
Fig. 2: Pathogenesis of seropositive RA and implications for IL-2 therapy.
Fig. 3: Pathogenesis of SLE and implications for IL-2 therapy.

Similar content being viewed by others

References

  1. Campbell, C. & Rudensky, A. Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metab. 31, 18–25 (2020).

    CAS  PubMed  Google Scholar 

  2. Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

    CAS  PubMed  Google Scholar 

  3. Taniguchi, T. et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature 302, 305–310 (1983).

    CAS  PubMed  Google Scholar 

  4. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    CAS  PubMed  Google Scholar 

  6. Abbas, A. K., Trotta, E., Simeonov, D. R., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).

    PubMed  Google Scholar 

  7. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  PubMed  Google Scholar 

  8. Knoechel, B., Lohr, J., Kahn, E., Bluestone, J. A. & Abbas, A. K. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med. 202, 1375–1386 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  11. Fuchs, A. et al. Minimum information about T regulatory cells: a step toward reproducibility and standardization. Front. Immunol. 8, 1844 (2017).

    PubMed  Google Scholar 

  12. Jonuleit, H. et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285–1294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Piccirillo, C. A. & Shevach, E. M. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81–88 (2004).

    CAS  PubMed  Google Scholar 

  14. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, W., Deng, C., Yang, H. & Wang, G. The regulatory T cell in active systemic lupus erythematosus patients: a systemic review and meta-analysis. Front. Immunol. 10, 159 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, H. X. et al. Are CD4+CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells? Arthritis Res. Ther. 11, R153 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Sharabi, A. et al. Regulatory T cells in the treatment of disease. Nat. Rev. Drug Discov. 17, 823–844 (2018).

    CAS  PubMed  Google Scholar 

  18. Christoffersson, G. & von Herrath, M. Regulatory immune mechanisms beyond regulatory T cells. Trends Immunol. 40, 482–491 (2019).

    CAS  PubMed  Google Scholar 

  19. Churlaud, G. et al. Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol. 6, 171 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Chaput, N. et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58, 520–529 (2009).

    CAS  PubMed  Google Scholar 

  21. Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018).

    CAS  PubMed  Google Scholar 

  22. Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018).

    CAS  PubMed  Google Scholar 

  24. Guo, H. et al. Functional defects in CD4(+) CD25(high) FoxP3(+) regulatory cells in ankylosing spondylitis. Sci. Rep. 6, 37559 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, J. et al. The numbers of peripheral regulatory T cells are reduced in patients with psoriatic arthritis and are restored by low-dose interleukin-2. Ther. Adv. Chronic Dis. 11, 2040622320916014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haufe, S. et al. Impaired suppression of synovial fluid CD4+CD25- T cells from patients with juvenile idiopathic arthritis by CD4+CD25+ Treg cells. Arthritis Rheum. 63, 3153–3162 (2011).

    CAS  PubMed  Google Scholar 

  27. Frantz, C., Auffray, C., Avouac, J. & Allanore, Y. Regulatory T cells in systemic sclerosis. Front. Immunol. 9, 2356 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Slobodin, G. & Rimar, D. Regulatory T cells in systemic sclerosis: a comprehensive review. Clin. Rev. Allergy Immunol. 52, 194–201 (2017).

    CAS  PubMed  Google Scholar 

  29. Grunewald, J. et al. Sarcoidosis. Nat. Rev. Dis. Prim. 5, 45 (2019).

    PubMed  Google Scholar 

  30. Powell, J. D., Ragheb, J. A., Kitagawa-Sakakida, S. & Schwartz, R. H. Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol. Rev. 165, 287–300 (1998).

    CAS  PubMed  Google Scholar 

  31. Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Gorman, W. E. et al. The initial phase of an immune response functions to activate regulatory T cells. J. Immunol. 183, 332–339 (2009).

    PubMed  Google Scholar 

  33. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    CAS  PubMed  Google Scholar 

  35. Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  37. Nelson, B. H. & Willerford, D. M. Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1–81 (1998).

    CAS  PubMed  Google Scholar 

  38. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).

    CAS  PubMed  Google Scholar 

  40. Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A. & Wilson, I. A. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc. Natl Acad. Sci. USA 103, 2788–2793 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    CAS  PubMed  Google Scholar 

  42. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    CAS  PubMed  Google Scholar 

  43. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    CAS  PubMed  Google Scholar 

  44. Hemar, A. et al. Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J. Cell Biol. 129, 55–64 (1995).

    CAS  PubMed  Google Scholar 

  45. Muller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    PubMed  Google Scholar 

  46. Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol. 14, 1007–1013 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  48. Kim, H. P., Imbert, J. & Leonard, W. J. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor. Rev. 17, 349–366 (2006).

    CAS  PubMed  Google Scholar 

  49. Walsh, P. T. et al. PTEN inhibits IL-2 receptor-mediated expansion of CD4+ CD25+ Tregs. J. Clin. Invest. 116, 2521–2531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Delgoffe, G. M. et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252–256 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  52. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    CAS  PubMed  Google Scholar 

  57. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  58. Barron, L. et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J. Immunol. 185, 6426–6430 (2010).

    CAS  PubMed  Google Scholar 

  59. Asano, T. et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood 129, 2186–2197 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Park, H. J. et al. Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell Immunol. 278, 76–83 (2012).

    CAS  PubMed  Google Scholar 

  61. Konopacki, C., Pritykin, Y., Rubtsov, Y., Leslie, C. S. & Rudensky, A. Y. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat. Immunol. 20, 232–242 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Scheinecker, C., Goschl, L. & Bonelli, M. Treg cells in health and autoimmune diseases: new insights from single cell analysis. J. Autoimmun. 110, 102376 (2020).

    CAS  PubMed  Google Scholar 

  63. Chen, X. & Oppenheim, J. J. The phenotypic and functional consequences of tumour necrosis factor receptor type 2 expression on CD4(+) FoxP3(+) regulatory T cells. Immunology 133, 426–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaragoza, B. et al. Suppressive activity of human regulatory T cells is maintained in the presence of TNF. Nat. Med. 22, 16–17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Patton, D. T., Wilson, M. D., Rowan, W. C., Soond, D. R. & Okkenhaug, K. The PI3K p110δ regulates expression of CD38 on regulatory T cells. PLoS ONE 6, e17359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Krejcik, J. et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128, 384–394 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Burkett, P. R., Meyer zu Horste, G. & Kuchroo, V. K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J. Clin. Invest. 125, 2211–2219 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-ɣ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    CAS  PubMed  Google Scholar 

  69. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    CAS  PubMed  Google Scholar 

  70. Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    CAS  PubMed  Google Scholar 

  72. Yang, X. P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, J., Lu, E., Yi, T. & Cyster, J. G. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533, 110–114 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wing, J. B., Tekguc, M. & Sakaguchi, S. Control of germinal center responses by T-follicular regulatory cells. Front. Immunol. 9, 1910 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Ritvo, P. G. et al. Tfr cells lack IL-2Rα but express decoy IL-1R2 and IL-1Ra and suppress the IL-1-dependent activation of Tfh cells. Sci. Immunol. 2, eaan0368 (2017).

    PubMed  Google Scholar 

  79. Deng, J., Wei, Y., Fonseca, V. R., Graca, L. & Yu, D. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat. Rev. Rheumatol. 15, 475–490 (2019).

    CAS  PubMed  Google Scholar 

  80. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hovhannisyan, Z., Treatman, J., Littman, D. R. & Mayer, L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 140, 957–965 (2011).

    CAS  PubMed  Google Scholar 

  82. Malhotra, N. et al. RORα-expressing T regulatory cells restrain allergic skin inflammation. Sci. Immunol. 3, eaao6923 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    CAS  PubMed  Google Scholar 

  85. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirata, Y. et al. CD150(high) bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, J., Tan, J., Martino, M. M. & Lui, K. O. Regulatory T-cells: potential regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Villalta, S. A. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl. Med. 6, 258ra142 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Sharma, A. & Rudra, D. Emerging functions of regulatory T cells in tissue homeostasis. Front. Immunol. 9, 883 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zaiss, D. M. W., Gause, W. C., Osborne, L. C. & Artis, D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 42, 216–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Boothby, M. Signaling in T cells–is anything the m(a)TOR with the picture(s)? F1000Res. 5, 191 (2016).

    Google Scholar 

  95. Sharabi, A. & Tsokos, G. C. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat. Rev. Rheumatol. 16, 100–112 (2020).

    CAS  PubMed  Google Scholar 

  96. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zeng, H. & Chi, H. Metabolic control of regulatory T cell development and function. Trends Immunol. 36, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  98. De Rosa, V. et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16, 1174–1184 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  100. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Takeuchi, Y., Hirota, K. & Sakaguchi, S. Synovial tissue inflammation mediated by autoimmune T cells. Front. Immunol. 10, 1989 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Alexander, T. et al. Foxp3+ Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1549–1558 (2013).

    CAS  PubMed  Google Scholar 

  103. Golding, A., Hasni, S., Illei, G. & Shevach, E. M. The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum. 65, 2898–2906 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    PubMed  Google Scholar 

  105. Malmstrom, V., Catrina, A. I. & Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol. 17, 60–75 (2017).

    PubMed  Google Scholar 

  106. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  107. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Ziff, M. Relation of cellular infiltration of rheumatoid synovial membrane to its immune response. Arthritis Rheum. 17, 313–319 (1974).

    CAS  PubMed  Google Scholar 

  109. Kitas, G. D., Salmon, M., Farr, M., Gaston, J. S. & Bacon, P. A. Deficient interleukin 2 production in rheumatoid arthritis: association with active disease and systemic complications. Clin. Exp. Immunol. 73, 242–249 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Google Scholar 

  111. Lieberman, L. A. & Tsokos, G. C. The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity. J. Biomed. Biotechnol. 2010, 740619 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Rosenzwajg, M. et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J. Autoimmun. 58, 48–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Morita, T. et al. The proportion of regulatory T cells in patients with rheumatoid arthritis: a meta-analysis. PLoS ONE 11, e0162306 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Cammarata, I. et al. Counter-regulation of regulatory T cells by autoreactive CD8(+) T cells in rheumatoid arthritis. J. Autoimmun. 99, 81–97 (2019).

    CAS  PubMed  Google Scholar 

  115. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    CAS  PubMed  Google Scholar 

  116. Tsokos, G. C. Autoimmunity and organ damage in systemic lupus erythematosus. Nat. Immunol. 21, 605–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Humrich, J. Y. & Riemekasten, G. Restoring regulation–IL-2 therapy in systemic lupus erythematosus. Expert Rev. Clin. Immunol. 12, 1153–1160 (2016).

    CAS  PubMed  Google Scholar 

  118. Mizui, M. & Tsokos, G. C. Targeting regulatory T cells to treat patients with systemic lupus erythematosus. Front. Immunol. 9, 786 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Ohl, K. & Tenbrock, K. Regulatory T cells in systemic lupus erythematosus. Eur. J. Immunol. 45, 344–355 (2015).

    CAS  PubMed  Google Scholar 

  120. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    CAS  PubMed  Google Scholar 

  121. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Comte, D. et al. Brief report: CD4+ T cells from patients with systemic lupus erythematosus respond poorly to exogenous interleukin-2. Arthritis Rheumatol. 69, 808–813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Linker-Israeli, M. et al. Defective production of interleukin 1 and interleukin 2 in patients with systemic lupus erythematosus (SLE). J. Immunol. 130, 2651–2655 (1983).

    CAS  PubMed  Google Scholar 

  124. Alcocer-Varela, J. & Alarcon-Segovia, D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest. 69, 1388–1392 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dauphinee, M. J., Kipper, S. B., Wofsy, D. & Talal, N. Interleukin 2 deficiency is a common feature of autoimmune mice. J. Immunol. 127, 2483–2487 (1981).

    CAS  PubMed  Google Scholar 

  126. Humrich, J. Y. et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc. Natl Acad. Sci. USA 107, 204–209 (2010).

    CAS  PubMed  Google Scholar 

  127. Koga, T. et al. CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J. Clin. Invest. 124, 2234–2245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Moulton, V. R., Grammatikos, A. P., Fitzgerald, L. M. & Tsokos, G. C. Splicing factor SF2/ASF rescues IL-2 production in T cells from systemic lupus erythematosus patients by activating IL-2 transcription. Proc. Natl Acad. Sci. USA 110, 1845–1850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kyttaris, V. C., Juang, Y. T., Tenbrock, K., Weinstein, A. & Tsokos, G. C. Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-fos and activator protein-1 binding in T cells from patients with systemic lupus erythematosus. J. Immunol. 173, 3557–3563 (2004).

    CAS  PubMed  Google Scholar 

  130. Costa, N. et al. Two separate effects contribute to regulatory T cell defect in systemic lupus erythematosus patients and their unaffected relatives. Clin. Exp. Immunol. 189, 318–330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, S. et al. Downregulation of IL-10 secretion by Treg cells in osteoarthritis is associated with a reduction in Tim-3 expression. Biomed. Pharmacother. 79, 159–165 (2016).

    CAS  PubMed  Google Scholar 

  132. Moradi, B. et al. CD4(+)CD25(+)/highCD127low/(-) regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints–analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res. Ther. 16, R97 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Ranganathan, V., Gracey, E., Brown, M. A., Inman, R. D. & Haroon, N. Pathogenesis of ankylosing spondylitis – recent advances and future directions. Nat. Rev. Rheumatol. 13, 359–367 (2017).

    CAS  PubMed  Google Scholar 

  134. Bravo, A. & Kavanaugh, A. Bedside to bench: defining the immunopathogenesis of psoriatic arthritis. Nat. Rev. Rheumatol. 15, 645–656 (2019).

    CAS  PubMed  Google Scholar 

  135. Appel, H. et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J. Rheumatol. 38, 2445–2451 (2011).

    CAS  PubMed  Google Scholar 

  136. Copland, A. & Bending, D. Foxp3 molecular dynamics in Treg in juvenile idiopathic arthritis. Front. Immunol. 9, 2273 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Prim. 2, 16047 (2016).

    PubMed  Google Scholar 

  138. Li, X. et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren’s syndrome. J. Rheumatol. 34, 2438–2445 (2007).

    PubMed  Google Scholar 

  139. Alunno, A. et al. T regulatory and T helper 17 cells in primary Sjögren’s syndrome: facts and perspectives. Med. Inflamm. 2015, 243723 (2015).

    Google Scholar 

  140. Luo, J. et al. IL-2 inhibition of Th17 generation rather than induction of treg cells is impaired in primary Sjögren’s syndrome patients. Front. Immunol. 9, 1755 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Liu, C., Guan, Z., Zhao, L., Song, Y. & Wang, H. Elevated level of circulating CD4(+)Helios(+)FoxP3(+) cells in primary Sjögren’s syndrome patients. Mod. Rheumatol. 27, 630–637 (2017).

    CAS  PubMed  Google Scholar 

  142. Alunno, A. et al. Characterization of a new regulatory CD4+ T cell subset in primary Sjögren’s syndrome. Rheumatology 52, 1387–1396 (2013).

    CAS  PubMed  Google Scholar 

  143. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Prim. 1, 15002 (2015).

    PubMed  Google Scholar 

  144. Koreth, J. et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128, 130–137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Morgan, M. D. et al. Patients with Wegener’s granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology 130, 64–73 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsurikisawa, N., Saito, H., Oshikata, C., Tsuburai, T. & Akiyama, K. Decreases in the numbers of peripheral blood regulatory T cells, and increases in the levels of memory and activated B cells, in patients with active eosinophilic granulomatosis and polyangiitis. J. Clin. Immunol. 33, 965–976 (2013).

    CAS  PubMed  Google Scholar 

  148. Tsurikisawa, N., Saito, H., Oshikata, C., Tsuburai, T. & Akiyama, K. High-dose intravenous immunoglobulin therapy for eosinophilic granulomatosis with polyangiitis. Clin. Transl. Allergy 4, 38 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Boyer, O. et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood 103, 3428–3430 (2004).

    CAS  PubMed  Google Scholar 

  150. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    CAS  PubMed  Google Scholar 

  151. Shimojima, Y., Ishii, W., Kishida, D., Fukushima, K. & Ikeda, S. I. Imbalanced expression of dysfunctional regulatory T cells and T-helper cells relates to immunopathogenesis in polyarteritis nodosa. Mod. Rheumatol. 27, 102–109 (2017).

    CAS  PubMed  Google Scholar 

  152. Sugita, S., Yamada, Y., Kaneko, S., Horie, S. & Mochizuki, M. Induction of regulatory T cells by infliximab in Behçet’s disease. Invest. Ophthalmol. Vis. Sci. 52, 476–484 (2011).

    CAS  PubMed  Google Scholar 

  153. Olivito, B. et al. Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin. Exp. Rheumatol. 28, 93–97 (2010).

    PubMed  Google Scholar 

  154. Kong, X. et al. The critical role of IL-6 in the pathogenesis of Takayasu arteritis. Clin. Exp. Rheumatol. 34, S21–S27 (2016).

    PubMed  Google Scholar 

  155. Samson, M. et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 64, 3788–3798 (2012).

    CAS  PubMed  Google Scholar 

  156. Miyara, M. et al. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med. 203, 359–370 (2006).

    PubMed  PubMed Central  Google Scholar 

  157. Broos, C. E. et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir. Res. 16, 108 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Verwoerd, A. et al. Infliximab therapy balances regulatory T cells, tumour necrosis factor receptor 2 (TNFR2) expression and soluble TNFR2 in sarcoidosis. Clin. Exp. Immunol. 185, 263–270 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. So, A. K. & Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 13, 639–647 (2017).

    CAS  PubMed  Google Scholar 

  160. Dai, X. J. et al. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals. Inflammation 41, 1955–1964 (2018).

    CAS  PubMed  Google Scholar 

  161. Bonnet, B. et al. Low-dose IL-2 induces regulatory T cell-mediated control of experimental food allergy. J. Immunol. 197, 188–198 (2016).

    CAS  PubMed  Google Scholar 

  162. Churlaud, G. et al. Pharmacodynamics of regulatory T cells in mice and humans treated with low-dose IL-2. J. Allergy Clin. Immunol. 142, 1344–1346.e3 (2018).

    CAS  PubMed  Google Scholar 

  163. Churlaud, G. et al. Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin. Immunol. 151, 114–126 (2014).

    CAS  PubMed  Google Scholar 

  164. Tahvildari, M. & Dana, R. Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases. J. Immunol. 203, 2749–2755 (2019).

    CAS  PubMed  Google Scholar 

  165. Rose, A. et al. IL-2 therapy diminishes renal inflammation and the activity of kidney-infiltrating CD4+ T cells in murine lupus nephritis. Cells https://doi.org/10.3390/cells8101234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yan, J. J. et al. IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cells. Kidney Int. 91, 603–615 (2017).

    CAS  PubMed  Google Scholar 

  167. Mizui, M. et al. IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4-CD8- IL-17-producing T cells. J. Immunol. 193, 2168–2177 (2014).

    CAS  PubMed  Google Scholar 

  168. Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    CAS  PubMed  Google Scholar 

  169. Yokoyama, Y. et al. IL-2-anti-IL-2 monoclonal antibody immune complexes inhibit collagen-induced arthritis by augmenting regulatory T cell functions. J. Immunol. 201, 1899–1906 (2018).

    CAS  PubMed  Google Scholar 

  170. Dey, I. & Bishayi, B. Impact of simultaneous neutralization of IL-17A and treatment with recombinant IL-2 on Th17-Treg cell population in S.aureus induced septic arthritis. Microb. Pathog. 139, 103903 (2020).

    CAS  PubMed  Google Scholar 

  171. Bergmann, B. et al. Pre-treatment with IL2 gene therapy alleviates Staphylococcus aureus arthritis in mice. BMC Infect. Dis. 20, 185 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Webster, K. E. et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Izquierdo, C. et al. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/anti-IL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci. Rep. 8, 8106 (2018).

    PubMed  PubMed Central  Google Scholar 

  174. Taylor, A. E. et al. Interleukin 2 promotes hepatic regulatory T cell responses and protects from biliary fibrosis in murine sclerosing cholangitis. Hepatology 68, 1905–1921 (2018).

    CAS  PubMed  Google Scholar 

  175. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    CAS  PubMed  Google Scholar 

  176. Rosenberg, S. A., Mule, J. J., Spiess, P. J., Reichert, C. M. & Schwarz, S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161, 1169–1188 (1985).

    CAS  PubMed  Google Scholar 

  177. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    CAS  PubMed  Google Scholar 

  178. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    CAS  PubMed  Google Scholar 

  179. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    CAS  PubMed  Google Scholar 

  180. Mahmoudpour, S. H. et al. Safety of low-dose subcutaneous recombinant interleukin-2: systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 9, 7145 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Humrich, J. Y. et al. Low-dose interleukin-2 therapy in refractory systemic lupus erythematosus: an investigator-initiated, single-centre phase 1 and 2a clinical trial. Lancet Rheumatol. 1, e44–e54 (2019).

    Google Scholar 

  182. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020).

    CAS  PubMed  Google Scholar 

  183. Rosenzwajg, M. et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63, 1808–1821 (2020).

    CAS  PubMed  Google Scholar 

  184. Krouse, R. S. et al. Thyroid dysfunction in 281 patients with metastatic melanoma or renal carcinoma treated with interleukin-2 alone. J. Immunother. Emphas. Tumor Immunol. 18, 272–278 (1995).

    CAS  Google Scholar 

  185. Churlaud, G. et al. IL-2 antibodies in type 1 diabetes and during IL-2 therapy. Diabetologia 61, 2066–2068 (2018).

    CAS  PubMed  Google Scholar 

  186. Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    CAS  PubMed  Google Scholar 

  187. Hervier, B. et al. Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-ɣ production in patients with active disease. Arthritis Rheum. 63, 1698–1706 (2011).

    CAS  PubMed  Google Scholar 

  188. Busner, J. & Targum, S. D. The Clinical Global Impressions Scale: applying a research tool in clinical practice. Psychiatry 4, 28–37 (2007).

    PubMed  PubMed Central  Google Scholar 

  189. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    CAS  PubMed  Google Scholar 

  190. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    PubMed  Google Scholar 

  191. Zhao, C. et al. Low dose of IL-2 combined with rapamycin restores and maintains the long-term balance of Th17/Treg cells in refractory SLE patients. BMC Immunol. 20, 32 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Shao, M. et al. Interleukin-2 deficiency associated with renal impairment in systemic lupus erythematosus. J. Interferon Cytokine Res. 39, 117–124 (2019).

    CAS  PubMed  Google Scholar 

  193. Miao, M. et al. Short-term and low-dose IL-2 therapy restores the Th17/Treg balance in the peripheral blood of patients with primary Sjögren’s syndrome. Ann. Rheum. Dis. 77, 1838–1840 (2018).

    CAS  PubMed  Google Scholar 

  194. An, H. et al. The absolute counts of peripheral T lymphocyte subsets in patient with ankylosing spondylitis and the effect of low-dose interleukin-2. Medicine 98, e15094 (2019).

    PubMed  PubMed Central  Google Scholar 

  195. Feng, M. et al. Absolute reduction of regulatory T cells and regulatory effect of short-term and low-dose IL-2 in polymyositis or dermatomyositis. Int. Immunopharmacol. 77, 105912 (2019).

    CAS  PubMed  Google Scholar 

  196. Zhang, S. X. et al. Circulating regulatory T cells were absolutely decreased in dermatomyositis/polymyositis patients and restored by low-dose IL-2. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-216246 (2019).

    Article  PubMed  Google Scholar 

  197. Castela, E. et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748–751 (2014).

    CAS  PubMed  Google Scholar 

  198. Le Duff, F. et al. Low-dose IL-2 for treating moderate to severe alopecia areata: a 52-week multicenter prospective placebo-controlled study assessing its impact on T regulatory cell and NK cell populations. J. Invest. Dermatol. 141, 933–936 (2021).

    PubMed  Google Scholar 

  199. Zhang, J. et al. Therapeutic potential of low-dose IL-2 in immune thrombocytopenia: an analysis of 3 cases. Cytom. B Clin. Cytom. 94, 428–433 (2018).

    CAS  Google Scholar 

  200. Lim, T. Y. et al. Low-dose interleukin-2 for refractory autoimmune hepatitis. Hepatology 68, 1649–1652 (2018).

    PubMed  Google Scholar 

  201. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Nguyen, D. X. & Ehrenstein, M. R. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J. Exp. Med. 213, 1241–1253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. He, X. et al. A TNFR2-agonist facilitates high purity expansion of human low purity treg cells. PLoS ONE 11, e0156311 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. Okubo, Y., Mera, T., Wang, L. & Faustman, D. L. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2. Sci. Rep. 3, 3153 (2013).

    PubMed  PubMed Central  Google Scholar 

  205. Chopra, M. et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J. Exp. Med. 213, 1881–1900 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Chen, Z. et al. FOXP3 and RORɣt: transcriptional regulation of Treg and Th17. Int. Immunopharmacol. 11, 536–542 (2011).

    CAS  PubMed  Google Scholar 

  207. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Tseng, W. Y. et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. Proc. Natl Acad. Sci. USA 116, 21666–21672 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Santinon, F. et al. Involvement of tumor necrosis factor receptor type II in FoxP3 stability and as a marker of Treg cells specifically expanded by anti-tumor necrosis factor treatments in rheumatoid arthritis. Arthritis Rheumatol. 72, 576–587 (2020).

    CAS  PubMed  Google Scholar 

  210. Zhang, C., Zhang, X. & Chen, X. H. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance. Clin. Rev. Allergy Immunol. 47, 163–173 (2014).

    CAS  PubMed  Google Scholar 

  211. Schinnerling, K., Aguillon, J. C., Catalan, D. & Soto, L. The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis. Clin. Exp. Immunol. 189, 12–20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Thiolat, A. et al. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol. 66, 273–283 (2014).

    CAS  PubMed  Google Scholar 

  213. Samson, M. et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 64, 2499–2503 (2012).

    CAS  PubMed  Google Scholar 

  214. Kikuchi, J. et al. Peripheral blood CD4(+)CD25(+)CD127(low) regulatory T cells are significantly increased by tocilizumab treatment in patients with rheumatoid arthritis: increase in regulatory T cells correlates with clinical response. Arthritis Res. Ther. 17, 10 (2015).

    PubMed  PubMed Central  Google Scholar 

  215. Takatori, H. et al. Helios enhances Treg cell function in cooperation with FoxP3. Arthritis Rheumatol. 67, 1491–1502 (2015).

    CAS  PubMed  Google Scholar 

  216. Sheng-Xiao, Z. et al. SAT0181 Low dose interleukin-2 combined with tocilizumab selectively increases regulatory T cells helping refractory rheumatoid arthritis patients achieve remission more rapidly. Ann. Rheum. Dis. 76, 839 (2017).

    Google Scholar 

  217. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    CAS  PubMed  Google Scholar 

  218. Wan, S., Xia, C. & Morel, L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J. Immunol. 178, 271–279 (2007).

    CAS  PubMed  Google Scholar 

  219. Dai, H., He, F., Tsokos, G. C. & Kyttaris, V. C. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J. Immunol. 199, 903–910 (2017).

    CAS  PubMed  Google Scholar 

  220. Kannan, A. K. et al. IL-23 induces regulatory T cell plasticity with implications for inflammatory skin diseases. Sci. Rep. 9, 17675 (2019).

    PubMed  PubMed Central  Google Scholar 

  221. Izcue, A. et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28, 559–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Nussbaum, L., Chen, Y. L. & Ogg, G. S. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol. 184, 14–24 (2021).

    CAS  PubMed  Google Scholar 

  224. van Vollenhoven, R. F. et al. Maintenance of efficacy and safety of ustekinumab through one year in a phase II multicenter, prospective, randomized, double-blind, placebo-controlled crossover trial of patients with active systemic lupus erythematosus. Arthritis Rheumatol. 72, 761–768 (2020).

    PubMed  Google Scholar 

  225. Konrad, M. W. et al. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res. 50, 2009–2017 (1990).

    CAS  PubMed  Google Scholar 

  226. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    CAS  PubMed  Google Scholar 

  227. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Klein, C. et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 6, e1277306 (2017).

    PubMed  PubMed Central  Google Scholar 

  229. van Brummelen, E. M. J. et al. (89)Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding. Oncotarget 9, 24737–24749 (2018).

    PubMed  PubMed Central  Google Scholar 

  230. Weide, B. et al. A phase II study of the L19IL2 immunocytokine in combination with dacarbazine in advanced metastatic melanoma patients. Cancer Immunol. Immunother. 68, 1547–1559 (2019).

    CAS  PubMed  Google Scholar 

  231. Neri, D. & Sondel, P. M. Immunocytokines for cancer treatment: past, present and future. Curr. Opin. Immunol. 40, 96–102 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Padutsch, T. et al. Superior Treg-expanding properties of a novel dual-acting cytokine fusion protein. Front. Pharmacol. 10, 1490 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Peterson, L. B. et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95, 1–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Comte, D. et al. Engagement of SLAMF3 enhances CD4+ T-cell sensitivity to IL-2 and favors regulatory T-cell polarization in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, 9321–9326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Guma, S. R. et al. Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr. Blood Cancer 61, 618–626 (2014).

    PubMed  Google Scholar 

  236. Horwitz, D. A., Bickerton, S., Koss, M., Fahmy, T. M. & La Cava, A. Suppression of murine lupus by CD4+ and CD8+ Treg cells induced by T cell-targeted nanoparticles loaded with interleukin-2 and transforming growth factor β. Arthritis Rheumatol. 71, 632–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Siddhanti, S. et al. NKTR-358, a novel IL-2 conjugate, stimulates high levels of regulatory T cells in patients with systemic lupus erythematosus [abstract THU0054]. Ann. Rheum. Dis. 79, 238–239 (2020).

    Google Scholar 

  238. Pilat, N. et al. Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc. Natl Acad. Sci. USA 116, 13508–13516 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Karakus, U. et al. Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species. Sci. Transl. Med. 12, eabb9283 (2020).

    CAS  PubMed  Google Scholar 

  240. Fischer, R. et al. Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis. Arthritis Rheumatol. 70, 722–735 (2018).

    CAS  PubMed  Google Scholar 

  241. Laurent, J. et al. T-cell activation by treatment of cancer patients with EMD 521873 (Selectikine), an IL-2/anti-DNA fusion protein. J. Transl. Med. 11, 5 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David Klatzmann.

Ethics declarations

Competing interests

D.K. is an inventor of patents belonging to Sorbonne Université that cover the use of IL-2 in autoimmune diseases; he holds shares in ILTOO Pharma. A.G.A.K. and G.C.T. declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks Z.-G. Li, J. Humrich, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolios, A.G.A., Tsokos, G.C. & Klatzmann, D. Interleukin-2 and regulatory T cells in rheumatic diseases. Nat Rev Rheumatol 17, 749–766 (2021). https://doi.org/10.1038/s41584-021-00707-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00707-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing