Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS

Abstract

The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal’s physiological state. Ciliated neurons that are bathed in the CSF — and thus referred to as CSF-contacting neurons (CSF-cNs) — are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of cerebrospinal fluid-contacting neuron (CSF-cN) anatomy and physiological roles.
Fig. 2: Cerebrospinal fluid-contacting neurons (CSF-cNs) respond to compression during spinal bends.
Fig. 3: Diverse chemosensory functions of cerebrospinal fluid-contacting neurons (CSF-cNs).
Fig. 4: Connectivity of cerebrospinal fluid-contacting neurons (CSF-cNs) in zebrafish.
Fig. 5: Molecular mechanisms linking the cerebrospinal fluid (CSF) sensory interface and morphogenesis throughout life.

Similar content being viewed by others

References

  1. Rasmussen, M. K., Mestre, H. & Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 102, 1025–1151 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orts-Del’Immagine, A. & Wyart, C. Cerebrospinal-fluid-contacting neurons. Curr. Biol. 27, R1198–R1200 (2017).

    Article  PubMed  Google Scholar 

  4. Böhm, U. L. et al. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat. Commun. 7, 10866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jalalvand, E., Robertson, B., Wallén, P. & Grillner, S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat. Commun. 7, 10002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantaut-Belarif, Y., Sternberg, J. R., Thouvenin, O., Wyart, C. & Bardet, P.-L. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr. Biol. 28, 2479–2486.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orts-Del’Immagine, A. et al. Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo. Curr. Biol. 30, 827–839.e4 (2020).

    Article  PubMed  Google Scholar 

  8. Eccles, J. C. & Sherrington, C. S. Reflex summation in the ipsilateral spinal flexion reflex. J. Physiol. 69, 1–28 (1930).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orts-Del’Immagine, A. et al. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J. Physiol. 590, 3719–3741 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jalalvand, E., Robertson, B., Tostivint, H., Wallén, P. & Grillner, S. The spinal cord has an intrinsic system for the control of pH. Curr. Biol. 26, 1346–1351 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Jalalvand, E. et al. ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. eLife 11, e73114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson, E. et al. Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord. iScience 26, 105914 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Vigh, B. & Vigh-Teichmann, I. Actual problems of the cerebrospinal fluid-contacting neurons. Microsc. Res. Tech. 41, 57–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Quan, F. B. et al. Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons. PLoS ONE 10, e0119290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. et al. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat. Genet. 50, 1666–1673 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Quan, F. B. et al. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva. Sci. Rep. 10, 15235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bearce, E. A. et al. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLife 11, e83883 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prendergast, A. E. et al. CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection. Curr. Biol. 33, 940–956.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Gaillard, A.-L. et al. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev. Biol. 496, 36–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Vigh-Teichmann, I. & Vigh, B. The system of cerebrospinal fluid-contacting neurons. Arch. Histol. Jpn. 46, 427–468 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Vígh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607–628 (2004).

    PubMed  Google Scholar 

  23. Djenoune, L. & Wyart, C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J. Neurogenet. 31, 113–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Kolmer, W. Das ‘Sagitallorgan’ der Wirbeltiere [German]. Z. Anat. Entw. Gesch. 60, 652–717 (1921).

    Article  Google Scholar 

  25. Agduhr, E. Über ein zentrales Sinnesorgan (?) bei den Vertebraten [German]. Z. Für Anat. Entwickl. Gesch. 66, 223–360 (1922).

    Article  Google Scholar 

  26. Dale, N., Roberts, A., Otterson & Storm-Mathisen, J. The morphology and distribution of `Kolmer–Agduhr cells’, a class of cerebrospinal-fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry. Proc. R. Soc. Lond. B Biol. Sci. 232, 193–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, L., Rastegar, S. & Strähle, U. Regulatory interactions specifying Kolmer–Agduhr interneurons. Development 137, 2713–2722 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, P.-F., Xie, H.-B., Zhu, P.-P. & Zhao, C.-T. Distribution pattern of floor plate neurons in zebrafish. Yi Chuan Hered. 44, 510–520 (2022).

    Google Scholar 

  29. Jacobs, C. T., Kejriwal, A., Kocha, K. M., Jin, K. Y. & Huang, P. Temporal cell fate determination in the spinal cord is mediated by the duration of Notch signalling. Dev. Biol. 489, 1–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Cunningham, R. L. et al. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun. Biol. 4, 695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, L., Wang, F. & Strähle, U. The genetic programs specifying Kolmer–Agduhr interneurons. Front. Neurosci. 14, 577879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Andrzejczuk, L. A. et al. Tal1, Gata2a, and Gata3 have distinct functions in the development of V2b and cerebrospinal fluid-contacting KA spinal neurons. Front. Neurosci. 12, 170 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ryu, J.-H. et al. Generation of late-born neurons in the ventral spinal cord requires the coordination of retinoic acid and Notch signaling. Neurosci. Lett. 602, 95–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Seredick, S., Hutchinson, S. A., Van Ryswyk, L., Talbot, J. C. & Eisen, J. S. Lhx3 and Lhx4 suppress Kolmer–Agduhr interneuron characteristics within zebrafish axial motoneurons. Dev. Camb. Engl. 141, 3900–3909 (2014).

    CAS  Google Scholar 

  35. Huang, P., Xiong, F., Megason, S. G. & Schier, A. F. Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord. PLoS Genet. 8, e1002762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeo, S.-Y. & Chitnis, A. B. Jagged-mediated Notch signaling maintains proliferating neural progenitors and regulates cell diversity in the ventral spinal cord. Proc. Natl Acad. Sci. USA 104, 5913–5918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Binor, E. & Heathcote, R. D. Development of GABA-immunoreactive neuron patterning in the spinal cord. J. Comp. Neurol. 438, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Djenoune, L. et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front. Neuroanat. 8, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Becker, C. G., Becker, T. & Hugnot, J.-P. The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog. Neurobiol. 170, 67–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Petracca, Y. L. et al. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 143, 880–891 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shin, J., Poling, J., Park, H.-C. & Appel, B. Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. Development 134, 1911–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Djenoune, L. et al. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci. Rep. 7, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Corns, L. F. et al. Cholinergic enhancement cell proliferation in the postnatal neurogenic niche of the mammalian spinal cord. Stem Cells 33, 2864–2876 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Stoeckel, M.-E. et al. Cerebrospinal fluid-contacting neurons in the rat spinal cord, a γ-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J. Comp. Neurol. 457, 159–174 (2003).

    Article  PubMed  Google Scholar 

  45. Barber, R. P., Vaughn, J. E. & Roberts, E. The cytoarchitecture of GABAergic neurons in rat spinal cord. Brain Res. 238, 305–328 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, M.-Y. et al. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr. Biol. 31, 3315–3329.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Orts-Del’Immagine, A. et al. Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice. PLoS ONE 9, e87748 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Biciliated ependymal cell proliferation contributes to spinal cord growth. J. Comp. Neurol. 520, 3528–3552 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Muñoz, R. I. et al. The subcommissural organ and the Reissner fiber: old friends revisited. Cell Tissue Res. 375, 507–529 (2019).

    Article  PubMed  Google Scholar 

  50. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. England, S. J., Campbell, P. C., Banerjee, S., Swanson, A. J. & Lewis, K. E. Identification and expression analysis of the complete family of zebrafish pkd genes. Front. Cell Dev. Biol. 5, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fidelin, K. et al. State-dependent modulation of locomotion by GABAergic spinal sensory neurons. Curr. Biol. 25, 3035–3047 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Orts-Del’Immagine, A. et al. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 101, 549–565 (2016).

    Article  PubMed  Google Scholar 

  54. Gerstmann, K. et al. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr. Biol. 32, 2442–2453.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura, Y. et al. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. eLife 12, e83108 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Montgomery, J. E., Wiggin, T. D., Rivera-Perez, L. M., Lillesaar, C. & Masino, M. A. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish. Dev. Neurobiol. 76, 673–687 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Rodicio, M. C., Villar-Cerviño, V., Barreiro-Iglesias, A. & Anadón, R. Colocalization of dopamine and GABA in spinal cord neurones in the sea lamprey. Brain Res. Bull. 76, 45–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Barreiro-Iglesias, A., Villar-Cerviño, V., Anadón, R. & Rodicio, M. C. Descending brain–spinal cord projections in a primitive vertebrate, the lamprey: cerebrospinal fluid-contacting and dopaminergic neurons. J. Comp. Neurol. 511, 711–723 (2008).

    Article  PubMed  Google Scholar 

  59. Schotland, J. L., Shupliakov, O., Grillner, S. & Brodin, L. Synaptic and nonsynaptic monoaminergic neuron systems in the lamprey spinal cord. J. Comp. Neurol. 372, 229–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. McPherson, D. R. & Kemnitz, C. P. Modulation of lamprey fictive swimming and motoneuron physiology by dopamine, and its immunocytochemical localization in the spinal cord. Neurosci. Lett. 166, 23–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Russ, D. E. et al. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 12, 5722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lamotte, C. C. Vasoactive intestinal polypeptide cerebrospinal fluid-contacting neurons of the monkey and cat spinal central canal. J. Comp. Neurol. 258, 527–541 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Hirunagi, K., Hasegawa, M., Vigh, B. & Vigh-Teichmann, I. Immunocytochemical demonstration of serotonin-immunoreactive cerebrospinal fluid-contacting neurons in the paraventricular organ of pigeons and domestic chickens. Prog. Brain Res. 91, 327–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Desban, L. et al. Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol. 17, e3000235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kútna, V., Ševc, J., Gombalová, Z., Matiašová, A. & Daxnerová, Z. Enigmatic cerebrospinal fluid-contacting neurons arise even after the termination of neurogenesis in the rat spinal cord during embryonic development and retain their immature-like characteristics until adulthood. Acta Histochem. 116, 278–285 (2014).

    Article  PubMed  Google Scholar 

  66. Bella, D. J. D. et al. Ascl1 balances neuronal versus ependymal fate in the spinal cord central canal. Cell Rep. 28, 2264–2274.e3 (2019).

    Article  PubMed  Google Scholar 

  67. Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 9, 3804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reali, C., Fernández, A., Radmilovich, M., Trujillo-Cenóz, O. & Russo, R. E. GABAergic signalling in a neurogenic niche of the turtle spinal cord. J. Physiol. 589, 5633–5647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marichal, N., Garcia, G., Radmilovich, M., Trujillo-Cenoz, O. & Russo, R. E. Enigmatic central canal contacting cells: immature neurons in ‘standby mode’? J. Neurosci. 29, 10010–10024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park, H.-C., Shin, J. & Appel, B. Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling. Dev. Camb. Engl. 131, 5959–5969 (2004).

    CAS  Google Scholar 

  71. Vergara, H. M. et al. Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc. Natl Acad. Sci. USA 114, 5878–5885 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vigh-Teichmann, I. & Vigh, B. The cerebrospinal fluid-contacting neuron: a peculiar cell type of the central nervous system. Immunocytochemical aspects. Arch. Histol. Cytol. 52 (Suppl), 195–207 (1989).

    Article  PubMed  Google Scholar 

  73. Vigh, B. & Vigh-Teichmann, I. Comparative ultrastructure of the cerebrospinal fluid-contacting neurons. Int. Rev. Cytol. 35, 189–251 (1973).

    Article  CAS  PubMed  Google Scholar 

  74. Hubbard, J. M. et al. Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion. Curr. Biol. 26, 2841–2853 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Shimizu, T., Janssens, A., Voets, T. & Nilius, B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflüg. Arch. Eur. J. Physiol. 457, 795–807 (2008).

    Article  Google Scholar 

  76. Russo, R. E., Fernández, A., Reali, C., Radmilovich, M. & Trujillo-Cenóz, O. Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord. J. Physiol. 560, 831–838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Galdi, G. P., Heywood, J. G. & Rannacher, R. (eds) Fundamental Directions in Mathematical Fluid Mechanics (Birkhäuser, 2000).

  78. Bellegarda, C. et al. The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid. Preprint at bioRxiv https://doi.org/10.1101/2023.02.22.529498 (2023).

    Article  Google Scholar 

  79. Troutwine, B. R. et al. The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr. Biol. 30, 2353–2362.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bushman, J. D., Ye, W. & Liman, E. R. A proton current associated with sour taste: distribution and functional properties. FASEB J. 29, 3014–3026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Böhm, U. L. Physiological Inputs to Cerebrospinal Fluid-contacting Neurons (Univ. Pierre et Marie Curie, 2016).

  82. MacCain, W. & Tuomanen, E. Taste vs. pain: a sensory feast in bacterial meningitis. Cell Host Microbe 31, 681–682 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Holzer, P. Acid-sensitive ion channels and receptors. Handb. Exp. Pharmacol. https://doi.org/10.1007/978-3-540-79090-7_9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tian, P.-F., Sun, M.-M., Hu, X.-Y., Du, J. & He, W. TRPP2 ion channels: the roles in various subcellular locations. Biochimie 201, 116–127 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Cantero, M. D. R. & Cantiello, H. F. Polycystin-2 (TRPP2): ion channel properties and regulation. Gene 827, 146313 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Su, Q. et al. Structural basis for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat. Commun. 12, 4871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Higuchi, T., Shimizu, T., Fujii, T., Nilius, B. & Sakai, H. Gating modulation by heat of the polycystin transient receptor potential channel PKD2L1 (TRPP3). Pflug. Arch. 466, 1933–1940 (2014).

    Article  CAS  Google Scholar 

  88. Boltana, S. et al. Behavioral fever drives epigenetic modulation of the immune response in fish. Front. Immunol. 9, 1241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Friedmann, D., Hoagland, A., Berlin, S. & Isacoff, E. Y. A spinal opsin controls early neural activity and drives a behavioral light response. Curr. Biol. 25, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Nakane, Y., Shimmura, T., Abe, H. & Yoshimura, T. Intrinsic photosensitivity of a deep brain photoreceptor. Curr. Biol. 24, R596–R597 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Ng, L. C. T., Vien, T. N., Yarov-Yarovoy, V. & DeCaen, P. G. Opening TRPP2 (PKD2L1) requires the transfer of gating charges. Proc. Natl Acad. Sci. USA 116, 15540–15549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buchanan, J. T., Brodin, L., Hökfelt, T., Dongen, P. A. M. V. & Grillner, S. Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res. 408, 299–302 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Yulis, C. R. & Lederis, K. Occurrence of an anterior spinal, cerebrospinal fluid-contacting, urotensin II neuronal system in various fish species. Gen. Comp. Endocrinol. 70, 301–311 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Yulis, C. R. & Lederis, K. Relationship between urotensin II- and somatostatin-immunoreactive spinal cord neurons of Catostomus commersoni and Oncorhynchus kisutch (Teleostei). Cell Tissue Res. 254, 539–542 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Christenson, J., Alford, S., Grillner, S. & Hökfelt, T. Co-localized GABA and somatostatin use different ionic mechanisms to hyperpolarize target neurons in the lamprey spinal cord. Neurosci. Lett. 134, 93–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. López, J. M. et al. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. J. Comp. Neurol. 501, 413–430 (2007).

    Article  PubMed  Google Scholar 

  97. Jalalvand, E., Robertson, B., Wallén, P., Hill, R. H. & Grillner, S. Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types. J. Comp. Neurol. 522, Spc1 (2014).

    Article  PubMed  Google Scholar 

  98. Yulis, C. R. & Lederis, K. The distribution of ‘extraurophyseal’ urotensin I-immunoreactivity in the central nervous system of Catostomus commersoni after urophysectomy. Neurosci. Lett. 70, 75–80 (1986).

    Article  CAS  PubMed  Google Scholar 

  99. Yulis, C. R. & Lederis, K. Extraurophyseal distribution of urotensin II immunoreactive neuronal perikarya and their processes. Proc. Natl Acad. Sci. USA 83, 7079–7083 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yulis, C. R., Lederis, K., Wong, K.-L. & Fisher, A. W. F. Localization of urotensin I- and corticotropin-releasing factor-like immunoreactivity in the central nervous system of Catostomus commersoni. Peptides 7, 79–86 (1986).

    Article  CAS  PubMed  Google Scholar 

  101. Jaeger, C. B. et al. Some neurons of the rat central nervous system contain aromatic-l-amino-acid decarboxylase but not monoamines. Science 219, 1233–1235 (1983).

    Article  CAS  PubMed  Google Scholar 

  102. Nagatsu, I., Sakai, M., Yoshida, M. & Nagatsu, T. Aromatic l-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord. Brain Res. 475, 91–102 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Ren, L.-Q. et al. Heterogenic distribution of aromatic l-amino acid decarboxylase neurons in the rat spinal cord. Front. Integr. Neurosci. 11, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chatelin, S. et al. Neuronal promoter of human aromatic l-amino acid decarboxylase gene directs transgene expression to the adult floor plate and aminergic nuclei induced by the isthmus. Mol. Brain Res. 97, 149–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Pierre, J., Mahouche, M., Suderevskaya, E. I., Repérant, J. & Ward, R. Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis. J. Comp. Neurol. 380, 119–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Ren, L.-Q., Wienecke, J., Hultborn, H. & Zhang, M. Production of dopamine by aromatic l-amino acid decarboxylase cells after spinal cord injury. J. Neurotrauma 33, 1150–1160 (2016).

    Article  PubMed  Google Scholar 

  107. Azam, B., Wienecke, J., Jensen, D. B., Azam, A. & Zhang, M. Spinal cord hemisection facilitates aromatic l-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase. Neural Plast. 2015, 1–10 (2015).

    Article  Google Scholar 

  108. Wienecke, J. et al. Spinal cord injury enables aromatic l-amino acid decarboxylase cells to synthesize monoamines. J. Neurosci. 34, 11984–12000 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shimosegawa, T. et al. An immunohistochemical study of methionine-enkephalin-Arg6-Gly7-Leu8-like immunoreactivity-containing liquor-contacting neurons (LCNs) in the rat spinal cord. Brain Res. 379, 1–9 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Vigh, B., Vigh-Teichmann, I. & Aros, B. Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord. Cell Tissue Res. 183, 541–552 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Megías, M., Álvarez-Otero, R. & Pombal, M. A. Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord. J. Comp. Neurol. 455, 72–85 (2002).

    Article  Google Scholar 

  112. Morris, J. F. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 1007–1014 (Academic, 2009).

  113. Vigh, B., Vigh-Teichmann, I., Silva, M. J. M. E. & van den Pol, A. N. Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in various vertebrates. Cell Tissue Res. 231, 615–621 (1983).

    Article  CAS  PubMed  Google Scholar 

  114. Baumgarten, H. G. Biogenic monoamines in the cyclostome and lower vertebrate brain. Prog. Histochem. Cytochem. 4, III–88 (1972).

    Article  Google Scholar 

  115. Sternberg, J. R. et al. Optimization of a neurotoxin to investigate the contribution of excitatory interneurons to speed modulation in vivo. Curr. Biol. 26, 2319–2328 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Picton, L. D. et al. Developmental switch in the function of inhibitory commissural V0d interneurons in zebrafish. Curr. Biol. 32, 3515–3528.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Di Prisco, G. V., Wallén, P. & Grillner, S. Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion. Brain Res. 530, 161–166 (1990).

    Article  PubMed  Google Scholar 

  118. Knogler, L. D. & Drapeau, P. Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors. Front. Neural Circuits 8, 121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Liu, Y.-C. & Hale, M. E. Local spinal cord circuits and bilateral Mauthner cell activity function together to drive alternative startle behaviors. Curr. Biol. 27, 697–704 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Hale, M. E., Ritter, D. A. & Fetcho, J. R. A confocal study of spinal interneurons in living larval zebrafish. J. Comp. Neurol. 437, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Homma, S. Conductance changes during bath application of β-alanine and taurine in giant interneurons of the isolated lamprey spinal cord. Brain Res. 173, 287–293 (1979).

    Article  CAS  PubMed  Google Scholar 

  122. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kimura, Y. et al. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr. Biol. 23, 843–849 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Bouvier, J. et al. Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pujala, A. & Koyama, M. Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife 8, e42135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cregg, J. M. et al. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 23, 730–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schwenkgrub, J., Harrell, E. R., Bathellier, B. & Bouvier, J. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. Sci. Adv. 6, eabc6309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Usseglio, G., Gatier, E., Heuzé, A., Hérent, C. & Bouvier, J. Control of orienting movements and locomotion by projection-defined subsets of brainstem v2a neurons. Curr. Biol. 30, 4665–4681.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Hari, K. et al. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nat. Neurosci. 25, 1288–1299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jurčić, N., Michelle, C., Trouslard, J., Wanaverbecq, N. & Kastner, A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur. J. Neurosci. 54, 4781–4803 (2021).

    Article  PubMed  Google Scholar 

  131. Watson, C. & Harvey, A. R. in The Spinal Cord (eds Watson, C., Paxinos, G. & Kayalioglu, G.) 168–179 (Academic, 2009).

  132. Kastner, A. & Wanaverbecq, N. In rhesus monkeys, CSF-contacting neurons are the only neurons present in the medullo-spinal peri-ependymal zone. Preprint at bioRxiv https://doi.org/10.1101/2023.03.29.534787 (2023).

    Article  Google Scholar 

  133. Jurčić, N. et al. GABAB receptors modulate Ca2+ but not G protein-gated inwardly rectifying K+ channels in cerebrospinal-fluid contacting neurones of mouse brainstem. J. Physiol. 597, 631–651 (2019).

    Article  PubMed  Google Scholar 

  134. Faubel, R., Westendorf, C., Bodenschatz, E. & Eichele, G. Cilia-based flow network in the brain ventricles. Science 353, 176–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Olstad, E. W. et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 29, 229–241.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thouvenin, O. et al. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 9, e47699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kramer-Zucker, A. G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Grimes, D. T. et al. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341–1344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu, H., Shagirova, A., Goggi, J. L., Yeo, H. L. & Roy, S. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol. Open. 9, bio052027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cantaut-Belarif, Y. et al. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. eLife 9, e59469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rose, C. D. et al. SCO-spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr. Biol. 30, 2363–2373.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Vesque, C. et al. Loss of the Reissner fiber and increased URP neuropeptide signaling underlie scoliosis in a zebrafish ciliopathy mutant. Preprint at bioRxiv https://doi.org/10.1101/2019.12.19.882258 (2019).

    Article  Google Scholar 

  143. Dai, Z. et al. Novel mutations in UTS2R are associated with adolescent idiopathic scoliosis in the chinese population. Spine 46, E288–E293 (2021).

    Article  PubMed  Google Scholar 

  144. Xie, H. et al. Ependymal polarity defects coupled with disorganized ciliary beating drive abnormal cerebrospinal fluid flow and spine curvature in zebrafish. PLoS Biol. 21, e3002008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gene. SSPOP SCO-spondin, pseudogene [Homo sapiens (human)]. National Library of Medicine (US), National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/gene/23145 (2023).

  146. Nair, A., Azatian, G. & McHenry, M. J. The kinematics of directional control in the fast start of zebrafish larvae. J. Exp. Biol. 218, 3996–4004 (2015).

    PubMed  Google Scholar 

  147. Bagnall, M. W. & McLean, D. L. Modular organization of axial microcircuits in zebrafish. Science 343, 197–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. O’Donovan, M. J., Bonnot, A., Wenner, P. & Mentis, G. Z. Calcium imaging of network function in the developing spinal cord. Cell Calcium 37, 443–450 (2005).

    Article  PubMed  Google Scholar 

  149. Kreutzberger, A. J. B. et al. In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat. Commun. 10, 3904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bonfanti, L. & Seki, T. The PSA-NCAM-positive ‘Immature’ neurons: an old discovery providing new vistas on brain structural plasticity. Cells 10, 2542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, S. et al. The neural stem cell properties of PKD2L1+ cerebrospinal fluid-contacting neurons in vitro. Front. Cell. Neurosci. 15, 630882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cao, L. et al. The neural stem cell properties of Pkd2l1+ cerebrospinal fluid-contacting neurons in vivo. Front. Cell. Neurosci. 16, 992520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kathe, C. et al. The neurons that restore walking after paralysis. Nature 611, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Le Pichon, C. E. & Chesler, A. T. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front. Neuroanat. 8, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Staurengo-Ferrari, L., Deng, L. & Chiu, I. M. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 163, S57–S68 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. O’Donovan, M. J. et al. Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev. Neurobiol. 68, 788–803 (2008).

    Article  PubMed  Google Scholar 

  158. Whelan, P. J. Developmental aspects of spinal locomotor function: insights from using the in vitro mouse spinal cord preparation. J. Physiol. 553, 695–706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cuellar, C. A. et al. Propagation of sinusoidal electrical waves along the spinal cord during a fictive motor task. J. Neurosci. 29, 798–810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Caggiano, V., Sur, M. & Bizzi, E. Rostro-caudal inhibition of hindlimb movements in the spinal cord of mice. PLoS ONE 9, e100865 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lun, M. P. et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J. Neurosci. 35, 4903–4916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Naseri Kouzehgarani, G. et al. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 173, 20–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Böhm, U. L. & Wyart, C. Spinal sensory circuits in motion. Curr. Opin. Neurobiol. 41, 38–43 (2016).

    Article  PubMed  Google Scholar 

  164. Engelhardt, B. et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 132, 317–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Faghih, M. M. & Keith Sharp, M. Mechanisms of tracer transport in cerebral perivascular spaces. J. Biomech. 118, 110278 (2021).

    Article  PubMed  Google Scholar 

  167. Raghunandan, A. et al. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. eLife 10, e65958 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bedussi, B., Almasian, M., de Vos, J., VanBavel, E. & Bakker, E. N. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J. Cereb. Blood Flow. Metab. 38, 719–726 (2018).

    Article  PubMed  Google Scholar 

  169. Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Smith, A. J., Yao, X., Dix, J. A., Jin, B.-J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6, e27679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. 32, 543–551 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Croci, M., Vinje, V. & Rognes, M. E. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Fluids Barriers CNS 16, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Keith Sharp, M., Carare, R. O. & Martin, B. A. Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system. Fluids Barriers CNS 16, 13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105, 549–561.e5 (2020).

    Article  PubMed  Google Scholar 

  175. Vinje, V., Eklund, A., Mardal, K.-A., Rognes, M. E. & Støverud, K.-H. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 17, 29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kedarasetti, R. T., Drew, P. J. & Costanzo, F. Arterial pulsations drive oscillatory flow of CSF but not directional pumping. Sci. Rep. 10, 10102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Spector, R., Robert Snodgrass, S. & Johanson, C. E. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp. Neurol. 273, 57–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Vijayakrishnan Nair, V. et al. Human CSF movement influenced by vascular low frequency oscillations and respiration. Front. Physiol. 13, 940140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lewis, L. D. The interconnected causes and consequences of sleep in the brain. Science 374, 564–568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Damkier, H. H., Brown, P. D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Ghersi-Egea, J.-F. et al. Molecular anatomy and functions of the choroidal blood–cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 135, 337–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Korzh, V. Development of the brain ventricular system from a comparative perspective. Clin. Anat. 36, 320–334 (2023).

    Article  PubMed  Google Scholar 

  184. Reiter, R. J., Tan, D. X., Kim, S. J. & Cruz, M. H. C. Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces. Brain Struct. Funct. 219, 1873–1887 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Oksche, A., Rodríguez, E. M. & Fernández-Llebrez, P. (eds) The Subcommissural Organ (Springer, 1993).

  186. Reissner, E. Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L. [German]. Arch. Anat. Physiol. Wiss. Med. Leipz. 1, 545–588 (1860).

    Google Scholar 

  187. Sepúlveda, V., Maurelia, F., González, M., Aguayo, J. & Caprile, T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 18, 45 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zappaterra, M. D. et al. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J. Proteome Res. 6, 3537–3548 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Fame, R. M. & Lehtinen, M. K. Emergence and developmental roles of the cerebrospinal fluid system. Dev. Cell 52, 261–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Xu, H. et al. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat. Commun. 12, 447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Assialioui, A., Domínguez, R., Ferrer, I., Andrés-Benito, P. & Povedano, M. Elevated cerebrospinal fluid proteins and albumin determine a poor prognosis for spinal amyotrophic lateral sclerosis. Int. J. Mol. Sci. 23, 11063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sjoqvist, S. & Otake, K. A pilot study using proximity extension assay of cerebrospinal fluid and its extracellular vesicles identifies novel amyotrophic lateral sclerosis biomarker candidates. Biochem. Biophys. Res. Commun. 613, 166–173 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Dreger, M., Steinbach, R., Otto, M., Turner, M. R. & Grosskreutz, J. Cerebrospinal fluid biomarkers of disease activity and progression in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93, 422–435 (2022).

    Article  PubMed  Google Scholar 

  195. Nemeroff, C. B. et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226, 1342–1344 (1984).

    Article  CAS  PubMed  Google Scholar 

  196. Seo, J.-S., Mantas, I., Svenningsson, P. & Greengard, P. Ependymal cells—CSF flow regulates stress-induced depression. Mol. Psychiatry 26, 7308–7315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Ma, Y., Brettschneider, J. & Collingwood, J. F. A systematic review and meta-analysis of cerebrospinal fluid amyloid and tau levels identifies mild cognitive impairment patients progressing to Alzheimer’s disease. Biomedicines 10, 1713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Halbgebauer, S. et al. CSF levels of SNAP-25 are increased early in Creutzfeldt–Jakob and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 93, 1059–1065 (2022).

    Article  Google Scholar 

  200. Eh, K. et al. Update on CSF biomarkers in parkinson’s disease. Biomolecules 12, 329 (2022).

    Article  Google Scholar 

  201. Barschke, P. et al. Cerebrospinal fluid levels of proenkephalin and prodynorphin are differentially altered in Huntington’s and Parkinson’s disease. J. Neurol. 269, 5136–5143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bothwell, S. W., Janigro, D. & Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 16, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Chau, K. F. et al. Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev. Cell 35, 789–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fame, R. M., Shannon, M. L., Chau, K. F., Head, J. P. & Lehtinen, M. K. A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation. Development 146, dev182857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Holth, J. K. et al. The sleep–wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Saunders, N. R., Dziegielewska, K. M., Fame, R. M., Lehtinen, M. K. & Liddelow, S. A. The choroid plexus: a missing link in our understanding of brain development and function. Physiol. Rev. 103, 919–956 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Lim, D. A. & Alvarez-Buylla, A. The adult ventricular–subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Duquenne, M. et al. Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nat. Metab. 3, 1071–1090 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Clayton, R. W., Lovell-Badge, R. & Galichet, C. The properties and functions of glial cell types of the hypothalamic median eminence. Front. Endocrinol. 13, 953995 (2022).

    Article  Google Scholar 

  211. Welch, M. J., Markham, C. H. & Jenden, D. J. Acetylcholine and choline in cerebrospinal fluid of patients with Parkinson’s disease and Huntington’s chorea. J. Neurol. Neurosurg. Psychiatry 39, 367–374 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Strittmatter, M. et al. Cerebrospinal fluid neuropeptides and monoaminergic transmitters in patients with trigeminal neuralgia. Headache J. Head. Face Pain. 37, 211–216 (1997).

    Article  CAS  Google Scholar 

  213. Gabelle, A. et al. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging 53, 59–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Orhan, F. et al. CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol. Psychiatry 23, 1244–1250 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Spreux-Varoquaux, O. et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J. Neurol. Sci. 193, 73–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  216. Martin, J. et al. Vasopressin and oxytocin in CSF and plasma of patients with aneurysmal subarachnoid haemorrhage. Neuropeptides 48, 91–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Nilsson, C. L., Brinkmalm, A., Minthon, L., Blennow, K. & Ekman, R. Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides 22, 2105–2112 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Veening, J. G. & Barendregt, H. P. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 7, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Kandel, E. R., Schwartz, J. & Jessell, T. Principles of Neural Science 4th edn (McGraw-Hill, 2000).

  220. Hudspeth, A. J. Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15, 600–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Pepermans, E. & Petit, C. The tip-link molecular complex of the auditory mechano-electrical transduction machinery. Hear. Res. 330, 10–17 (2015).

    Article  PubMed  Google Scholar 

  222. Pan, B. et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79, 504–515 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Steiner, A. B., Kim, T., Cabot, V. & Hudspeth, A. J. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proc. Natl Acad. Sci. USA 111, E1393–E1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Desban, L. et al. Lateral line hair cells integrate mechanical and chemical cues to orient navigation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.31.505989 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work received support from the European Research Council (ERC), the New York Stem Cell Foundation (NYSCF), the Human Frontier Science Program (HFSP), the Fondation pour la Recherche Médicale (FRM), the Fondation Bettencourt-Schueller (FBS), the Fondation Schlumberger pour l’Education et la Recherche (FSER) and the Marie Skłodowska-Curie European Training Network initiative. The authors thank Headquarter for conceiving illustrations, J. Guedes, manager of the Zenith programme, for feedback and all members of the Wyart laboratory, past and present, at the Paris Brain Institute (Institut du Cerveau).

Author information

Authors and Affiliations

Authors

Contributions

C.W. researched data for the article and wrote the article. C.W., M.C.-T., Y.C.-B. and A.O.-D. contributed substantially to discussion of the content. C.W. and U.L.B. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Claire Wyart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Masaki Ueno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41583_2023_723_MOESM1_ESM.avi

Supplementary Video 1 | Sagittal time series showing the cilium of a ventral cerebrospinal fluid-contacting neuron (CSF-cN) in vivo beating in the central canal. Video was obtained in a 4-day-old larval zebrafish and has a 30 Hz acquisition rate. The cilium was beating at 7 Hz. Reprinted from ref. 4, Springer Nature Ltd.

41583_2023_723_MOESM2_ESM.mov

Supplementary Video 10 | Rostral cerebrospinal fluid-contacting neurons (CSF-cNs) form axo-axonic connections onto Vsx2+ reticulospinal neurons in the hindbrain. The video shows a dorsal view of the zebrafish hindbrain. CSF-cNs appear green and Vsx2-positive reticulospinal neurons appear in pink. Synapses are highlighted with arrows. Reprinted with permission from ref. 46, Elsevier).

41583_2023_723_MOESM3_ESM.avi

Supplementary Video 2 | Time series showing active beating by the cilium of a cerebrospinal fluid-contacting neuron (CSF-cN) from a primary zebrafish culture. The cilium is labelled by an arrow. Adapted from ref. 4, Springer Nature Ltd.

41583_2023_723_MOESM4_ESM.mp4

Supplementary Video 3 | 3D serial electron microscopy sections reveal the proximity of cerebrospinal fluid-contacting neuron (CSF-cN) cilium to the Reissner fibre. The blue arrow highlights the CSF-cN and the white arrow indicates the cilium, whereas the red arrow highlights the Reissner fibre. Adapted with permission from ref. 7, Elsevier).

41583_2023_723_MOESM5_ESM.mp4

Supplementary Video 4 | Cerebrospinal fluid-contacting neuron (CSF-cN) calcium activity and cell position during single tail bends corresponding to acousto-vestibular escape responses in larval zebrafish. In order to quantify the activation of CSF-cNs reflected in the increase in intracellular calcium, a correction of the motion artefact is necessary. This was accomplished by calculating the ratio of the signal of the fluorescent sensor GCaMP, used as a reporter of neuronal activity, over the signal of tagRFP, used as a reporter of cell position relative to the focal plane of the two photon microscope. One can appreciate that CSF-cNs respond only to compression on the side of negative curvature during a tail bend. Adapted from ref. 4, Springer Nature Ltd.

41583_2023_723_MOESM6_ESM.mp4

Supplementary Video 5 | Artistic animation showing how the Reissner fibre can interact with cerebrospinal fluid-contacting neurons (CSF-cNs) to detect bending of the spinal cord on the side of compression. The video was created based on the results from refs. 4,7. Animation created with the help of Headquarter (https://headquarter.paris).

41583_2023_723_MOESM7_ESM.mp4

Supplementary Video 6 | Cerebrospinal fluid-contacting neurons (CSF-cNs) show reduced basal activity and sustained massive calcium transients upon injection of Streptococcus pneumoniae into the brain ventricles. We can appreciate on this video how the basal activity of CSF-cNs is reduced while a subset of CSF-cNs shows unusually large and long-lasting calcium transients. Reprinted from ref. 19 CC BY 4.0 (https://creativecommons.org/licences/by/4.0/).

41583_2023_723_MOESM8_ESM.avi

Supplementary Video 7 | Cerebrospinal fluid-contacting neurons (CSF-cNs) in primary cultures respond to cytolysin and bacterial metabolites secreted by Streptococcus pneumoniae. From left to right: negative control showing no response to a pressure application of aCSF; response to pneumolysin 0.05 mg/mL; response to mixture of bitter compounds at 50 mM; response to the bitter compound DMDS tested alone at 50 mM; response to the other bitter compound 2 pentanone tested alone at 50 mM. Reprinted from ref. 19 CC BY 4.0 (https://creativecommons.org/licences/by/4.0/).

41583_2023_723_MOESM9_ESM.mov

Supplementary Video 8 | Deep learning can be used to estimate the probability of rolling probability over time during acousto-vestibular responses of larval zebrafish. By focusing on the head, analysis revealed that, after ablation of cerebrospinal fluid-contacting neurons (CSF-cNs), larval zebrafish roll more often and do so by losing balance after the initial large bend called the C-bend. When rolling is happening, a red dot appears at the top left of the image. The probability for rolling is indicated in the bottom left corner. Reprinted with permission from ref. 46, Elsevier.

41583_2023_723_MOESM10_ESM.mov

Supplementary Video 9 | Rostral cerebrospinal fluid-contacting neurons (CSF-cNs) project onto the soma of occipital motor neurons in the hindbrain. The video shows a dorsal view of the zebrafish hindbrain. CSF-cNs appear in green and motor neurons appear in pink. Synapses are highlighted with arrows. Reprinted with permission from ref. 46, Elsevier).

Glossary

Axo-axonic synapses

Synapses formed from one axon onto another.

Central pattern generators

Self-organizing biological neural circuits that produce rhythmic outputs in the absence of rhythmic input.

Choroid plexuses

A network of blood vessels and epithelial cells in the ventricles of the brain that make the cerebrospinal fluid (CSF).

Corollary discharge

In motor systems, a copy of the movement command that is broadcast to other regions of the brain to warn them of the impending movement.

Dense core secretory vesicles

Vesicles that mediate the regulated release of neuropeptides and peptide hormones.

Escape responses

Mechanisms by which animals avoid potential predation in response to an aversive stimulus.

Hyperkyphosis

An excessive curvature of the thoracic spine, commonly referred to as hunchback.

Immunohistochemistry

A method that uses antibodies linked to an enzyme or a fluorescent dye to reveal certain antigens in a sample of tissue.

Innate immunity

The initial response of the body to detect invaders such as viruses, bacteria, parasites and toxins, or to sense wounds or trauma.

Interoceptive

Relating to sensory functions arising within the body, in the viscera or within the CNS itself.

Kinocilium

A short microscopic hair-like vibrating structure found on the surfaces of certain cells, which either causes currents in the surrounding fluid or generates active movements of a ciliated apical extension in hair cells and cerebrospinal fluid-contacting neurons (CSF-cNs).

Microtubules

Components of the cell skeleton that determine the shape of a cell and are involved in different functions including the assembly of mitotic spindle (in dividing cells) and axon extension (in neurons).

Microvilli

Microscopic actin-based cellular membrane protrusions that are involved in a wide variety of functions, including absorption, secretion, cellular adhesion and mechanotransduction.

Progenitor domains

Territories in which cascades of transcription factors are expressed during development.

Proprioceptive

Relative to proprioception, the sense of body position.

Scoliosis

Abnormal lateral curvature of the spine showing 3D torsion.

Taste receptors

Cellular receptors that facilitate the sensation of taste.

Transcriptomic analyses

Methods involving the quantification of transcriptional activity to reveal a global picture of cell function.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyart, C., Carbo-Tano, M., Cantaut-Belarif, Y. et al. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat. Rev. Neurosci. 24, 540–556 (2023). https://doi.org/10.1038/s41583-023-00723-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00723-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing