Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and consequences of sex differences in immune responses

Abstract

Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.

Key points

  • Biological sex refers to the differences between males and females caused by a differential sex chromosome complement (most commonly XX or XY in mammals), whereas gender refers to socially constructed norms that determine the roles, relationships and positional power of men and women across their lifetime.

  • Current evidence supports the notion that sex chromosomes and gonadal hormones modulate the number and functions of immune cells.

  • There are well characterized sex differences in the innate and adaptive immune response; there is strong evidence that type I and type II interferon signalling and humoral responses are greater in females than in males across diverse species.

  • Sex differences in both innate and adaptive immunity contribute to the increased prevalence of autoimmunity in females and increase the propensity of females to reject their organs post-transplantation.

  • Sex differences research is uncovering novel therapeutic pathways that could be targeted to improve disease outcomes in all sexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms underlying sex differences in the production of type I interferon.
Fig. 2: Sex differences in the production of IFNγ by T cells.
Fig. 3: Sex differences in the balance of IL-17-producing T cells and T regulatory cells regulate sex differences in experimental hypertension.

Similar content being viewed by others

References

  1. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laffont, S. & Guery, J. C. Deconstructing the sex bias in allergy and autoimmunity: from sex hormones and beyond. Adv. Immunol. 142, 35–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Melk, A. et al. Equally interchangeable? How sex and gender affect transplantation. Transplantation 103, 1094–1110 (2019).

    Article  PubMed  Google Scholar 

  6. Klein, S. L. & Morgan, R. The impact of sex and gender on immunotherapy outcomes. Biol. Sex. Differ. 11, 24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Migeon, B. R. Why females are mosaics, X-chromosome inactivation, and sex differences in disease. Gend. Med. 4, 97–105 (2007).

    Article  PubMed  Google Scholar 

  9. Oktenli, C. et al. Study of autoimmunity in Klinefelter’s syndrome and idiopathic hypogonadotropic hypogonadism. J. Clin. immunol. 22, 137–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Cacciari, E. et al. Serum immunoglobulins and lymphocyte subpopulations derangement in Turner’s syndrome. J. Immunogenet. 8, 337–344 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Gravholt, C. H. Turner syndrome in adulthood. Horm. Res. 64, 86–93 (2005).

    CAS  PubMed  Google Scholar 

  12. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh, Y. et al. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J. Clin. Invest. 129, 3852–3863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  15. Fink, A. L., Engle, K., Ursin, R. L., Tang, W. Y. & Klein, S. L. Biological sex affects vaccine efficacy and protection against influenza in mice. Proc. Natl Acad. Sci. USA 115, 12477–12482 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Made, C. I. et al. Presence of genetic variants among young men with severe COVID-19. JAMA 324, 663–673 (2020).

    Article  PubMed  Google Scholar 

  17. Cheng, M. I. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 24, 780–791 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, S. & Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex. Differ. 5, 3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Malmhall, C., Weidner, J. & Radinger, M. MicroRNA-155 expression suggests a sex disparity in innate lymphoid cells at the single-cell level. Cell Mol. Immunol. 17, 544–546 (2020).

    Article  PubMed  Google Scholar 

  20. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    Article  PubMed  Google Scholar 

  21. Golden, L. C. et al. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc. Natl Acad. Sci. USA 116, 26779–26787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Case, L. K. et al. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res. 23, 1474–1485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krementsov, D. N. et al. Genetic variation in chromosome Y regulates susceptibility to influenza A virus infection. Proc. Natl Acad. Sci. USA 114, 3491–3496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinstein, Y., Ran, S. & Segal, S. Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J. Immunol. 132, 656–661 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Eidinger, D. & Garrett, T. J. Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J. Exp. Med. 136, 1098–1116 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bjornstrom, L. & Sjoberg, M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842 (2005).

    Article  PubMed  Google Scholar 

  28. Cvoro, A. et al. Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol. Cell 21, 555–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Blanquart, E., Laffont, S. & Guery, J. C. Sex hormone regulation of innate lymphoid cells. Biomed. J. 44, 144–156 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294, 63–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Notas, G., Kampa, M. & Castanas, E. G protein-coupled estrogen receptor in immune cells and its role in immune-related diseases. Front. Endocrinol. 11, 579420 (2020).

    Article  Google Scholar 

  32. Phiel, K. L., Henderson, R. A., Adelman, S. J. & Elloso, M. M. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol. Lett. 97, 107–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Brundin, P. M. A. et al. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle. Front. Endocrinol. 12, 721813 (2021).

    Article  Google Scholar 

  34. Fox, H. S., Bond, B. L. & Parslow, T. G. Estrogen regulates the IFN-gamma promoter. J. Immunol. 146, 4362–4367 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Stein, B. & Yang, M. X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPβ. Mol. Cell Biol. 15, 4971–4979 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, C. et al. Membrane estrogen receptor regulates experimental autoimmune encephalomyelitis through up-regulation of programmed death 1. J. Immunol. 182, 3294–3303 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C. et al. GPR30 contributes to estrogen-induced thymic atrophy. Mol. Endocrinol. 22, 636–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tan, I. J., Peeva, E. & Zandman-Goddard, G. Hormonal modulation of the immune system – a spotlight on the role of progestogens. Autoimmun. Rev. 14, 536–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Griekspoor, A., Zwart, W., Neefjes, J. & Michalides, R. Visualizing the action of steroid hormone receptors in living cells. Nucl. Recept. Signal. 5, e003 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Christin-Maitre, S. History of oral contraceptive drugs and their use worldwide. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 3–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Meier, A. et al. Sex differences in the toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su, S. et al. Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone. Signal. Transduct. Target. Ther. 7, 137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hall, O. J. et al. Progesterone-based therapy protects against influenza by promoting lung repair and recovery in females. PLoS Pathog. 12, e1005840 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Park, C. J. et al. Progesterone receptor serves the ovary as a trigger of ovulation and a terminator of inflammation. Cell Rep. 31, 107496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butts, C. L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Pauklin, S. & Petersen-Mahrt, S. K. Progesterone inhibits activation-induced deaminase by binding to the promoter. J. Immunol. 183, 1238–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gubbels Bupp, M. R. & Jorgensen, T. N. Androgen-induced immunosuppression. Front. Immunol. 9, 794 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jacquelot, N., Luong, K. & Seillet, C. Physiological regulation of innate lymphoid cells. Front. Immunol. 10, 405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berghofer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177, 2088–2096 (2006).

    Article  PubMed  Google Scholar 

  50. Ziegler, S. M. et al. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression. Eur. J. Immunol. 47, 251–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 119, 454–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, J. P., Zhang, L., Madera, R. F., Woda, M. & Libraty, D. H. Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants. BMC Immunol. 13, 35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Webb, K. et al. Sex and pubertal differences in the type 1 interferon pathway associate with both X chromosome number and serum sex hormone concentration. Front. Immunol. 9, 3167 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195, 5327–5336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Panchanathan, R., Liu, H. & Choubey, D. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity. Int. Immunol. 25, 521–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laffont, S. et al. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 193, 5444–5452 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Hagen, S. H. et al. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep. 33, 108485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MacCall, C. A., Ritchie, G. & Sood, M. Oral fluid testing as an alternative to urine testing for drugs of abuse in inpatient forensic settings: giving patients choice. Scott. Med. J. 58, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Congy-Jolivet, N. et al. Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine 80, 104047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, S. & Voskuhl, R. R. Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis. J. Immunol. 162, 5561–5568 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Cua, D. J., Hinton, D. R. & Stohlman, S. A. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J. Immunol. 155, 4052–4059 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Drohomyrecky, P. C. et al. Peroxisome proliferator-activated receptor-δ acts within peripheral myeloid cells to limit Th cell priming during experimental autoimmune encephalomyelitis. J. Immunol. 203, 2588–2601 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Wilcoxen, S. C., Kirkman, E., Dowdell, K. C. & Stohlman, S. A. Gender-dependent IL-12 secretion by APC is regulated by IL-10. J. Immunol. 164, 6237–6243 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, M. A. et al. Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proc. Natl Acad. Sci. USA 109, 9505–9510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Delpy, L. et al. Estrogen enhances susceptibility to experimental autoimmune myasthenia gravis by promoting type 1-polarized immune responses. J. Immunol. 175, 5050–5057 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kovats, S. Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity. Horm. Behav. 62, 254–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Douin-Echinard, V. et al. Estrogen receptor α, but not β, is required for optimal dendritic cell differentiation and CD40-induced cytokine production. J. Immunol. 180, 3661–3669 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Scotland, R. S., Stables, M. J., Madalli, S., Watson, P. & Gilroy, D. W. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118, 5918–5927 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Bain, C. C. et al. Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Sci. Immunol. 5, eabc4466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jaillon, S., Berthenet, K. & Garlanda, C. Sexual dimorphism in innate immunity. Clin. Rev. Allergy Immunol. 56, 308–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Li, K. et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res. 105, 353–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Deny, M. et al. Sex difference in innate inflammatory response and macrophage polarization in Streptococcus agalactiae-induced pneumonia and potential role of microRNA-223-3p. Sci. Rep. 12, 17126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Melgert, B. N. et al. Macrophages: regulators of sex differences in asthma? Am. J. Respir. Cell Mol. Biol. 42, 595–603 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Huber, S. & Sartini, D. T cells expressing the Vγ1 T-cell receptor enhance virus-neutralizing antibody response during coxsackievirus B3 infection of BALB/c mice: differences in male and female mice. Viral Immunol. 18, 730–739 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ballard, M. S. et al. The changing epidemiology of group B streptococcus bloodstream infection: a multi-national population-based assessment. Infect. Dis. 48, 386–391 (2016).

    Article  Google Scholar 

  77. Trijbels-Smeulders, M. et al. Epidemiology of neonatal group B streptococcal disease in the Netherlands before and after introduction of guidelines for prevention. Arch. Dis. Child. Fetal Neonatal Ed. 92, F271–276 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dick, S. A., Zaman, R. & Epelman, S. Using high-dimensional approaches to probe monocytes and macrophages in cardiovascular disease. Front. Immunol. 10, 2146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chuang, K. H. et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 206, 1181–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Markman, J. L. et al. Loss of testosterone impairs anti-tumor neutrophil function. Nat. Commun. 11, 1613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang, M. A. et al. Antagonizing peroxisome proliferator-activated receptor α activity selectively enhances Th1 immunity in male mice. J. Immunol. 195, 5189–5202 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Hrushesky, W. J. et al. Natural killer cell activity: age, estrous- and circadian-stage dependence and inverse correlation with metastatic potential. J. Natl Cancer Inst. 80, 1232–1237 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, S. et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. J. Immunol. 185, 756–762 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Zychlinsky Scharff, A. et al. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight 5, e122998 (2019).

    Article  PubMed  Google Scholar 

  86. Darboe, A. et al. Age-related dynamics of circulating innate lymphoid cells in an African population. Front. Immunol. 11, 594107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kadel, S. et al. A major population of functional KLRG1 ILC2s in female lungs contributes to a sex bias in ILC2 numbers. Immunohorizons 2, 74–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Cephus, J. Y. et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 21, 2487–2499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Laffont, S. et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214, 1581–1592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gandhi, V. D. et al. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J. Clin. Invest. 132, e153397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Russi, A. E., Ebel, M. E., Yang, Y. & Brown, M. A. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl Acad. Sci. USA 115, E1520–E1529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Terabe, M. & Berzofsky, J. A. Tissue-specific roles of NKT cells in tumor immunity. Front. Immunol. 9, 1838 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sandberg, J. K., Bhardwaj, N. & Nixon, D. F. Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Vα24 NKT cell compartment. Eur. J. Immunol. 33, 588–596 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Bernin, H., Fehling, H., Marggraff, C., Tannich, E. & Lotter, H. The cytokine profile of human NKT cells and PBMCs is dependent on donor sex and stimulus. Med. Microbiol. Immunol. 205, 321–332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gourdy, P. et al. Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-γ production by invariant natural killer T cells. Blood 105, 2415–2420 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Lotter, H., Jacobs, T., Gaworski, I. & Tannich, E. Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect. Immun. 74, 118–124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lotter, H. et al. Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog. 5, e1000434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Palaszynski, K. M. et al. A yin-yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinology 146, 3280–3285 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, L. J. et al. Local cytokine levels associated with delayed-type hypersensitivity responses: modulation by gender, ovariectomy, and estrogen replacement. J. Endocrinol. 193, 291–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Vom Steeg, L. G., Flores-Garcia, Y., Zavala, F. & Klein, S. L. Irradiated sporozoite vaccination induces sex-specific immune responses and protection against malaria in mice. Vaccine 37, 4468–4476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peacock, J. W. et al. Gender differences in human immunodeficiency virus type 1-specific CD8 responses in the reproductive tract and colon following nasal peptide priming and modified vaccinia virus Ankara boosting. J. Virol. 78, 13163–13172 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kondo, H. et al. Markers of memory CD8 T cells depicting the effect of the BNT162b2 mRNA COVID-19 vaccine in Japan. Front. Immunol. 13, 836923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stanberry, L. R. et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347, 1652–1661 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Umlauf, B. J. et al. Associations between demographic variables and multiple measles-specific innate and cell-mediated immune responses after measles vaccination. Viral Immunol. 25, 29–36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Amadori, A. et al. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat. Med. 1, 1279–1283 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Breznik, J. A., Schulz, C., Ma, J., Sloboda, D. M. & Bowdish, D. M. E. Biological sex, not reproductive cycle, influences peripheral blood immune cell prevalence in mice. J. Physiol. 599, 2169–2195 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Pido-Lopez, J., Imami, N. & Aspinall, R. Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin. Exp. Immunol. 125, 409–413 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aguirre-Gamboa, R. et al. Differential effects of environmental and genetic factors on T and B cell immune traits. Cell Rep. 17, 2474–2487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gui, J., Mustachio, L. M., Su, D. M. & Craig, R. W. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis. 3, 280–290 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. Olsen, N. J., Olson, G., Viselli, S. M., Gu, X. & Kovacs, W. J. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142, 1278–1283 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Utsuyama, M. & Hirokawa, K. Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech. Ageing Dev. 47, 175–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. Sutherland, J. S. et al. Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741–2753 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Proekt, I., Miller, C. N., Lionakis, M. S. & Anderson, M. S. Insights into immune tolerance from AIRE deficiency. Curr. Opin. Immunol. 49, 71–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu, M. L. et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat. Commun. 7, 11350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dragin, N. et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Invest. 126, 1525–1537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dumont-Lagace, M., St-Pierre, C. & Perreault, C. Sex hormones have pervasive effects on thymic epithelial cells. Sci. Rep. 5, 12895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hun, M. L. et al. Gender disparity impacts on thymus aging and LHRH receptor antagonist-induced thymic reconstitution following chemotherapeutic damage. Front. Immunol. 11, 302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sankaran-Walters, S. et al. Sex differences matter in the gut: effect on mucosal immune activation and inflammation. Biol. Sex. Differ. 4, 10 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hewagama, A., Patel, D., Yarlagadda, S., Strickland, F. M. & Richardson, B. C. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes. Immun. 10, 509–516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Park, H. J., Park, H. S., Lee, J. U., Bothwell, A. L. & Choi, J. M. Gender-specific differences in PPARγ regulation of follicular helper T cell responses with estrogen. Sci. Rep. 6, 28495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Maret, A. et al. Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. Eur. J. Immunol. 33, 512–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Bao, M., Yang, Y., Jun, H. S. & Yoon, J. W. Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 168, 5369–5375 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pauklin, S., Sernandez, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dunn, S. E. et al. Peroxisome proliferator-activated receptor (PPAR)α expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J. Exp. Med. 204, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cephus, J. Y. et al. Estrogen receptor-α signaling increases allergen-induced IL-33 release and airway inflammation. Allergy 76, 255–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Dimitrijevic, M. et al. Sex differences in Tfh cell help to B cells contribute to sexual dimorphism in severity of rat collagen-induced arthritis. Sci. Rep. 10, 1214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Foster, A. D. et al. Donor CD8 T cell activation is critical for greater renal disease severity in female chronic graft-vs.-host mice and is associated with increased splenic ICOShi host CD4 T cells and IL-21 expression. Clin. Immunol. 136, 61–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, S. J., Zou, Y. R., Goldstein, J., Reizis, B. & Diamond, B. Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med. 208, 2193–2199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Afshan, G., Afzal, N. & Qureshi, S. CD4+CD25hi regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin. Lab. 58, 567–571 (2012).

    PubMed  Google Scholar 

  134. Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178, 2572–2578 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Cho, J. et al. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6. PLoS ONE 8, e61186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peterson, R. A. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol. Pathol. 40, 186–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Hussain, S., Kirwin, S. J. & Stohlman, S. A. Increased T regulatory cells lead to development of Th2 immune response in male SJL mice. Autoimmunity 44, 219–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Yee Mon, K. J. et al. Differential sensitivity to IL-12 drives sex-specific differences in the CD8+ T cell response to infection. Immunohorizons 3, 121–132 (2019).

    Article  PubMed  Google Scholar 

  139. Rukavina, D. et al. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood 92, 2410–2420 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, C. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 55, 1268–1283.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Kwon, H. et al. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 7, eabq2630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mohanram, V. et al. B cell responses associated with vaccine-induced delayed SIVmac251 acquisition in female rhesus macaques. J. Immunol. 197, 2316–2324 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Tuero, I. et al. Mucosal B cells are associated with delayed SIV acquisition in vaccinated female but not male rhesus macaques following SIVmac251 rectal challenge. PLoS Pathog. 11, e1005101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zivkovic, I. et al. Sex bias in mouse humoral immune response to influenza vaccine depends on the vaccine type. Biologicals 52, 18–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Zivkovic, I. et al. Sexual diergism in antibody response to whole virus trivalent inactivated influenza vaccine in outbred mice. Vaccine 33, 5546–5552 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Ursin, R. L. et al. Greater breadth of vaccine-induced immunity in females than males is mediated by increased antibody diversity in germinal center B cells. mBio 13, e0183922 (2022).

    Article  PubMed  Google Scholar 

  147. Engler, R. J. et al. Half- vs full-dose trivalent inactivated influenza vaccine (2004-2005): age, dose, and sex effects on immune responses. Arch. Intern. Med. 168, 2405–2414 (2008).

    Article  PubMed  Google Scholar 

  148. Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. USA 111, 869–874 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Potluri, T. et al. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 4, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nguyen, D. C. et al. 17β-Estradiol restores antibody responses to an influenza vaccine in a postmenopausal mouse model. Vaccine 29, 2515–2518 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Jones, B. G. et al. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Mol. Immunol. 77, 97–102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gearhart, P. J. Immunology: the roots of antibody diversity. Nature 419, 29–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Hurwitz, J. L. et al. Hotspots for vitamin-steroid-thyroid hormone response elements within switch regions of immunoglobulin heavy chain loci predict a direct influence of vitamins and hormones on B cell class switch recombination. Viral Immunol. 29, 132–136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cunningham, M. A., Wirth, J. R., Naga, O., Eudaly, J. & Gilkeson, G. S. Estrogen receptor alpha binding to ERE is required for full Tlr7- and Tlr9-induced inflammation. SOJ Immunol. 2, 4 (2014).

    Article  Google Scholar 

  155. Lundell, A. C. et al. Higher B-cell activating factor levels at birth are positively associated with maternal dairy farm exposure and negatively related to allergy development. J. Allergy Clin. Immunol. 136, 1074–1082.e3 (2015).

    Article  PubMed  Google Scholar 

  156. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rubtsov, A. V., Rubtsova, K., Kappler, J. W. & Marrack, P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol. Res. 55, 210–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fairweather, D., Frisancho-Kiss, S. & Rose, N. R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173, 600–609 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Handel, A. E., Handunnetthi, L., Ebers, G. C. & Ramagopalan, S. V. Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nat. Rev. Endocrinol. 5, 655–664 (2009).

    Article  PubMed  Google Scholar 

  162. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309, 2473–2479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ucciferri, C. C. & Dunn, S. E. Effect of puberty on the immune system: relevance to multiple sclerosis. Front. Pediatrics 10, 1059083 (2022).

    Article  Google Scholar 

  164. Dalal, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159, 3–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Makino, S., Kunimoto, K., Muraoka, Y. & Katagiri, K. Effect of castration on the appearance of diabetes in NOD mouse. Jikken Dobutsu 30, 137–140 (1981).

    CAS  PubMed  Google Scholar 

  166. Fox, H. S. Androgen treatment prevents diabetes in nonobese diabetic mice. J. Exp. Med. 175, 1409–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

  167. Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflammation 5, 32 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Ahn, J. J. et al. Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Mult. Scler. 21, 735–748 (2015).

    Article  PubMed  Google Scholar 

  171. Bebo, B. F. Jr et al. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J. Immunol. 166, 2080–2089 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. McClain, M. A. et al. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J. Immunol. 179, 8146–8152 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Confavreux, C., Hutchinson, M., Hours, M. M., Cortinovis-Tourniaire, P. & Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med. 339, 285–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Logel, S. N., Bekx, M. T. & Rehm, J. L. Potential association between type 1 diabetes mellitus and gender dysphoria. Pediatr. Diabetes 21, 266–270 (2020).

    Article  PubMed  Google Scholar 

  175. Pakpoor, J., Wotton, C. J., Schmierer, K., Giovannoni, G. & Goldacre, M. J. Gender identity disorders and multiple sclerosis risk: a national record-linkage study. Mult. Scler. 22, 1759–1762 (2016).

    Article  PubMed  Google Scholar 

  176. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Eriksson, C. et al. Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden. Arthritis Res. Ther. 13, R30 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wither, J. et al. Presence of an interferon signature in individuals who are anti-nuclear antibody positive lacking a systemic autoimmune rheumatic disease diagnosis. Arthritis Res. Ther. 19, 41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hiraki, L. T. et al. Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US Medicaid beneficiary population. Arthritis Rheum. 64, 2669–2676 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cooney, C. M. et al. 46,X,del(X)(q13) Turner’s syndrome women with systemic lupus erythematosus in a pedigree multiplex for SLE. Genes. Immun. 10, 478–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Syrett, C. M. et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4, e126751 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hewagama, A. et al. Overexpression of X-linked genes in T cells from women with lupus. J. Autoimmun. 41, 60–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Roubinian, J. R., Papoian, R. & Talal, N. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. J. Clin. Invest. 59, 1066–1070 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Costenbader, K. H., Feskanich, D., Stampfer, M. J. & Karlson, E. W. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis Rheum. 56, 1251–1262 (2007).

    Article  PubMed  Google Scholar 

  186. Bernier, M. O., Mikaeloff, Y., Hudson, M. & Suissa, S. Combined oral contraceptive use and the risk of systemic lupus erythematosus. Arthritis Rheum. 61, 476–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Petri, M. et al. Combined oral contraceptives in women with systemic lupus erythematosus. N. Engl. J. Med. 353, 2550–2558 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Tomer, Y., Viegas, O. A., Swissa, M., Koh, S. C. & Shoenfeld, Y. Levels of lupus autoantibodies in pregnant SLE patients: correlations with disease activity and pregnancy outcome. Clin. Exp. Rheumatol. 14, 275–280 (1996).

    CAS  PubMed  Google Scholar 

  189. Panchanathan, R. & Choubey, D. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol. Immunol. 53, 15–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Cohen-Solal, J. F. et al. Hormonal regulation of B-cell function and systemic lupus erythematosus. Lupus 17, 528–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Schwartzman-Morris, J. & Putterman, C. Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin. Dev. Immunol. 2012, 604892 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol. 30, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).

    Article  PubMed  Google Scholar 

  194. Deng, W. et al. Gender-related differences in clinicopathological characteristics and renal outcomes of Chinese patients with IgA nephropathy. BMC Nephrol. 19, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Connelly, P. J., Currie, G. & Delles, C. Sex differences in the prevalence, outcomes and management of hypertension. Curr. Hypertens. Rep. 24, 185–192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Baylis, C. Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and angiotensin II overactivity. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1365–1372 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Elmarakby, A. A. & Sullivan, J. C. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clin. Sci. 135, 1791–1804 (2021).

    Article  CAS  Google Scholar 

  198. Tipton, A. J., Baban, B. & Sullivan, J. C. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R359–R367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zimmerman, M. A., Baban, B., Tipton, A. J., O’Connor, P. M. & Sullivan, J. C. Chronic ANG II infusion induces sex-specific increases in renal T cells in Sprague-Dawley rats. Am. J. Physiol. Ren. Physiol. 308, F706–F712 (2015).

    Article  CAS  Google Scholar 

  200. Ji, H. et al. Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension 64, 573–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Rodriguez-Iturbe, B. et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am. J. Physiol. Ren. Physiol. 282, F191–F201 (2002).

    Article  Google Scholar 

  202. Sandberg, K., Ji, H. & Hay, M. Sex-specific immune modulation of primary hypertension. Cell Immunol. 294, 95–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Pollow, D. P. et al. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 64, 384–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Mikolajczyk, T. P. & Guzik, T. J. Adaptive immunity in hypertension. Curr. Hypertens. Rep. 21, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Brinson, K. N. et al. Female SHR have greater blood pressure sensitivity and renal T cell infiltration following chronic NOS inhibition than males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R701–R710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Belanger, K. M. et al. Greater T regulatory cells in females attenuate DOCA-salt-induced increases in blood pressure versus males. Hypertension 75, 1615–1623 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Fehrenbach, D. J. & Mattson, D. L. Inflammatory macrophages in the kidney contribute to salt-sensitive hypertension. Am. J. Physiol. Ren. Physiol. 318, F544–F548 (2020).

    Article  CAS  Google Scholar 

  210. Sullivan, J. C., Semprun-Prieto, L., Boesen, E. I., Pollock, D. M. & Pollock, J. S. Sex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1573–R1579 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Echem, C. et al. Mitochondrial DNA: a new driver for sex differences in spontaneous hypertension. Pharmacol. Res. 144, 142–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Fehrenbach, D. J. et al. Sexual dimorphic role of CD14 (cluster of differentiation 14) in salt-sensitive hypertension and renal injury. Hypertension 77, 228–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Basile, D. P., Abais-Battad, J. M. & Mattson, D. L. Contribution of Th17 cells to tissue injury in hypertension. Curr. Opin. Nephrol. Hypertens. 30, 151–158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lindsey, S. H., Yamaleyeva, L. M., Brosnihan, K. B., Gallagher, P. E. & Chappell, M. C. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension 58, 665–671 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Gohar, E. Y. et al. Evidence for G-protein-coupled estrogen receptor as a pronatriuretic factor. J. Am. Heart Assoc. 9, e015110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ogola, B. O. et al. G protein-coupled estrogen receptor protects from angiotensin II-induced increases in pulse pressure and oxidative stress. Front. Endocrinol. 10, 586 (2019).

    Article  Google Scholar 

  217. Scully, E. P., Haverfield, J., Ursin, R. L., Tannenbaum, C. & Klein, S. L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20, 442–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Scully, E. P. et al. Sex and gender differences in testing, hospital admission, clinical presentation, and drivers of severe outcomes from COVID-19. Open. Forum Infect. Dis. 8, ofab448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Kharroubi, S. A. & Diab-El-Harake, M. Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: a large US-based cohort study. Front. Public. Health 10, 1029190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Torres, C. et al. Identifying age- and sex-specific COVID-19 mortality trends over time in six countries. Int. J. Infect. Dis. 128, 32–40 (2023).

    Article  PubMed  Google Scholar 

  221. Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H. K., Morgan, R. & Klein, S. L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex. Differ. 11, 29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Karlberg, J., Chong, D. S. & Lai, W. Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 159, 229–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. Alghamdi, I. G. et al. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med. 7, 417–423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Klein, S. L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. BioEssays 34, 1050–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. vom Steeg, L. G. & Klein, S. L. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 12, e1005374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Robinson, D. P., Lorenzo, M. E., Jian, W. & Klein, S. L. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 7, e1002149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Robinson, D. P. et al. Sex chromosome complement contributes to sex differences in Coxsackievirus B3 but not Influenza A virus pathogenesis. Biol. Sex. Differ. 2, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Robinson, D. P., Hall, O. J., Nilles, T. L., Bream, J. H. & Klein, S. L. 17β-Estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 88, 4711–4720 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Vom Steeg, L. G. et al. Age and testosterone mediate influenza pathogenesis in male mice. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L1234–L1244 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Lorenzo, M. E. et al. Antibody responses and cross protection against lethal influenza A viruses differ between the sexes in C57BL/6 mice. Vaccine 29, 9246–9255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Vermillion, M. S. et al. Production of amphiregulin and recovery from influenza is greater in males than females. Biol. Sex. Differ. 9, 24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Giurgea, L. T. et al. Sex differences in influenza: the challenge study experience. J. Infect. Dis. 225, 715–722 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Larcombe, A. N. et al. Sexual dimorphism in lung function responses to acute influenza A infection. Influenza Other Respir. Viruses 5, 334–342 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Hoffmann, J. et al. Sex differences in H7N9 influenza A virus pathogenesis. Vaccine 33, 6949–6954 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Vermillion, M. S., Ursin, R. L., Attreed, S. E. & Klein, S. L. Estriol reduces pulmonary immune cell recruitment and inflammation to protect female mice from severe influenza. Endocrinology 159, 3306–3320 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62, 263–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hall, O. J. et al. Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza A virus infections. J. Virol. 91, e02160-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Vom Steeg, L. G. et al. Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathog. 16, e1008506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Maenosono, R. et al. Recipient sex and estradiol levels affect transplant outcomes in an age-specific fashion. Am. J. Transpl. 21, 3239–3255 (2021).

    Article  CAS  Google Scholar 

  241. Lepeytre, F. et al. Association of sex with risk of kidney graft failure differs by age. J. Am. Soc. Nephrol. 28, 3014–3023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Vinson, A. J. et al. Age-dependent sex differences in graft loss after kidney transplantation. Transplantation 106, 1473–1484 (2022).

    Article  CAS  PubMed  Google Scholar 

  243. Hickey, K. T. et al. Clinical and gender differences in heart transplant recipients in the NEW HEART study. Eur. J. Cardiovasc. Nurs. 16, 222–229 (2017).

    Article  PubMed  Google Scholar 

  244. Foster, B. J. et al. Differences in heart graft survival by recipient sex. Transpl. Direct 7, e749 (2021).

    Article  Google Scholar 

  245. Dziarmaga, R. et al. Age- and sex-mediated differences in T lymphocyte populations of kidney transplant recipients. Pediatr. Transpl. 26, e14150 (2022).

    Article  CAS  Google Scholar 

  246. Magnussen, C. et al. Sex differences in preformed panel-reactive antibody levels and outcomes in patients undergoing heart transplantation. Clin. Transpl. 33, e13572 (2019).

    Article  Google Scholar 

  247. Redfield, R. R. et al. The mode of sensitization and its influence on allograft outcomes in highly sensitized kidney transplant recipients. Nephrol. Dial. Transpl. 31, 1746–1753 (2016).

    Article  CAS  Google Scholar 

  248. Porrett, P. M. Biologic mechanisms and clinical consequences of pregnancy alloimmunization. Am. J. Transpl. 18, 1059–1067 (2018).

    Article  CAS  Google Scholar 

  249. Durgam, S. S., Alegre, M. L. & Chong, A. S. Toward an understanding of allogeneic conflict in pregnancy and transplantation. J. Exp. Med. 219, e20211493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Bromberger, B. et al. Pregnancy-induced sensitization promotes sex disparity in living donor kidney transplantation. J. Am. Soc. Nephrol. 28, 3025–3033 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Honger, G. et al. Frequency and determinants of pregnancy-induced child-specific sensitization. Am. J. Transpl. 13, 746–753 (2013).

    Article  CAS  Google Scholar 

  252. Higgins, R. et al. Pregnancy-induced HLA antibodies respond more vigorously after renal transplantation than antibodies induced by prior transplantation. Hum. Immunol. 76, 546–552 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Woitowich, N. C., Beery, A. & Woodruff, T. A 10-year follow-up study of sex inclusion in the biological sciences. Elife 9, e56344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Sugimoto, C. R., Ahn, Y. Y., Smith, E., Macaluso, B. & Lariviere, V. Factors affecting sex-related reporting in medical research: a cross-disciplinary bibliometric analysis. Lancet 393, 550–559 (2019).

    Article  PubMed  Google Scholar 

  255. Marquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. U.S. Department of Health, Education, and Welfare. General considerations for the clinical evaluation of drugs. FDA https://www.fda.gov/media/71495/download (1977).

  257. Parekh, A., Fadiran, E. O., Uhl, K. & Throckmorton, D. C. Adverse effects in women: implications for drug development and regulatory policies. Expert. Rev. Clin. Pharmacol. 4, 453–466 (2011).

    Article  PubMed  Google Scholar 

  258. Pinn, V. W. The role of the NIH’s Office of Research on Women’s Health. Acad. Med. 69, 698–702 (1994).

    Article  CAS  PubMed  Google Scholar 

  259. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  260. Clayton, J. A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 187, 2–5 (2018).

    Article  CAS  PubMed  Google Scholar 

  261. DiMarco, M., Zhao, H., Boulicault, M. & Richardson, S. S. Why “sex as a biological variable” conflicts with precision medicine initiatives. Cell Rep. Med. 3, 100550 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. L. Sandberg, Georgetown University, DC, USA, for critical review of the section on hypertension during the revisions process. S.E.D.’s work is supported by a Canadian Institutes of Health Research (CIHR) Sex and Gender Chair in Immunity and operating grants from CIHR, MS Canada and the BranchOut Foundation. S.L.K’s work is supported by the Johns Hopkins Specialized Center of Research Excellence in Sex Differences (U54AG062333).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sabra L. Klein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Annet Kirabo, Susan Kovats and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunn, S.E., Perry, W.A. & Klein, S.L. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 20, 37–55 (2024). https://doi.org/10.1038/s41581-023-00787-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00787-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing