Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The conneXion between sex and immune responses

Abstract

There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex differences with pathogen infections and autoimmune disease.
Fig. 2: Impairments in dynamic XCI maintenance result in aberrant overexpression of X-linked genes in female-biased autoimmune diseases.
Fig. 3: Number of X chromosomes and risk for autoimmune disease.

Similar content being viewed by others

References

  1. Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Pasche, B. et al. Sex-dependent susceptibility to Listeria monocytogenes infection is mediated by differential interleukin-10 production. Infect. Immun. 73, 5952–5960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Natri, H., Garcia, A. R., Buetow, K. H., Trumble, B. C. & Wilson, M. A. The pregnancy pickle: evolved immune compensation due to pregnancy underlies sex differences in human diseases. Trends Genet. 35, 478–488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patin, E. et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Clave, E. et al. Human thymopoiesis is influenced by a common genetic variant within the TCRA-TCRD locus. Sci. Transl. Med. 10, eaa02966 (2018).

    Article  Google Scholar 

  6. Bongen, E. et al. Sex differences in the blood transcriptome identify robust changes in immune cell proportions with aging and influenza infection. Cell Rep. 29, 1961–1973.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdullah, M. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 272, 214–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Melzer, S. et al. Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color flow cytometry. Cytom. B Clin. Cytom. 88, 270–281 (2015).

    Article  Google Scholar 

  9. Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216118 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wikby, A., Mansson, I. A., Johansson, B., Strindhall, J. & Nilsson, S. E. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology 9, 299–308 (2008).

    Article  PubMed  Google Scholar 

  11. Carr, E. J. et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17, 461–468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan, S. R. et al. Determinants of serum immunoglobulin levels: a systematic review and meta-analysis. Front. Immunol. 12, 664526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hensel, J. A., Khattar, V., Ashton, R. & Ponnazhagan, S. Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. Lab. Invest. 99, 93–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Breznik, J. A., Schulz, C., Ma, J., Sloboda, D. M. & Bowdish, D. M. E. Biological sex, not reproductive cycle, influences peripheral blood immune cell prevalence in mice. J. Physiol. 599, 2169–2195 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Scotland, R. S., Stables, M. J., Madalli, S., Watson, P. & Gilroy, D. W. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118, 5918–5927 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Menees, K. B. et al. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immun. Ageing 18, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng, M. I. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 24, 780–791 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durandy, A., Cantaert, T., Kracker, S. & Meffre, E. Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity 46, 148–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Young, N. A. et al. Estrogen modulation of endosome-associated Toll-like receptor 8: an IFNα-independent mechanism of sex-bias in systemic lupus erythematosus. Clin. Immunol. 151, 66–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, J. et al. Oestrogen up-regulates interleukin-21 production by CD4+ T lymphocytes in patients with systemic lupus erythematosus. Immunology 142, 573–580 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, S. et al. Interleukin-23 drives expansion of Thelper 17 cells through epigenetic regulation by signal transducer and activators of transcription 3 in lupus patients. Rheumatology 59, 3058–3069 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Berghofer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177, 2088–2096 (2006).

    Article  PubMed  Google Scholar 

  24. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 119, 454–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Regis, E. et al. Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Sci. Rep. 11, 23741 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Congy-Jolivet, N. et al. Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine 80, 104047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195, 5327–5336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Zeng, Z. et al. Sex-hormone-driven innate antibodies protect females and infants against EPEC infection. Nat. Immunol. 19, 1100–1111 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. McDonald, G. et al. Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked Toll-like receptor 8. Front. Immunol. 6, 457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  33. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Aomatsu, M., Kato, T., Kasahara, E. & Kitagawa, S. Gender difference in tumor necrosis factor-α production in human neutrophils stimulated by lipopolysaccharide and interferon-γ. Biochem. Biophys. Res. Commun. 441, 220–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Ho, C. H. et al. Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway. PLoS ONE 12, e0180244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Trigunaite, A., Dimo, J. & Jorgensen, T. N. Suppressive effects of androgens on the immune system. Cell. Immunol. 294, 87–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Wilhelmson, A. S. et al. Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nat. Commun. 9, 2067 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, R. et al. A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity. Nature 577, 416–420 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dragin, N. et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Invest. 126, 1525–1537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, M. L. et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat. Commun. 7, 11350 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Anguera, M. C. et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11, 75–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adrianse, R. L. et al. Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion. Epigenetics Chromatin 11, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang, L., Yildirim, E., Kirby, J. E., Press, W. & Lee, J. T. Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proc. Natl Acad. Sci. USA 117, 4262–4272 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet. 30, 73–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Costanzi, C., Stein, P., Worrad, D. M., Schultz, R. M. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127, 2283–2289 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Syrett, C. M. et al. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet. 13, e1007050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Syrett, C. M. et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4, e126751 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Syrett, C. M. et al. Diversity of epigenetic features of the inactive X-chromosome in NK cells, dendritic cells, and macrophages. Front. Immunol. 9, 3087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pyfrom, S. et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc. Natl Acad. Sci. USA 118, e2024624118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Syrett, C. M. et al. Diversity of epigenetic features of the inactive X-chromosome in NK cells, dendritic cells, and macrophages. Front. Immunol. 9, 3087 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Ramos-Casals, M. et al. Google-driven search for big data in autoimmune geoepidemiology: analysis of 394,827 patients with systemic autoimmune diseases. Autoimmun. Rev. 14, 670–679 (2015).

    Article  PubMed  Google Scholar 

  61. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Beeson, P. B. Age and sex associations of 40 autoimmune diseases. Am. J. Med. 96, 457–462 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Koch-Henriksen, N. & Sorensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).

    Article  PubMed  Google Scholar 

  64. Syrett, C. M. & Anguera, M. C. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J. Leukoc. Biol. 106, 919–932 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41, 778–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Meyer, A. et al. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology 54, 50–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).

    Article  PubMed  Google Scholar 

  69. Peoples, C., Medsger, T. A. Jr, Lucas, M., Rosario, B. L. & Feghali-Bostwick, C. A. Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. J. Scleroderma Relat. Disord. 1, 177–240 (2016).

    PubMed  Google Scholar 

  70. Crosslin, K. L. & Wiginton, K. L. Sex differences in disease severity among patients with systemic lupus erythematosus. Gend. Med. 8, 365–371 (2011).

    Article  PubMed  Google Scholar 

  71. Courvoisier, N. et al. Prognostic factors of 10-year radiographic outcome in early rheumatoid arthritis: a prospective study. Arthritis Res. Ther. 10, R106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sierra, I. et al. Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression. Stem Cell Rep. 18, 489–502 (2022).

    Article  Google Scholar 

  73. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Jiwrajka, N. et al. Impaired dynamic X-chromosome inactivation maintenance in T cells is a feature of spontaneous murine SLE that is exacerbated in female-biased models. J. Autoimmun. 139, 103084 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Syrett, C. M., Sierra, I., Beethem, Z. T., Dubin, A. H. & Anguera, M. C. Loss of epigenetic modifications on the inactive X chromosome and sex-biased gene expression profiles in B cells from NZB/W F1 mice with lupus-like disease. J. Autoimmun. 107, 102357 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Scofield, R. H. et al. 47XXY and 47XXX in scleroderma and myositis. ACR Open Rheumatol. 4, 528–533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. De Vries, G. J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 22, 9005–9014 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. David, A. et al. Intrinsic autoimmune capacities of hematopoietic cells from female New Zealand hybrid mice. Genes Immun. 15, 153–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Geha, R. S. et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J. Allergy Clin. Immunol. 120, 776–794 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jiwrajka, N. & Anguera, M. C. The X in sex-biased immunity and autoimmune rheumatic disease. J. Exp. Med. 219, e20211487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Desai-Mehta, A., Lu, L., Ramsey-Goldman, R. & Datta, S. K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest. 97, 2063–2073 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hewagama, A. et al. Overexpression of X-linked genes in T cells from women with lupus. J. Autoimmun. 41, 60–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lian, X. et al. DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum. 64, 2338–2345 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Perez-Melgosa, M., Hollenbaugh, D. & Wilson, C. B. Cutting edge: CD40 ligand is a limiting factor in the humoral response to T cell-dependent antigens. J. Immunol. 163, 1123–1127 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Enghard, P. et al. CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthritis Rheum. 60, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ogawa, N., Ping, L., Zhenjun, L., Takada, Y. & Sugai, S. Involvement of the interferon-γ-induced T cell-attracting chemokines, interferon-γ-inducible 10-kd protein (CXCL10) and monokine induced by interferon-γ (CXCL9), in the salivary gland lesions of patients with Sjogren’s syndrome. Arthritis Rheum. 46, 2730–2741 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Kong, W. et al. Increased expression of Bruton’s tyrosine kinase in peripheral blood is associated with lupus nephritis. Clin. Rheumatol. 37, 43–49 (2018).

    Article  PubMed  Google Scholar 

  90. Kil, L. P. et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119, 3744–3756 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Katewa, A. et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis. JCI Insight 2, e90111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Valencia, X. & Lipsky, P. E. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 3, 619–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Y. Y. et al. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br. J. Dermatol. 171, 39–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Bonelli, M., von Dalwigk, K., Savitskaya, A., Smolen, J. S. & Scheinecker, C. Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis. Ann. Rheum. Dis. 67, 664–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. MacDonald, K. G. et al. Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 135, 946–955.e9 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, C., Huang, X. R., Fung, E., Liu, H. F. & Lan, H. Y. The regulatory T-cell transcription factor Foxp3 protects against crescentic glomerulonephritis. Sci. Rep. 7, 1481 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Ortiz, H. et al. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann. Rheum. Dis. 69, 1861–1865 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deane, J. A. et al. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Harris, V. M. et al. Characterization of cxorf21 provides molecular insight into female-bias immune response in SLE pathogenesis. Front. Immunol. 10, 2160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kelvin, E. A. et al. The association of host age and gender with inflammation around neurocysticercosis cysts. Ann. Trop. Med. Parasitol. 103, 487–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Wright, J. E., Werkman, M., Dunn, J. C. & Anderson, R. M. Current epidemiological evidence for predisposition to high or low intensity human helminth infection: a systematic review. Parasit. Vectors 11, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tchuem Tchuenté, L. A., Behnke, J. M., Gilbert, F. S., Southgate, V. R. & Vercruysse, J. Polyparasitism with Schistosoma haematobium and soil-transmitted helminth infections among school children in Loum, Cameroon. Trop. Med. Int. Health 8, 975–986 (2003).

    Article  PubMed  Google Scholar 

  105. Nicolosi, A. et al. The efficiency of male-to-female and female-to-male sexual transmission of the human immunodeficiency virus. Epidemiology 5, 570–575 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. WHO Ebola Response Team et al. Ebola virus disease among male and female persons in West Africa. N. Engl. J. Med. 374, 96–98 (2016).

    Article  Google Scholar 

  107. Hertz, D. & Schneider, B. Sex differences in tuberculosis. Semin. Immunopathol. 41, 225–237 (2019).

    Article  PubMed  Google Scholar 

  108. Shaheen, A. A. M., Somayaji, R., Myers, R. & Mody, C. H. Epidemiology and trends of cryptococcosis in the United States from 2000 to 2007: a population-based study. Int. J. STD AIDS 29, 453–460 (2018).

    Article  PubMed  Google Scholar 

  109. Gemmati, D. et al. COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int. J. Mol. Sci. 21, 3474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Devaux, C. A., Rolain, J.-M. & Raoult, D. ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J. Microbiol. Immunol. 53, 425–435 (2020).

    CAS  Google Scholar 

  111. Channappanavar, R. et al. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 198, 4046–4053 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Stelzig, K. E. et al. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 318, L1280–L1281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oghumu, S. et al. Cutting edge: CXCR3 escapes X chromosome inactivation in T cells during infection: potential implications for sex differences in immune responses. J. Immunol. 203, 789–794 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Szappanos, D. et al. The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity. PLoS Pathog. 14, e1007397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bustamante, J. et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat. Immunol. 12, 213–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Filipe-Santos, O. et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol. 18, 347–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Klein, S. L., Marriott, I. & Fish, E. N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 109, 9–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fink, A. L., Engle, K., Ursin, R. L., Tang, W. Y. & Klein, S. L. Biological sex affects vaccine efficacy and protection against influenza in mice. Proc. Natl Acad. Sci. USA 115, 12477–12482 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Asano, T. et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 6, eabl4348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Onodi, F. et al. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J. Exp. Med. 218, e20201387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fallerini, C. et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case–control study. eLife 10, e67569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Solanich, X. et al. Genetic screening for TLR7 variants in young and previously healthy men with severe COVID-19. Front. Immunol. 12, 719115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van der Made, C. I. et al. Presence of genetic variants among young men with severe COVID-19. JAMA 324, 663–673 (2020).

    Article  PubMed  Google Scholar 

  125. Green, M. S. et al. Gender differences in adverse events following the Pfizer-BioNTech COVID-19 vaccine. Vaccines 10, 233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tsilingiris, D., Vallianou, N. G., Karampela, I. & Dalamaga, M. Vaccine induced thrombotic thrombocytopenia: the shady chapter of a success story. Metab. Open 11, 100101 (2021).

    Article  CAS  Google Scholar 

  127. Ling, R. R. et al. Myopericarditis following COVID-19 vaccination and non-COVID-19 vaccination: a systematic review and meta-analysis. Lancet Respir. Med. 10, 679–688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Florez-Vargas, O. et al. Bias in the reporting of sex and age in biomedical research on mouse models. eLife 5, e13615 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  130. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rees, F., Doherty, M., Grainge, M. J., Lanyon, P. & Zhang, W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 56, 1945–1961 (2017).

    Article  PubMed  Google Scholar 

  132. Maciel, G., Crowson, C. S., Matteson, E. L. & Cornec, D. Prevalence of primary Sjogren’s syndrome in a US population-based cohort. Arthritis Care Res. 69, 1612–1616 (2017).

    Article  Google Scholar 

  133. Pillemer, S. R. et al. Incidence of physician-diagnosed primary Sjogren syndrome in residents of Olmsted County, Minnesota. Mayo Clin. Proc. 76, 593–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Mayes, M. D. et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 48, 2246–2255 (2003).

    Article  PubMed  Google Scholar 

  135. Hughes, M. et al. Gender-related differences in systemic sclerosis. Autoimmun. Rev. 19, 102494 (2020).

    Article  PubMed  Google Scholar 

  136. Gabriel, S. E., Crowson, C. S. & O’Fallon, W. M. The epidemiology of rheumatoid arthritis in Rochester, Minnesota, 1955–1985. Arthritis Rheum. 42, 415–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, Y. et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin. Immunol. 132, 362–370 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Balaton, B. P., Cotton, A. M. & Brown, C. J. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol. Sex Differ. 6, 35 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Clegg, C. H. et al. Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. Int. Immunol. 9, 1111–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Le Coz, C. et al. CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation. J. Allergy Clin. Immunol. 141, 2308–2311.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Flier, J. et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194, 398–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Eriksson, C., Eneslätt, K., Ivanoff, J., Rantapää-Dahlqvist, S. & Sundqvist, K. G. Abnormal expression of chemokine receptors on T-cells from patients with systemic lupus erythematosus. Lupus 12, 766–774 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Rankin, A. L. et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J. Immunol. 191, 4540–4550 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Cornacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200 (1988).

    Article  CAS  PubMed  Google Scholar 

  147. Golks, A., Tran, T. T., Goetschy, J. F. & Guerini, D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J. 26, 4368–4379 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu, J. L. et al. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nat. Commun. 8, 1854 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  149. Odhams, C. A. et al. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in systemic lupus erythematosus. Nat. Commun. 10, 2164 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  150. Heinz, L. X. et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7–9. Nature 581, 316–322 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis E Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  154. Abbas, F. et al. HIV-1 infection enhances innate function and TLR7 expression in female plasmacytoid dendritic cells. Life Sci. Alliance 5, e202201452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hagen, S. H. et al. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep. 33, 108485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fink, A. L. & Klein, S. L. Sex and gender impact immune responses to vaccines among the elderly. Physiology 30, 408–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H. & Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 41, 239–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Klein, S. L., Jedlicka, A. & Pekosz, A. The Xs and Y of immune responses to viral vaccines. Lancet Infect. Dis. 10, 338–349 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Morgan, R. & Klein, S. L. The intersection of sex and gender in the treatment of influenza. Curr. Opin. Virol. 35, 35–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Potluri, T. et al. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 4, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. USA 111, 869–874 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  162. Kennedy, R. B. et al. Gender effects on humoral immune responses to smallpox vaccine. Vaccine 27, 3319–3323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Troy, J. D., Hill, H. R., Ewell, M. G. & Frey, S. E. Sex difference in immune response to vaccination: a participant-level meta-analysis of randomized trials of IMVAMUNE smallpox vaccine. Vaccine 33, 5425–5431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Trevisan, A. et al. Sex disparity in response to hepatitis B vaccine related to the age of vaccination. Int. J. Environ. Res. Public Health 17, 327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Domínguez, A. et al. Seroprevalence of measles, rubella, and mumps antibodies in Catalonia, Spain: results of a cross-sectional study. Eur. J. Clin. Microbiol. Infect. Dis. 25, 310–317 (2006).

    Article  PubMed  Google Scholar 

  166. Riggenbach, M. M. et al. Mumps virus-specific immune response outcomes and sex-based differences in a cohort of healthy adolescents. Clin. Immunol. 234, 108912 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Mossong, J., O’Callaghan, C. J. & Ratnam, S. Modelling antibody response to measles vaccine and subsequent waning of immunity in a low exposure population. Vaccine 19, 523–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Cheung, F. et al. Sex and prior exposure jointly shape innate immune responses to a live herpesvirus vaccine. eLife 12, e80652 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lindsey, N. P. et al. Adverse event reports following yellow fever vaccination. Vaccine 26, 6077–6082 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Monath, T. P. et al. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am. J. Trop. Med. Hyg. 66, 533–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Andersen, A., Bjerregaard-Andersen, M., Rodrigues, A., Umbasse, P. & Fisker, A. B. Sex-differential effects of diphtheria-tetanus-pertussis vaccine for the outcome of paediatric admissions? A hospital based observational study from Guinea-Bissau. Vaccine 35, 7018–7025 (2017).

    Article  PubMed  Google Scholar 

  172. Aldakak, L., Huber, V. M., Ruhli, F. & Bender, N. Sex difference in the immunogenicity of the quadrivalent human papilloma virus vaccine: systematic review and meta-analysis. Vaccine 39, 1680–1686 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Zhu, Z., Xu, L. & Chen, G. Is there a difference in the efficacy of COVID-19 vaccine in males and females? — A systematic review and meta-analysis. Hum. Vaccin. Immunother. 17, 4741–4746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brown, M. A. & Su, M. A. An inconvenient variable: sex hormones and their impact on T cell responses. J. Immunol. 202, 1927–1933 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Singh, R. P., Hahn, B. H. & Bischoff, D. S. Interferon genes are influenced by 17β-estradiol in SLE. Front. Immunol. 12, 725325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Mohammad, I. et al. Estrogen receptor α contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci. Signal. 11, eaap9412 (2018).

    Article  Google Scholar 

  178. Kim, D. H. et al. Estrogen receptor α in T cells suppresses follicular helper T cell responses and prevents autoimmunity. Exp. Mol. Med. 51, 1–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Goodman, W. A. et al. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc. Natl Acad. Sci. USA 117, 17166–17176 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  180. Aggelakopoulou, M., Kourepini, E., Paschalidis, N. & Panoutsakopoulou, V. ERβ in CD4+ T cells is crucial for ligand-mediated suppression of central nervous system autoimmunity. J. Immunol. 196, 4947–4956 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Garnier, L. et al. Estrogen signaling in bystander Foxp3neg CD4+ T cells suppresses cognate Th17 differentiation in trans and protects from central nervous system autoimmunity. J. Immunol. 201, 3218–3228 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Xiong, Y. et al. Estradiol resolves pneumonia via ERβ in regulatory T cells. JCI Insight 6, e133251 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tabor, D. E. & Gould, K. A. Estrogen receptor α promotes lupus in (NZBxNZW)F1 mice in a B cell intrinsic manner. Clin. Immunol. 174, 41–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Carlsten, H. et al. Estrogen accelerates immune complex glomerulonephritis but ameliorates T cell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice. Cell. Immunol. 144, 190–202 (1992).

    Article  CAS  PubMed  Google Scholar 

  185. Herrmann, M., Scholmerich, J. & Straub, R. H. Influence of cytokines and growth factors on distinct steroidogenic enzymes in vitro: a short tabular data collection. Ann. N. Y. Acad. Sci. 966, 166–186 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  186. de Man, Y. A., Dolhain, R. J., van de Geijn, F. E., Willemsen, S. P. & Hazes, J. M. Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum. 59, 1241–1248 (2008).

    Article  PubMed  Google Scholar 

  187. Baer, A. N., Witter, F. R. & Petri, M. Lupus and pregnancy. Obstet. Gynecol. Surv. 66, 639–653 (2011).

    Article  PubMed  Google Scholar 

  188. Cutolo, M. & Straub, R. H. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat. Rev. Rheumatol. 16, 628–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Gubbels Bupp, M. R. & Jorgensen, T. N. Androgen-induced immunosuppression. Front. Immunol. 9, 794 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Traish, A., Bolanos, J., Nair, S., Saad, F. & Morgentaler, A. Do androgens modulate the pathophysiological pathways of inflammation? Appraising the contemporary evidence. J. Clin. Med. 7, 549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  ADS  CAS  PubMed  Google Scholar 

  192. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  193. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  194. Colognori, D., Sunwoo, H., Kriz, A. J., Wang, C. Y. & Lee, J. T. Xist deletional analysis reveals an interdependency between Xist RNA and Polycomb complexes for spreading along the inactive X. Mol. Cell 74, 101–117.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Żylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Żylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Costanzi, C. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  200. Gendrel, A.-V. et al. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG Island methylation on the inactive X chromosome. Dev. Cell 23, 265–279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lock, L. F., Takagi, N. & Martin, G. R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46 (1987).

    Article  CAS  PubMed  Google Scholar 

  202. Norris, D. P., Brockdorff, N. & Rastan, S. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm. Genome 1, 78–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  203. Sharp, A. J. et al. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 21, 1592–1600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cotton, A. M. et al. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 24, 1528–1539 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  206. Berletch, J. B. et al. Escape from X inactivation varies in mouse tissues. PLoS Genet. 11, e1005079 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Yang, F., Babak, T., Shendure, J. & Disteche, C. M. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 20, 614–622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Berletch, J. B., Yang, F., Xu, J., Carrel, L. & Disteche, C. M. Genes that escape from X inactivation. Hum. Genet. 130, 237–245 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Aguet, F. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhang, Y. et al. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol. Biol. Evol. 30, 2588–2601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Meester, I. et al. SeXY chromosomes and the immune system: reflections after a comparative study. Biol. Sex Differ. 11, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Berletch, J. B. et al. Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model. Data Brief. 5, 761–769 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Andrews, B. S. et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J. Exp. Med. 148, 1198–1215 (1978).

    Article  CAS  PubMed  Google Scholar 

  214. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fairhurst, A. M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Haywood, M. E. et al. Identification of intervals on chromosomes 1, 3, and 13 linked to the development of lupus in BXSB mice. Arthritis Rheum. 43, 349–355 (2000).

    Article  CAS  PubMed  Google Scholar 

  217. Burnet, F. M. & Holmes, M. C. The natural history of the NZB/NZW F1 hybrid mouse: a laboratory model of systemic lupus erythematosus. Australas. Ann. Med. 14, 185–191 (1965).

    Article  CAS  PubMed  Google Scholar 

  218. Helyer, B. J. & Howie, J. B. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature 197, 197 (1963).

    Article  ADS  CAS  PubMed  Google Scholar 

  219. Kessler, H. S. A laboratory model for Sjogren’s syndrome. Am. J. Pathol. 52, 671–685 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Roubinian, J. R., Talal, N., Greenspan, J. S., Goodman, J. R. & Siiteri, P. K. Effect of castration and sex hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/NZW F1 mice. J. Exp. Med. 147, 1568–1583 (1978).

    Article  CAS  PubMed  Google Scholar 

  221. Verheul, H. A., Verveld, M., Hoefakker, S. & Schuurs, A. H. Effects of ethinylestradiol on the course of spontaneous autoimmune disease in NZB/W and NOD mice. Immunopharmacol. Immunotoxicol. 17, 163–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  222. Waters, S. T. et al. NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci. Clin. Immunol. 100, 372–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  223. Reeves, W. H., Lee, P. Y., Weinstein, J. S., Satoh, M. & Lu, L. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 30, 455–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Satoh, M. et al. Widespread susceptibility among inbred mouse strains to the induction of lupus autoantibodies by pristane. Clin. Exp. Immunol. 121, 399–405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Du, S. et al. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 111, 2806–2811 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  226. Crawford, J. D. et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 8, e169344 (2023).

  227. Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749.e16 (2024).

  228. Dai, D. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 383, 413–421 (2024).

Download references

Acknowledgements

The authors thank L. King and members of the Anguera laboratory for their input and feedback on the manuscript and figures. This work was supported by grants from the US National Institutes of Health (R01-AI134834 to M.C.A., T32 DK-07780 to K.S.F. and T32-AR076951-01 to N.J.), the Lupus Research Alliance TIL grant (to M.C.A.); the Rheumatology Research Foundation Future Physician Scientist Award (to C.D.L.), the Rheumatology Research Foundation Scientist Development Award (to N.J.), the Scleroderma Research Foundation Postdoctoral Award (to N.J.), the Penn Colton Center for Autoimmunity and the Institute for Immunology and Immune Health (to M.C.A. and N.J.), the Philadelphia Tri-State Chapter Goldie Simon Preceptorship Award (to C.D.L. and N.E.T.), the Lupus Foundation of America, Philadelphia Tri-State Chapter Gina M. Finzi Memorial Student Summer Awards (to C.D.L. and N.E.T.), and the H. Ralph Schumacher Rheumatology Research Fund (to N.J.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content. M.C.A. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Montserrat C. Anguera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Maureen A. Su, who co-reviewed with Nicole Wilkinson, Katy Flanagan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsyth, K.S., Jiwrajka, N., Lovell, C.D. et al. The conneXion between sex and immune responses. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-00996-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-00996-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing