Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonendocrine mechanisms of sex bias in rheumatic diseases

Abstract

Rheumatic diseases affect a wide range of individuals of all ages, but the most common diseases occur more frequently in women than in men, at ratios of up to ten women to one man. Despite a growing number of studies on sex bias in rheumatic diseases, sex-specific health care is limited and sex specificity is not systematically integrated into treatment regimens. Women and men differ in three major biological points: the number of X chromosomes per cell, the type and quantities of sex hormones present and the ability to be pregnant, all of which have immunological consequences. Could a greater understanding of these differences lead to a new era of personalized sex-specific medicine? This Review focuses on the main genetic and epigenetic mechanisms that have been put forward to explain sex bias in rheumatic diseases, including X chromosome inactivation, sex chromosome aneuploidy and microchimerism. The influence of sex hormones is not discussed in detail in this Review, as it has been well described elsewhere. Understanding the sex-specific factors that contribute to the initiation and progression of rheumatic diseases will enable progress to be made in the diagnosis, treatment and management of all patients with these conditions.

Key points

  • Overall, women are more frequently affected than men by rheumatic diseases and, to date, little sex-specific health care exists.

  • Men often have a stronger genetic predisposition for rheumatic diseases than women, who are predisposed by other factors (for example, pregnancy or carrying two X chromosomes).

  • The X chromosome is enriched for immunity-related genes, thus immune functions and immune dysregulation can result from skewed X chromosome inactivation or escape from X chromosome inactivation.

  • Individuals with sex chromosome aneuploidy have an increased risk of autoimmune disorders.

  • Feto–maternal traffic of cells during pregnancy and their long-term persistence in their respective hosts might contribute to the high prevalence of rheumatic diseases in women.

  • The collection and analysis of genetic and epigenetic data in a sex-stratified manner for the development of sex-specific medicine remain challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The human X and Y chromosomes.
Fig. 2: IFNα signature acquisition in plasmacytoid dendritic cells from men and women with SLE.
Fig. 3: Natural acquisition of maternal and fetal microchimerism.
Fig. 4: Feto–maternal HLA compatibility.

Similar content being viewed by others

References

  1. Hootman, J. M. & Helmick, C. G. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 54, 226–229 (2006).

    PubMed  Google Scholar 

  2. Jafarzadeh, S. R. & Felson, D. T. Corrected estimates for the prevalence of self-reported doctor-diagnosed arthritis among US adults: comment on the article by Hootman et al. Arthritis Rheumatol. 69, 1701–1702 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Al Maini, M. et al. The global challenges and opportunities in the practice of rheumatology: white paper by the World Forum on Rheumatic and Musculoskeletal Diseases. Clin. Rheumatol. 34, 819–829 (2015).

    PubMed  Google Scholar 

  4. Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2, 119–125 (2003).

    PubMed  Google Scholar 

  5. van der Slik, B. et al. Although female patients with ankylosing spondylitis score worse on disease activity than male patients and improvement in disease activity is comparable, male patients show more radiographic progression during treatment with TNF-α inhibitors. Semin. Arthritis Rheum. 48, 828–833 (2019).

    PubMed  Google Scholar 

  6. Cattalini, M., Soliani, M., Caparello, M. C. & Cimaz, R. Sex differences in pediatric rheumatology. Clin. Rev. Allergy Immunol. 56, 293–307 (2019).

    CAS  PubMed  Google Scholar 

  7. Cathcart, E. S. & O’Sullivan, J. B. Rheumatoid arthritis in a New England town. A prevalence study in Sudbury, Massachusetts. N. Engl. J. Med. 282, 421–424 (1970).

    CAS  PubMed  Google Scholar 

  8. Harvey, J., Lotze, M., Stevens, M. B., Lambert, G. & Jacobson, D. Rheumatoid arthritis in a Chippewa Band. I. Pilot screening study of disease prevalence. Arthritis Rheum. 24, 717–721 (1981).

    CAS  PubMed  Google Scholar 

  9. Molokhia, M. & McKeigue, P. Risk for rheumatic disease in relation to ethnicity and admixture. Arthritis Res. 2, 115–125 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Regitz-Zagrosek, V. Sex and gender differences in health. Science & Society Series on Sex and Science. EMBO Rep. 13, 596–603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dospinescu, P., Jones, G. T. & Basu, N. Environmental risk factors in systemic sclerosis. Curr. Opin. Rheumatol. 25, 179–183 (2013).

    PubMed  Google Scholar 

  12. Krasselt, M. & Baerwald, C. Sex, symptom severity, and quality of life in rheumatology. Clin. Rev. Allergy Immunol. 56, 346–361 (2019).

    PubMed  Google Scholar 

  13. Billi, A. C., Kahlenberg, J. M. & Gudjonsson, J. E. Sex bias in autoimmunity. Curr. Opin. Rheumatol. 31, 53–61 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Kirino, Y. & Remmers, E. F. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat. Rev. Rheumatol. 11, 401–414 (2015).

    CAS  PubMed  Google Scholar 

  15. Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 6, 683–692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Radstake, T. R. et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dieudé, P. et al. Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann. Rheum. Dis. 70, 1695–1696 (2011).

    PubMed  Google Scholar 

  18. Allanore, Y. et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLOS Genet. 7, e1002091 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eyre, S., Orozco, G. & Worthington, J. The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping. Nat. Rev. Rheumatol. 13, 421–432 (2017).

    CAS  PubMed  Google Scholar 

  20. MacGregor, A., Ollier, W., Thomson, W., Jawaheer, D. & Silman, A. HLA-DRB1*0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J. Rheumatol. 22, 1032–1036 (1995).

    CAS  PubMed  Google Scholar 

  21. Hughes, T. et al. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 694–699 (2012).

    CAS  PubMed  Google Scholar 

  22. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    CAS  PubMed  Google Scholar 

  23. Lambert, N. C. et al. HLA-DQA1*0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum. 43, 2005–2010 (2000).

    CAS  PubMed  Google Scholar 

  24. Ciurea, A. et al. Age at symptom onset in ankylosing spondylitis: is there a gender difference? Ann. Rheum. Dis. 73, 1908–1910 (2014).

    PubMed  Google Scholar 

  25. Plenge, R. M. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 77, 1044–1060 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinks, A. et al. Brief report: the genetic profile of rheumatoid factor-positive polyarticular juvenile idiopathic arthritis resembles that of adult rheumatoid arthritis. Arthritis Rheumatol. 70, 957–962 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Webb, R. et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 70, 151–156 (2011).

    PubMed  Google Scholar 

  28. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  30. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 278, 675–680 (1997).

    CAS  PubMed  Google Scholar 

  31. Wise, A. L., Gyi, L. & Manolio, T. A. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am. J. Hum. Genet. 92, 643–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 106, 6256–6261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufman, K. M. et al. Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Ann. Rheum. Dis. 72, 437–444 (2013).

    CAS  PubMed  Google Scholar 

  35. Liu, G., Tsuruta, Y., Gao, Z., Park, Y. J. & Abraham, E. Variant IL-1 receptor-associated kinase-1 mediates increased NF-κB activity. J. Immunol. 179, 4125–4134 (2007).

    CAS  PubMed  Google Scholar 

  36. He, F. et al. Detection of parent-of-origin effects for quantitative traits in complete and incomplete nuclear families with multiple children. Am. J. Epidemiol. 174, 226–233 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. He, H. Q. et al. Detection of parent-of-origin effects for quantitative traits using general pedigree data. J. Genet. 93, 339–347 (2014).

    PubMed  Google Scholar 

  38. Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. Trends Genet. 21, 457–465 (2005).

    CAS  PubMed  Google Scholar 

  39. Zou, Q. L., You, X. P., Li, J. L., Fung, W. K. & Zhou, J. Y. A powerful parent-of-origin effects test for qualitative traits on X chromosome in general pedigrees. BMC Bioinformatics 19, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Bianchi, I. et al. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    CAS  PubMed  Google Scholar 

  41. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  PubMed  Google Scholar 

  42. Souyris, M., Mejia, J. E., Chaumeil, J. & Guery, J. C. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin. Immunopathol. 41, 153–164 (2019).

    CAS  PubMed  Google Scholar 

  43. Chamberlain, N. D. et al. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann. Rheum. Dis. 72, 418–426 (2013).

    CAS  PubMed  Google Scholar 

  44. Young, N. A. et al. Estrogen modulation of endosome-associated Toll-like receptor 8: an IFNα-independent mechanism of sex-bias in systemic lupus erythematosus. Clin. Immunol. 151, 66–77 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Komatsuda, A. et al. Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 152, 482–487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  47. Radstake, T. R. et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. PLOS ONE 4, e5981 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 2, 277–285 (2004).

    Google Scholar 

  49. van Amelsfort, J. M. et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 56, 732–742 (2007).

    PubMed  Google Scholar 

  50. Yan, B. et al. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells. Arthritis Rheum. 58, 801–812 (2008).

    CAS  PubMed  Google Scholar 

  51. Bonelli, M., von Dalwigk, K., Savitskaya, A., Smolen, J. S. & Scheinecker, C. Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis. Ann. Rheum. Dis. 67, 664–671 (2008).

    CAS  PubMed  Google Scholar 

  52. Peters, A. L. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Durie, F. H. et al. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261, 1328–1330 (1993).

    CAS  PubMed  Google Scholar 

  55. Early, G. S., Zhao, W. & Burns, C. M. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black x New Zealand white mice. Response correlates with the absence of an anti-antibody response. J. Immunol. 157, 3159–3164 (1996).

    CAS  PubMed  Google Scholar 

  56. Mohan, C., Shi, Y., Laman, J. D. & Datta, S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480 (1995).

    CAS  PubMed  Google Scholar 

  57. Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119, 454–464 (2012).

    CAS  PubMed  Google Scholar 

  58. Laffont, S. et al. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J. Immunol. 193, 5444–5452 (2014).

    CAS  PubMed  Google Scholar 

  59. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jefferies, C. A. Regulating IRFs in IFN driven disease. Front. Immunol. 10, 325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schoenemeyer, A. et al. The interferon regulatory factor, IRF5, is a central mediator of Toll-like receptor 7 signaling. J. Biol. Chem. 280, 17005–17012 (2005).

    CAS  PubMed  Google Scholar 

  62. Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243–249 (2005).

    CAS  PubMed  Google Scholar 

  63. Laffont, S., Seillet, C. & Guery, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol 8, 108 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Ban, T., Sato, G. R. & Tamura, T. Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int. Immunol. 30, 529–536 (2018).

    CAS  PubMed  Google Scholar 

  65. Cham, C. M., Ko, K. & Niewold, T. B. Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 780436 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 58, 2481–2487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J. Immunol. 195, 5327–5336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Google Scholar 

  69. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, D. L. et al. A female preponderance for chemically induced lupus in SJL/J mice. Clin. Immunol. 122, 101–107 (2007).

    CAS  PubMed  Google Scholar 

  71. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    CAS  PubMed  Google Scholar 

  72. Deane, J. A. et al. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koelsch, K. A. et al. Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse. J. Autoimmun. 41, 168–174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Case, L. K. et al. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res. 23, 1474–1485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanaan, S. B. et al. Evaluation of X chromosome inactivation with respect to HLA genetic susceptibility in rheumatoid arthritis and systemic sclerosis. PLOS ONE 11, e0158550 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Ozbalkan, Z. et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum. 52, 1564–1570 (2005).

    CAS  PubMed  Google Scholar 

  77. Chabchoub, G. et al. Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases. Arthritis Res. Ther. 11, R106 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Lambert, N. C. The price of silence. Arthritis Rheum. 60, 3164–3167 (2009).

    PubMed  Google Scholar 

  79. Brown, C. J. & Robinson, W. P. The causes and consequences of random and non-random X chromosome inactivation in humans. Clin. Genet. 58, 353–363 (2000).

    CAS  PubMed  Google Scholar 

  80. Asplund, A., Guo, Z., Hu, X., Wassberg, C. & Ponten, F. Mosaic pattern of maternal and paternal keratinocyte clones in normal human epidermis revealed by analysis of X-chromosome inactivation. J. Invest. Dermatol. 117, 128–131 (2001).

    CAS  PubMed  Google Scholar 

  81. Busque, L. et al. Skewing of X-inactivation ratios in blood cells of aging women is confirmed by independent methodologies. Blood 113, 3472–3474 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Broen, J. C. et al. Skewed X chromosomal inactivation impacts T regulatory cell function in systemic sclerosis. Ann. Rheum. Dis. 69, 2213–2216 (2010).

    CAS  PubMed  Google Scholar 

  83. Uz, E. et al. Increased frequency of extremely skewed X chromosome inactivation in juvenile idiopathic arthritis. Arthritis Rheum. 60, 3410–3412 (2009).

    PubMed  Google Scholar 

  84. Ek, W. et al. Mapping QTL affecting a systemic sclerosis-like disorder in a cross between UCD-200 and red jungle fowl chickens. Dev. Comp. Immunol. 38, 352–359 (2012).

    CAS  PubMed  Google Scholar 

  85. Itoh, Y. et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    CAS  PubMed  Google Scholar 

  88. Garieri, M. et al. Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proc. Natl Acad. Sci. USA 115, 13015–13020 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).

    CAS  PubMed  Google Scholar 

  91. Hewagama, A. et al. Overexpression of X-linked genes in T cells from women with lupus. J. Autoimmun. 41, 60–71 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Syrett, C. M. et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4, e126751 (2019).

    PubMed Central  Google Scholar 

  93. Prothero, K. E., Stahl, J. M. & Carrel, L. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res. 17, 637–648 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    CAS  PubMed  Google Scholar 

  95. Hammond, S. M. An overview of microRNAs. Adv. Drug Deliv. Rev. 87, 3–14 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pinheiro, I., Dejager, L. & Libert, C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 33, 791–802 (2011).

    CAS  PubMed  Google Scholar 

  97. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    CAS  PubMed  Google Scholar 

  98. Hashemi, M. et al. Association of pre-miRNA-146a rs2910164 and pre-miRNA-499 rs3746444 polymorphisms and susceptibility to rheumatoid arthritis. Mol. Med. Rep. 7, 287–291 (2013).

    CAS  PubMed  Google Scholar 

  99. Chatzikyriakidou, A. et al. A polymorphism in the 3’-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint Bone Spine 77, 411–413 (2010).

    CAS  PubMed  Google Scholar 

  100. Yang, X. K. et al. Association between IRAK1 rs3027898 and miRNA-499 rs3746444 polymorphisms and rheumatoid arthritis: a case control study and meta-analysis. Z. Rheumatol. 76, 622–629 (2017).

    CAS  PubMed  Google Scholar 

  101. Khalifa, O. et al. X-linked miRNAs associated with gender differences in rheumatoid arthritis. Int. J. Mol. Sci. 17, 1852 (2016).

    Google Scholar 

  102. Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Harris, V. M. et al. Klinefelter’s syndrome (47,XXY) is in excess among men with Sjögren’s syndrome. Clin. Immunol. 168, 25–29 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rovensky, J., Imrich, R., Lazurova, I. & Payer, J. Rheumatic diseases and Klinefelter’s syndrome. Ann. NY Acad. Sci. 1193, 1–9 (2010).

    CAS  PubMed  Google Scholar 

  105. Liu, K. et al. X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjögren’s syndrome. Arthritis Rheumatol. 68, 1290–1300 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bojesen, A., Juul, S. & Gravholt, C. H. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin. Endocrinol. Metab. 88, 622–626 (2003).

    CAS  PubMed  Google Scholar 

  107. Nielsen, J. & Wohlert, M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Århus, Denmark. Hum. Genet. 87, 81–83 (1991).

    CAS  PubMed  Google Scholar 

  108. Otter, M., Schrander-Stumpel, C. T. & Curfs, L. M. Triple X syndrome: a review of the literature. Eur. J. Hum. Genet. 18, 265–271 (2010).

    PubMed  Google Scholar 

  109. Sharma, R. et al. Rare X chromosome abnormalities in systemic lupus erythematosus and Sjögren’s syndrome. Arthritis Rheumatol. 69, 2187–2192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Abdelmoula, N. B. et al. Cytogenetics and fluorescence in situ hybridization assessment of sex-chromosome mosaicism in Klinefelter’s syndrome. Ann. Genet. 47, 163–175 (2004).

    PubMed  Google Scholar 

  111. Samplaski, M. K. et al. Phenotypic differences in mosaic Klinefelter patients as compared with non-mosaic Klinefelter patients. Fertil. Steril. 101, 950–955 (2014).

    PubMed  Google Scholar 

  112. Martin, G. V. et al. Mosaicism with XX and XXY cells accounts for high copy number of Toll like receptor 7 and 8 genes in peripheral blood of men with rheumatoid arthritis. Sci. Rep. 9, 12880 (2019).

  113. Sharma, A. et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin. Epigenetics 7, 76 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Rocca, M. S. et al. The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology 4, 328–334 (2016).

    CAS  PubMed  Google Scholar 

  115. Jorgensen, K. T. et al. Autoimmune diseases in women with Turner’s syndrome. Arthritis Rheum. 62, 658–666 (2010).

    PubMed  Google Scholar 

  116. Armagan, O., Ekim, A., Dinc, A. & Oner, C. Ankylosing spondylitis in a patient with Turner syndrome: a case report. Rheumatol. Int. 27, 1177–1180 (2007).

    PubMed  Google Scholar 

  117. Wihlborg, C. E., Babyn, P. S. & Schneider, R. The association between Turner’s syndrome and juvenile rheumatoid arthritis. Pediatr. Radiol. 29, 676–681 (1999).

    CAS  PubMed  Google Scholar 

  118. Invernizzi, P. et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol. 175, 575–578 (2005).

    CAS  PubMed  Google Scholar 

  119. Castellanos, M. V. et al. Chromosomal abnormalities are related to location and grade of osteoarthritis. Osteoarthr. Cartil. 12, 982–985 (2004).

    Google Scholar 

  120. Schaschl, H., Aitman, T. J. & Vyse, T. J. Copy number variation in the human genome and its implication in autoimmunity. Clin. Exp. Immunol. 156, 12–16 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, Y. H. et al. Association between FCGR3B copy number variations and susceptibility to autoimmune diseases: a meta-analysis. Inflamm. Res. 64, 983–991 (2015).

    CAS  PubMed  Google Scholar 

  123. McKinney, C. et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann. Rheum. Dis. 67, 409–413 (2008).

    CAS  PubMed  Google Scholar 

  124. Bailey, J. A., Carrel, L., Chakravarti, A. & Eichler, E. E. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl Acad. Sci. USA 97, 6634–6639 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mavragani, C. P. et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 68, 2686–2696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ali, M. et al. Overexpression of transcripts containing LINE-1 in the synovia of patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 663–666 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Matsuno, Y., Yamashita, T., Wagatsuma, M. & Yamakage, H. Convergence in LINE-1 nucleotide variations can benefit redundantly forming triplexes with lncRNA in mammalian X chromosome inactivation. Mob. DNA 10, 33 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Carrel, L. et al. Genomic environment predicts expression patterns on the human inactive X chromosome. PLOS Genet. 2, e151 (2006).

    PubMed  PubMed Central  Google Scholar 

  129. Robinson, H. P. & Caines, J. S. Sonar evidence of early pregnancy failure in patients with twin conceptions. Br. J. Obstet. Gynaecol. 84, 22–25 (1977).

    CAS  PubMed  Google Scholar 

  130. Nelson, J. L. Microchimerism: incidental byproduct of pregnancy or active participant in human health? Trends Mol. Med. 8, 109–113 (2002).

    CAS  PubMed  Google Scholar 

  131. Lambert, N. C. in Chimerism: A Clinical Guide (ed. Draper, N. L.) 153–179 (Springer, 2018).

  132. Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nelson, J. L. Maternal-fetal immunology and autoimmune disease: is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum. 39, 191–194 (1996).

    CAS  PubMed  Google Scholar 

  134. Lambert, N. C. et al. Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity. J. Immunol. 164, 5545–5548 (2000).

    CAS  PubMed  Google Scholar 

  135. Nelson, J. L. et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351, 559–562 (1998).

    CAS  PubMed  Google Scholar 

  136. Di Cristofaro, J. et al. Soluble HLA-G expression inversely correlates with fetal microchimerism levels in peripheral blood from women with scleroderma. Front. Immunol. 9, 1685 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Rak, J. M. et al. Transfer of the shared epitope through microchimerism in women with rheumatoid arthritis. Arthritis Rheum. 60, 73–80 (2009).

    CAS  PubMed  Google Scholar 

  138. Yan, Z., Aydelotte, T., Gadi, V. K., Guthrie, K. A. & Nelson, J. L. Acquisition of the rheumatoid arthritis HLA shared epitope through microchimerism. Arthritis Rheum. 63, 640–644 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. Cruz, G. I. et al. Mother-child histocompatibility and risk of rheumatoid arthritis and systemic lupus erythematosus among mothers. Genes Immun. https://doi.org/10.1038/s41435-018-0055-7 (2019).

  140. Lo, Y. M. et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem. 45, 184–188 (1999).

    CAS  PubMed  Google Scholar 

  141. Khosrotehrani, K. et al. The influence of fetal loss on the presence of fetal cell microchimerism: a systematic review. Arthritis Rheum. 48, 3237–3241 (2003).

    PubMed  Google Scholar 

  142. van Wyk, L. et al. Increased incidence of pregnancy complications in women who later develop scleroderma: a case control study. Arthritis Res. Ther. 13, R183 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Silman, A. J. & Black, C. Increased incidence of spontaneous abortion and infertility in women with scleroderma before disease onset: a controlled study. Ann. Rheum. Dis. 47, 441–444 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Silman, A. J., Roman, E., Beral, V. & Brown, A. Adverse reproductive outcomes in women who subsequently develop rheumatoid arthritis. Ann. Rheum. Dis. 47, 979–981 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cruz, G. I. et al. Increased risk of rheumatoid arthritis among mothers with children who carry DRB1 risk-associated alleles. Ann. Rheum. Dis. 76, 1405–1410 (2017).

    CAS  PubMed  Google Scholar 

  146. Nelson, J. L. & Lambert, N. C. Rheumatoid arthritis: forward and reverse inheritance—the yin and the yang. Nat. Rev. Rheumatol. 13, 396–397 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Artlett, C. M. et al. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Childhood Myositis Heterogeneity Collaborative Group. Lancet 356, 2155–2156 (2000).

    CAS  PubMed  Google Scholar 

  148. Reed, A. M., Picornell, Y. J., Harwood, A. & Kredich, D. W. Chimerism in children with juvenile dermatomyositis. Lancet 356, 2156–2157 (2000).

    CAS  PubMed  Google Scholar 

  149. Stevens, A. M. Maternal microchimerism in health and disease. Best Pract. Res. Clin. Obstet. Gynaecol. 31, 121–130 (2016).

    PubMed  Google Scholar 

  150. Stevens, A. M., Hermes, H. M., Rutledge, J. C., Buyon, J. P. & Nelson, J. L. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 362, 1617–1623 (2003).

    PubMed  Google Scholar 

  151. de Bellefon, L. M. et al. Cells from a vanished twin as a source of microchimerism 40 years later. Chimerism 1, 56–60 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. Lambert, N. C. et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum. 50, 906–914 (2004).

    CAS  PubMed  Google Scholar 

  153. Stevens, A. M., Hermes, H. M., Kiefer, M. M., Rutledge, J. C. & Nelson, J. L. Chimeric maternal cells with tissue-specific antigen expression and morphology are common in infant tissues. Pediatr. Dev. Pathol. 12, 337–346 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Gleichmann, E., Pals, S. T., Rolink, A. G., Radaszkiewicz, T. & Gleichmann, H. Graft-versus-host reactions: clues to the etiopathology of a spectrum of immunological diseases. Immunol. Today 5, 324–332 (1984).

    CAS  PubMed  Google Scholar 

  155. Via, C. S. Advances in lupus stemming from the parent-into-F1 model. Trends Immunol. 31, 236–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kanold, A. M. et al. A research study of the association between maternal microchimerism and systemic lupus erythematosus in adults: a comparison between patients and healthy controls based on single-nucleotide polymorphism using quantitative real-time PCR. PLOS ONE 8, e74534 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. Abbud Filho, M. et al. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant. Proc. 34, 2951–2952 (2002).

    CAS  PubMed  Google Scholar 

  158. Stevens, A. M. et al. Maternal HLA class II compatibility in men with systemic lupus erythematosus. Arthritis Rheum. 52, 2768–2773 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaneda, T., Shiraki, K., Hirano, K. & Nagata, I. Detection of maternofetal transfusion by placental alkaline phosphatase levels. J. Pediatr. 130, 730–735 (1997).

    CAS  PubMed  Google Scholar 

  160. Zhou, L. et al. Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology 101, 570–580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Laursen, M. F. et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 15, 154 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Peterson, S. E. et al. Prospective assessment of fetal-maternal cell transfer in miscarriage and pregnancy termination. Hum. Reprod. 27, 2607–2612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Huurre, A. et al. Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93, 236–240 (2008).

    PubMed  Google Scholar 

  164. Shree, R. et al. Fetal microchimerism by mode of delivery: a prospective cohort study. BJOG 126, 24–31 (2019).

    CAS  PubMed  Google Scholar 

  165. Chaudhari, M. et al. Impaired reproductive fitness in mothers of children with juvenile autoimmune arthropathies. Rheumatology 45, 1282–1287 (2006).

    CAS  PubMed  Google Scholar 

  166. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  PubMed  Google Scholar 

  167. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    CAS  PubMed  Google Scholar 

  168. Djouad, F., Bouffi, C., Ghannam, S., Noel, D. & Jorgensen, C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 5, 392–399 (2009).

    CAS  PubMed  Google Scholar 

  169. Maumus, M., Jorgensen, C. & Noel, D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 95, 2229–2234 (2013).

    CAS  PubMed  Google Scholar 

  170. Hügle, T. & van Laar, J. M. Allogeneic stem cell transplantation for rheumatic autoimmune diseases. F1000 Med. Rep. 2, 22 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. Silva, M. F. J. et al. Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis. Blood Adv. 2, 777–786 (2018).

    CAS  Google Scholar 

  172. Kinder, J. M., Stelzer, I. A., Arck, P. C. & Way, S. S. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol. 17, 483–494 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Eikmans, M. et al. Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. Chimerism 5, 24–39 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Dutta, P. et al. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 114, 3578–3587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Molitor-Dart, M. L. et al. Developmental exposure to noninherited maternal antigens induces CD4+ T regulatory cells: relevance to mechanism of heart allograft tolerance. J. Immunol. 179, 6749–6761 (2007).

    CAS  PubMed  Google Scholar 

  176. Burlingham, W. J. A lesson in tolerance–maternal instruction to fetal cells. N. Engl. J. Med. 360, 1355–1357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Maria, A. T. et al. Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J. Autoimmun. 70, 31–39 (2016).

    CAS  PubMed  Google Scholar 

  178. Liang, Y. et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat. Immunol. 18, 152–160 (2017).

    CAS  PubMed  Google Scholar 

  179. Amur, S., Parekh, A. & Mummaneni, P. Sex differences and genomics in autoimmune diseases. J. Autoimmun. 38, J254–J265 (2012).

    CAS  PubMed  Google Scholar 

  180. Rehman, W., Arfons, L. M. & Lazarus, H. M. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther. Adv. Hematol. 2, 291–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Poon, R. et al. Participation of women and sex analyses in late-phase clinical trials of new molecular entity drugs and biologics approved by the FDA in 2007-2009. J. Womens Health 22, 604–616 (2013).

    Google Scholar 

  182. Atzeni, F. et al. Predicting response to anti-TNF treatment in rheumatoid arthritis patients. Autoimmun. Rev. 8, 431–437 (2009).

    CAS  PubMed  Google Scholar 

  183. van der Horst-Bruinsma, I. E., Zack, D. J., Szumski, A. & Koenig, A. S. Female patients with ankylosing spondylitis: analysis of the impact of gender across treatment studies. Ann. Rheum. Dis. 72, 1221–1224 (2013).

    PubMed  Google Scholar 

  184. Mueller, S. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72, 1027–1033 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  186. Pinheiro, I. & Heard, E. X chromosome inactivation: new players in the initiation of gene silencing. F1000Res 6, 344 (2017).

    Google Scholar 

  187. Chang, S. C., Tucker, T., Thorogood, N. P. & Brown, C. J. Mechanisms of X-chromosome inactivation. Front. Biosci. 11, 852–866 (2006).

    CAS  PubMed  Google Scholar 

  188. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2, 59–67 (2001).

    CAS  PubMed  Google Scholar 

  189. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  190. Yavuz, S. et al. Dual effects of testosterone in Behcet’s disease: implications for a role in disease pathogenesis. Genes Immun. 17, 335–341 (2016).

    CAS  PubMed  Google Scholar 

  191. Kochi, Y. et al. PADI4 polymorphism predisposes male smokers to rheumatoid arthritis. Ann. Rheum. Dis. 70, 512–515 (2011).

    PubMed  Google Scholar 

  192. Kwon, Y. C. et al. Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease. PLOS ONE 12, e0184248 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Robinson, J. I. et al. Dissection of the FCGR3A association with RA: increased association in men and with autoantibody positive disease. Ann. Rheum. Dis. 69, 1054–1057 (2010).

    CAS  PubMed  Google Scholar 

  194. Torcia, M. G. et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLOS ONE 7, e39853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Hu, K. et al. STAT4 polymorphism in a Chinese Han population with Vogt-Koyanagi-Harada syndrome and Behçet’s disease. Hum. Immunol. 71, 723–726 (2010).

    CAS  PubMed  Google Scholar 

  196. Gonzalez-Escribano, M. F., Aguilar, F., Sanchez-Roman, J. & Nunez-Roldan, A. FcγRIIA, FcγRIIIA and FcγRIIIB polymorphisms in Spanish patients with systemic lupus erythematosus. Eur. J. Immunogenet. 29, 301–306 (2002).

    CAS  PubMed  Google Scholar 

  197. Prokunina, L. et al. Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum. 50, 1770–1773 (2004).

    CAS  PubMed  Google Scholar 

  198. Ferreiros-Vidal, I. et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum. 50, 2590–2597 (2004).

    CAS  PubMed  Google Scholar 

  199. Lee, S. H. et al. Association of the programmed cell death 1 (PDCD1) gene polymorphism with ankylosing spondylitis in the Korean population. Arthritis Res. Ther. 8, R163 (2006).

    PubMed  PubMed Central  Google Scholar 

  200. Kadota, K. et al. Analysis of gender differences in genetic risk: association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population. PLOS ONE 8, e72551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Pers, Y. M. et al. Association of TRAF1-C5 with risk of uveitis in juvenile idiopathic arthritis. Joint Bone Spine 84, 305–308 (2017).

    CAS  PubMed  Google Scholar 

  202. Albers, H. M. et al. The TRAF1/C5 region is a risk factor for polyarthritis in juvenile idiopathic arthritis. Ann. Rheum. Dis. 67, 1578–1580 (2008).

    CAS  PubMed  Google Scholar 

  203. Hinks, A. et al. Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. Arthritis Rheum. 60, 251–257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Liu, R. et al. Influence of MIF, CD40, and CD226 polymorphisms on risk of rheumatoid arthritis. Mol. Biol. Rep. 39, 6915–6922 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.C.L. thanks J. Roudier, I. Auger, N. Balandraud, D.F. Azzouz, S.B. Kanaan and G.V. Martin for constructive discussions and J. Buand for editorial assistance. The work of N.L.C. was supported financially by INSERM, Région PACA, Arthritis-Fondation Courtin and Groupe Francophone de Recherche sur la Sclérodermie (GFRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie C. Lambert.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks R. H. Scofield, M. Anguerra, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

miRBase: http://mirbase.org

Supplementary information

Glossary

Microchimerism

The presence, in small quantities, of foreign DNA or cells in an individual.

Shared epitope

A characteristic five amino acid sequence in the HLA-DRβ1 chain, encoded by allelic variants associated with risk of rheumatoid arthritis.

Submetacentric

When the centromere is located on the chromosome so that chromosomal arm lengths are unequal, the chromosome is said to be submetacentric.

Acrocentric

When the centromere is located on the chromosome so that one chromosomal arm is much shorter than the other, the chromosome is said to be acrocentric.

Mosaicism

A mixture of two or more populations of genetically different cells within an individual.

Mouse constructions

The creation of genetically engineered mice as tools for studying human diseases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, N.C. Nonendocrine mechanisms of sex bias in rheumatic diseases. Nat Rev Rheumatol 15, 673–686 (2019). https://doi.org/10.1038/s41584-019-0307-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0307-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing