Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A framework for understanding the functions of biomolecular condensates across scales

Abstract

Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of biomolecular condensate functions across scales.
Fig. 2: Molecular-scale functions of biomolecular condensates.
Fig. 3: Mesoscale functions of biomolecular condensates.
Fig. 4: Cellular-scale functions of biomolecular condensates.

Similar content being viewed by others

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  3. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014).

    PubMed Central  Google Scholar 

  4. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, Y. H., Forman-Kay, J. D. & Chan, H. S. Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57, 2499–2508 (2018).

    CAS  PubMed  Google Scholar 

  10. Vernon, R. M. et al. Pi–Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Banani, S. F. et al. Compositional control of phase-separated cell. bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–pi interactions. Cell 173, 720–734.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    CAS  PubMed  Google Scholar 

  19. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017). This paper shows that the exquisite temperature sensitivity of Pab1 condensation serves as a cellular-scale sensor for heat stress, coupled with molecular-scale changes in mRNA binding activity that regulate the heat shock response.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    PubMed  Google Scholar 

  21. Kato, M. et al. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain. Cell 177, 711–721.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019).

    PubMed  Google Scholar 

  23. Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    CAS  PubMed  Google Scholar 

  24. Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    PubMed  Google Scholar 

  25. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Google Scholar 

  26. Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).

    CAS  PubMed  Google Scholar 

  27. Wunder, T., Oh, Z. G. & Mueller-Cajar, O. CO2-fixing liquid droplets: towards a dissection of the microalgal pyrenoid. Traffic 20, 380–389 (2019).

    CAS  PubMed  Google Scholar 

  28. Wang, H. et al. Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature 566, 131–135 (2019).

    CAS  PubMed  Google Scholar 

  29. Oltrogge, L. M. et al. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. Nat. Struct. Mol. Biol. 27, 281–287 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9, 5076 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Freeman Rosenzweig, E. S. et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171, 148–162.e19 (2017). Together with Wang et al. (Nature, 2019), Oltrogge et al. (2020) and Wunder et al. (2018), this paper demonstrates how Rubisco condensates co-concentrate enzyme and substrate to enhance reaction rates.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant. Biol. 56, 99–131 (2005).

    CAS  PubMed  Google Scholar 

  33. Kaplan, A. & Reinhold, L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 50, 539–570 (1999).

    CAS  PubMed  Google Scholar 

  34. Nishimura, T., Yamaguchi, O., Takatani, N., Maeda, S. & Omata, T. In vitro and in vivo analyses of the role of the carboxysomal β-type carbonic anhydrase of the cyanobacterium Synechococcus elongatus in carboxylation of ribulose-1,5-bisphosphate. Photosynth. Res. 121, 151–157 (2014).

    CAS  PubMed  Google Scholar 

  35. Dou, Z. et al. CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J. Biol. Chem. 283, 10377–10384 (2008).

    CAS  PubMed  Google Scholar 

  36. Varesio, L. M., Willett, J. W., Fiebig, A. & Crosson, S. A carbonic anhydrase pseudogene sensitizes select brucella lineages to low CO2 tension. J. Bacteriol. 201, e00509-19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018). This paper demonstrates the formation of phase-separated cGAS condensates upon introduction of double-stranded DNA, leading to enhanced cGAS production.

    CAS  PubMed  Google Scholar 

  38. Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, J. et al. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  40. Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. Cell 173, 946–957 e916 (2018). This paper shows that condensates formed by components of the RNA-induced silencing complex enhance rates of mRNA deadenylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell Biol. 27, 3970–3981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077.e10 (2017). This paper shows that the centrosome is a liquid-like compartment that nucleates microtubules through concentration of tubulin and microtubule regulatory proteins.

    CAS  PubMed  Google Scholar 

  45. King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, Y. et al. Aurora A activation in mitosis promoted by BuGZ. J. Cell Biol. 217, 107–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwayer, C. et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 179, 937–952.e18 (2019).

    CAS  PubMed  Google Scholar 

  49. Beutel, O., Maraspini, R., Pombo-García, K., Martin-Lemaitre, C. & Honigmann, A. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179, 923–936.e11 (2019). Together with Schwayer et al. (2019), this paper demonstrates that phase separation contributes to the formation of cell adhesive tight junctions, with condensates contributing to mechanosensation.

    CAS  PubMed  Google Scholar 

  50. Peeples, W. & Rosen, M. K. Phase separation can increase enzyme activity by concentration and molecular organization. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.09.15.299115v1 (2020).

  51. Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Powers, S. K. et al. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol. Cell 76, 177–190.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016). This paper demonstrates that the core TCR signalling components phase-separate in vitro and the clustering induces localized actin polymerization.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e16 (2018).

    CAS  PubMed  Google Scholar 

  57. Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat. Rev. Neurosci. 17, 209–223 (2016).

    CAS  PubMed  Google Scholar 

  58. Wei, M.-T. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).

    CAS  PubMed  Google Scholar 

  59. Huang, W. Y. C. et al. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proc. Natl Acad. Sci. USA 113, 8218–8223 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019). Together with Case et al. (2019), this paper demonstrates how the dwell time of molecules within membrane-associated condensates can lead to increased activity through a kinetic proofreading mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0272-6 (2020).

    Article  PubMed  Google Scholar 

  63. Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019). This paper shows a counter-intuitive acceleration of a reaction in a multiphase condensate where the enzyme and substrate are substantially enriched in the different phases.

    CAS  PubMed  Google Scholar 

  64. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3′ UTR-mediated protein–protein interactions. Cell 175, 1492–1506.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019). This paper identifies a novel, molecular-scale activity of the nucleolus in regulating the folding state of nuclear proteins under heat stress.

    CAS  PubMed  Google Scholar 

  67. Kedersha, N. & Anderson, P. in Progress in Molecular Biology and Translational Science Vol. 90 155–185 (Academic, 2009).

  68. Kedersha, N. et al. G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, e201508028 (2016).

    Google Scholar 

  69. Matsuki, H. et al. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cell 18, 135–146 (2013).

    CAS  Google Scholar 

  70. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Guillen-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020). Together with Yang et al. (2020) and Sanders et al. (2020), this paper demonstrates the importance of G3BP1 in forming stress granules, which can prevent RNA entanglement and aggregation.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    CAS  PubMed  Google Scholar 

  74. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    CAS  PubMed  Google Scholar 

  75. Küffner, A. M. et al. Acceleration of an enzymatic reaction in liquid phase separated compartments based on intrinsically disordered protein domains. ChemSystemsChem 2, e2000001 (2020).

    Google Scholar 

  76. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016). This paper shows that the material properties of condensates formed by nucleolar proteins results in a multicompartment structure that contributes to vectoral organization of ribosome assembly reactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yao, R.-W. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019).

    CAS  PubMed  Google Scholar 

  78. Zhu, L. et al. Controlling the material properties and rRNA processing function of the nucleolus using light. Proc. Natl Acad. Sci. USA 116, 17330–17335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 9, 842 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Wan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683 (2018). This paper identifies a novel condensate composed of three separate, coexisting phases involved in transgenerational epigenetic inheritance of RNAi, potentially functioning via vectoral organization of biochemistry similar to the nucleolus.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Google Scholar 

  82. Phillips, C. M., Montgomery, T. A., Breen, P. C. & Ruvkun, G. MUT-16 promotes formation of perinuclear Mutator foci required for RNA silencing in the C. elegans germline. Genes. Dev. 26, 1433–1444 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tibble, R. W., Depaix, A., Kowalska, J., Jemielity, J. & Gross, J. D. Biomolecular condensates amplify mRNA decapping by coupling protein interactions with conformational changes in Dcp1/Dcp2. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.09.195057v1 (2020).

  84. Wu, X. et al. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell 73, 971–984.e5 (2019).

    CAS  PubMed  Google Scholar 

  85. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12 (2016). Together with Zeng et al. (2018) and Wu et al. (2019), this paper demonstrates the roles of condensate formation in regulating the mesoscale architecture of the PSD and presynaptic active zones.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. Cell 166, 637–650 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rebane, A. A. et al. Liquid–liquid phase separation of the Golgi matrix protein GM130. FEBS Lett. 594, 1132–1144 (2020).

    CAS  PubMed  Google Scholar 

  89. Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell Biol. 17, 6087–6096 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Haaf, T., Golub, E. I., Reddy, G., Radding, C. M. & Ward, D. C. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc. Natl Acad. Sci. USA 92, 2298–2302 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Singatulina, A. S. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 27, 1809–1821.e5 (2019). This paper shows that co-phase separation of FUS and PAR at sites of DNA damage organizes a mesoscale DNA repair compartment.

    CAS  PubMed  Google Scholar 

  92. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  93. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    CAS  PubMed  Google Scholar 

  94. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kilic, S. et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. Embo J. 38, e101379 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019). This paper shows that phase separation appears to be involved in the turnover of DNA repair foci as liquid, reversible properties allow dispersal upon resolution of damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Oshidari, R. et al. DNA repair by Rad52 liquid droplets. Nat. Commun. 11, 695 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Parker, M. W. et al. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 8, e48562 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xiang, W. et al. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. J. Cell Biol. 217, 1973–1984 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    CAS  PubMed  Google Scholar 

  102. Wang, Z. & Zhang, H. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol. 29, 417–427 (2019).

    CAS  PubMed  Google Scholar 

  103. Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28, 405–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamasaki, A. et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163–1175.e9 (2020).

    CAS  PubMed  Google Scholar 

  105. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020). Together with Sun et al. (2018) and Yamasaki et al. (2020), this paper demonstrate how phase separation creates mesoscale, discrete structures that can be engulfed by autophagosomes.

    CAS  PubMed  Google Scholar 

  106. Bergeron-Sandoval, L.-P. et al. Endocytosis caused by liquid–liquid phase separation of proteins. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/145664v3 (2018).

  107. Weatheritt, R. J., Gibson, T. J. & Babu, M. M. Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nat. Struct. Mol. Biol. 21, 833–839 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ishizuka, N., Cowan, W. M. & Amaral, D. G. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45 (1995).

    CAS  PubMed  Google Scholar 

  110. Donnelly, C. J., Fainzilber, M. & Twiss, J. L. Subcellular communication through RNA transport and localized protein synthesis. Traffic 11, 1498–1505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019). This paper demonstrates how ribonucleoprotein condensates ‘hitchhike’ on membranous organelles for long-distance transport in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Meaburn, K. J. & Misteli, T. Cell biology: chromosome territories. Nature 445, 379–781 (2007).

    CAS  PubMed  Google Scholar 

  115. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017). This paper shows that phase separation of HP1α appears to play a role in heterochromatin formation (but see also Erdel et al. (2020)).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zaidi, S. K. et al. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat. Rev. Genet. 11, 583–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Palozola, K. C., Lerner, J. & Zaret, K. S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20, 55–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, X. et al. Mitotic implantation of the transcription factor prospero via phase separation drives terminal neuronal differentiation. Dev. Cell 52, 277–293.e8 (2020). This paper demonstrates how a condensate composed of the Prospero transcription factor localizes to specific regions of the genome even through mitosis to facilitate rapid formation of heterochromatin following mitosis in neural progenitor cells, driving terminal neuronal differentiation.

    CAS  PubMed  Google Scholar 

  124. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Stoeger, T., Battich, N. & Pelkmans, L. Passive noise filtering by cellular compartmentalization. Cell 164, 1151–1161 (2016).

    CAS  PubMed  Google Scholar 

  126. Dill, K. A. & Bromberg, S. Molecular Driving Forces. Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience 2nd edn (Garland Science, 2010).

  127. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020). This paper provides theoretical and experimental evidence that phase separation may provide a means of reducing fluctuations in protein concentration, thereby increasing robustness of cellular processes.

    CAS  PubMed  Google Scholar 

  128. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020). This paper demonstrates the complexity of multicomponent phase-separated condensates, where saturation concentrations are not fixed but vary based on concentrations of condensate components.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ruff, K. M., Roberts, S., Chilkoti, A. & Pappu, R. V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 430, 4619–4635 (2018).

    CAS  PubMed  Google Scholar 

  130. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  131. Yoo, H., Triandafillou, C. & Drummond, D. A. Cellular sensing by phase separation: using the process, not just the products. J. Biol. Chem. 294, 7151–7159 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sengupta, P. & Garrity, P. Sensing temperature. Curr. Biol. 23, R304–R307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lindquist, S. & Petersen, R. Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme 44, 147–166 (1990).

    CAS  PubMed  Google Scholar 

  134. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831.e19 (2020). This paper shows that stress-induced condensate formation switches the cellular translational regulatory regime to mount a homeostatic response, and provides evidence that evolutionary processes have tuned condensate formation at temperatures suiting organisms’ environments.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 173, 338–349.e20 (2018). This paper shows that mTORC inhibition leads to reduced ribosome abundance and decreased cytoplasmic crowding, impacting the saturation concentration for condensate formation.

    Google Scholar 

  136. Xing, W., Muhlrad, D., Parker, R. & Rosen, M. K. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. eLife 9, e56525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532.e11 (2018).

    CAS  PubMed  Google Scholar 

  140. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157.e5 (2017). Together with Xing et al. (2020), Jain et al. (2016), Markmiller et al. (2018) and Youn et al. (2018), this paper characterizes the complexity of RNA granules and bodies, setting the stage for future work in understanding how interactions between numerous components govern the function of highly complex native condensates.

    CAS  PubMed  Google Scholar 

  141. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M. & Parker, R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371–382 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wheeler, R. J. & Hyman, A. A. Controlling compartmentalization by non-membrane-bound organelles. Philos. Trans. R. Soc. B 373, 20170193 (2018).

    Google Scholar 

  144. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Soding, J., Zwicker, D., Sohrabi-Jahromi, S., Boehning, M. & Kirschbaum, J. Mechanisms for active regulation of biomolecular condensates. Trends Cell Biol. 30, 4–14 (2020).

    PubMed  Google Scholar 

  146. Bratek-Skicki, A., Pancsa, R., Meszaros, B., Van Lindt, J. & Tompa, P. A guide to regulation of the formation of biomolecular condensates. FEBS J. 287, 1924–1935 (2020).

    CAS  PubMed  Google Scholar 

  147. Choi, J. M., Dar, F. & Pappu, R. V. LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput. Biol. 15, e1007028 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cai, L. H., Panyukov, S. & Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 44, 7853–7863 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7, e40497 (2018). Together with Cho et al. (2018) and Sabari et al. (2018), this key paper discusses the role of condensates in transcription, a highly active area of research where many questions remain unsettled.

    PubMed  PubMed Central  Google Scholar 

  152. Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    CAS  PubMed  Google Scholar 

  153. Rao, B. S. & Parker, R. Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 114, E9569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Hill, T. L. Thermodynamics of Small Systems, Parts 1 & 2 (Dover, 2013).

  155. Puglisi, A., Sarracino, A. & Vulpiani, A. Thermodynamics and Statistical Mechanics of Small Systems (published by the authors, 2018).

  156. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  157. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  158. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    CAS  PubMed  Google Scholar 

  159. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Mir, M. et al. Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev. 31, 1784–1794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018). Together with Boija et al. (2018), Lu et al. (2018), Chong et al. (2018) and Mir et al. (2017), this important paper discusses phase separation, condensates and transcription.

    CAS  PubMed  Google Scholar 

  163. Julin, J., Napari, I., Merikanto, J. & Vehkamaki, H. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory. J. Chem. Phys. 133, 044704 (2010).

    PubMed  Google Scholar 

  164. Lau, G. V., Hunt, P. A., Muller, E. A., Jackson, G. & Ford, I. J. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. J. Chem. Phys. 143, 244709 (2015).

    PubMed  Google Scholar 

  165. Nguyen, V. D., Schoemaker, F. C., Blokhuis, E. M. & Schall, P. Measurement of the curvature-dependent surface tension in nucleating colloidal liquids. Phys. Rev. Lett. 121, 246102 (2018).

    CAS  PubMed  Google Scholar 

  166. Gsponer, J. & Babu, M. M. Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep. 2, 1425–1437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chavali, S. et al. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol. 24, 765–777 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    CAS  PubMed  Google Scholar 

  169. Kawecki, T. J. et al. Experimental evolution. Trends Ecol. Evol. 27, 547–560 (2012).

    PubMed  Google Scholar 

  170. Sanchez de Groot, N. et al. The fitness cost and benefit of phase-separated protein deposits. Mol. Syst. Biol. 15, e8075 (2019).

    PubMed  PubMed Central  Google Scholar 

  171. So, C. et al. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 364, eaat9557 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S. & Schrader, J. M. α-Proteobacterial RNA degradosomes assemble liquid–liquid phase-separated RNP bodies. Mol. Cell 71, 1027–1039.e14 (2018).

    CAS  PubMed  Google Scholar 

  173. Ying, Y. et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain. Cell 170, 312–323.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Tatomer, D. C. et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J. Cell Biol. 213, 557–570 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Novotný, I., Blažíková, M., Staneˇk, D., Herman, P. & Malinsky, J. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol. Biol. Cell 22, 513–523 (2011).

    PubMed  PubMed Central  Google Scholar 

  176. Samir, P. et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 573, 590–594 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lasker, K. et al. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat. Microbiol. 5, 418–429 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Zaffagnini, G. et al. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37, e98308 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Park, J.-E. et al. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat. Commun. 10, 4959 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Chakravarty, A. K., Smejkal, T., Itakura, A. K., Garcia, D. M. & Jarosz, D. F. A non-amyloid prion particle that activates a heritable gene expression program. Mol. Cell 77, 251–265.e9 (2020).

    CAS  PubMed  Google Scholar 

  183. Itakura, A. K., Chakravarty, A. K., Jakobson, C. M. & Jarosz, D. F. Widespread prion-based control of growth and differentiation strategies in Saccharomyces cerevisiae. Mol. Cell 77, 266–278.e6 (2020).

    CAS  PubMed  Google Scholar 

  184. Gaglia, G. et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat. Cell Biol. 22, 151–158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    CAS  PubMed  Google Scholar 

  189. Davis, D. et al. Human antiviral protein MxA forms novel metastable membraneless cytoplasmic condensates exhibiting rapid reversible tonicity-driven phase transitions. J. Virol. 93, e01014–e01019 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Heinrich, B. S., Maliga, Z., Stein, D. A., Hyman, A. A. & Whelan, S. P. J. Phase transitions drive the formation of vesicular stomatitis virus replication compartments. mBio 9, e02290-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Zhou, Y., Su, J. M., Samuel, C. E. & Ma, D. Measles virus forms inclusion bodies with properties of liquid organelles. J. Virol. 93, e00948-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).

    CAS  PubMed  Google Scholar 

  193. Sala, K. et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. Sci. Rep. 9, 13530 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Celetti, G. et al. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J. Cell Biol. 219, e201907157 (2019).

    PubMed Central  Google Scholar 

  195. A, P. & Weber, S. C. Evidence for and against liquid–liquid phase separation in the nucleus. NonCoding RNA 5, 50 (2019).

    PubMed Central  Google Scholar 

  196. Falahati, H. & Wieschaus, E. Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proc. Natl Acad. Sci. USA 114, 1335–1340 (2017). This paper demonstrates that both thermodynamic processes, such as phase separation, and active processes contribute to nucleolus assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Itia, A. F.-B., Alexander, B. S., Ethan, K. S. & Halina, R.-D. Optical trapping in vivo: theory, practice, and applications. Nanophotonics 8, 1023–1040 (2019).

    Google Scholar 

  199. Mittasch, M. et al. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20, 344–351 (2018).

    CAS  PubMed  Google Scholar 

  200. Taylor, J. P., Brown, R. H. Jr. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Tulpule, A. et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/704312v3 (2020). This paper reports that aberrant condensates formed by oncogenic receptor tyrosine kinase fusion proteins drive RAS signalling.

  203. Takeuchi, K. Discovery stories of RET fusions in lung cancer: a mini-review. Front. Physiol. 10, 216 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. Grunewald, T. G. P. et al. Ewing sarcoma. Nat. Rev. Dis. Prim. 4, 5 (2018).

    PubMed  Google Scholar 

  205. Wheeler, R. J. et al. Small molecules for modulating protein driven liquid–liquid phase separation in treating neurodegenerative disease. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/721001v2 (2020).

  206. Berchtold, D., Battich, N. & Pelkmans, L. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol. Cell 72, 1035–1049.e5 (2018).

    CAS  PubMed  Google Scholar 

  207. Rai, A. K., Chen, J. X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216 (2018).

    CAS  PubMed  Google Scholar 

  208. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. Embo J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. eLife 3, e04591 (2014).

    PubMed  PubMed Central  Google Scholar 

  210. Zhang, G., Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506.e22 (2018).

    CAS  PubMed  Google Scholar 

  211. Guccione, E. & Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol. 20, 642–657 (2019).

    CAS  PubMed  Google Scholar 

  212. Dao, T. P. et al. Ubiquitin modulates liquid–liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).

    CAS  PubMed  Google Scholar 

  214. Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci. Signal. 11, eaan1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat. Struct. Mol. Biol. 27, 653–659 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Griner, S. L. et al. Structure-based inhibitors of amyloid β core suggest a common interface with tau. eLife 8, e46924 (2019).

    PubMed  PubMed Central  Google Scholar 

  218. Lu, J. et al. Structure-based peptide inhibitor design of amyloid-β aggregation. Front. Mol. Neurosci. 12, 54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Sangwan, S. et al. Inhibition of synucleinopathic seeding by rationally designed inhibitors. eLife 9, e46775 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on biomolecular condensates is supported in the Rosen laboratory by the Howard Hughes Medical Institute, a Paul G. Allen Frontiers Distinguished Investigator Award to M.K.R. and grants from the Welch Foundation (I-1544 to M.K.R.) and the National Institutes of Health (NIH) (F32 GM136058 to A.S.L.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael K. Rosen.

Ethics declarations

Competing interests

M.K.R. is a co-founder of the biotechnology company Faze Medicines. A.S.L and W.B.P. declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks M. Babu, S. Michnick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Material properties

In the context of biomolecular condensates, physical properties of the assembly of constituent macromolecules including viscosity, surface tension and porosity.

Interfacial tension

(Also known as surface tension). For separate liquid phases in contact with each other, the work required to increase the surface area of contact between the two phases. In the absence of external forces, interfacial/surface tension causes phase-separated liquids to form spherical droplets as spheres have minimal surface area for a given volume.

Multivalent interactions

Interactions occurring between macromolecules with multiple sites of interaction, such that each molecule can interact with multiple binding partners.

Intrinsically disordered regions

Protein regions that do not adopt any stable ordered three-dimensional structure.

Law of mass action

In the context of enzymology, the principle that the chemical reaction rate is proportional to the concentration of enzymes and substrates.

Ribulose bisphosphate carboxylase/oxygenase

(Rubisco). An enzyme acting in carbon fixation in photosynthetic organisms, catalysing the reaction between ribulose bisphosphate and atmospheric carbon dioxide.

Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase

(cGAS). An innate immune signalling enzyme that senses cytosolic DNA, a pathogen-associated molecular pattern, and produces cGAMP, which activates the stimulator of interferon genes (STING) protein to induce pro-inflammatory transcriptional responses.

Allostery

Regulation of enzyme activity via binding by a second molecule at a site other than the enzyme’s active site, often by inducing a conformational change.

Scaffold

In simple molecular systems, a macromolecule that is required for condensate formation. The other, general group of condensate components are client molecules, which bind to and selectively partition into condensates without affecting condensate formation. In many natural condensates, this distinction is not absolute, and whereas some macromolecules act as pure scaffolds and some as pure clients, others can have varying impacts on the formation (threshold concentration) and composition of the compartment.

K M

A parameter of the Michaelis–Menten model of enzyme kinetics, describing the concentration of a substrate molecule at which the rate of product formation reaches half of the maximum possible rate under a given set of conditions. If the rate of enzyme–substrate binding is rapid relative to catalysis, the KM value approximates the dissociation constant for the enzyme–substrate complex.

Paraspeckles

Nuclear condensates implicated in RNA base editing as well as transcriptional regulation. Paraspeckles are formed from the long non-coding RNA NEAT1 and the DBHS family of proteins (NONO, SFPQ and PSPC1).

Kinetic proofreading

A biochemical error-correction mechanism favouring reaction pathways that lead to correct over incorrect products, wherein an irreversible step that leads to exit of reaction intermediates from the pathway is more likely to occur for incorrect intermediates.

Processing bodies

Cytoplasmic condensates found in yeast and humans that contains mRNA, RNA decapping and RNA degradation machinery. P bodies are thought to either store or degrade mRNA during stress.

Argonaute

A protein component of the RNA-induced silencing complex that binds several classes of small non-coding RNAs, which direct the complex to mRNA targets via sequence complementarity to downregulate expression through endonucleolytic mRNA cleavage or translational inhibition.

Transgenerational epigenetic inheritance

Biological processes that allow transmission of epigenetic regulatory molecules or modifications, such as RNAi factors or DNA methylation, from parent to offspring without altering DNA sequences.

P granules

Biomolecular condensates formed by liquid–liquid phase separation in Caenorhabditis elegans composed of RNA and proteins involved in the maintenance of germ cell fate via post-transcriptional regulation and small RNA biogenesis.

Z granules

Biomolecular condensates in Caenorhabditis elegans containing the proteins ZNFX1 and WAGO4 required for transgenerational epigenetic inheritance of RNAi. Associates with both P granules and Mutator foci, forming a bridge between the two condensates.

Mutator foci

A type of biomolecular condensate in Caenorhabditis elegans consisting of proteins encoded by mutator class genes, originally discovered in genetic screens for activation of transposons in the germline. Functions in siRNA amplification and RNA silencing.

Voltage-gated calcium channels

Membrane protein channels that allow ingress of calcium into the cell at presynaptic terminals of neurons when activated by membrane depolarization. Calcium activates exocytosis of neurotransmitter vesicles.

N-Methyl-d-aspartate (NMDA) receptor

A postsynaptic membrane protein channel activated by the excitatory neurotransmitter glutamate, allowing ingress of cations to depolarize the postsynaptic neuron.

Dendritic spines

Small protrusions on postsynaptic dendrites that are sites of excitatory signalling by glutamate neurotransmitter receptors.

Balbiani body

A condensate specifically found during oocyte development that includes nuage, mitochondria and rough endoplasmic reticulum. Although the function is not fully understood, it is thought to preserve eggs in a dormant state prior to ovulation.

Optical trapping

The use of highly focused laser beams to apply force to (‘trap’) very small objects.

Chemogenetic approaches

A class of experimental techniques that introduce proteins or protein domain fusion constructs that have engineered small molecule-dependent activities into cells or in vitro biochemical reactions to achieve control over cellular or biochemical activities.

Optogenetics

A class of experimental techniques using light-responsive proteins or engineered protein domain fusions to acutely modulate cellular or protein activities by illuminating cells or in vitro biochemical reactions.

Partition coefficient

The ratio of molecular concentration within a biomolecular condensate relative to the concentration in the surrounding solution.

Michaelis-like recruitment

For the binding of a molecule to some structure, a non-linear, saturable relationship between the molecular concentration and the fraction bound described by the rectangular hyperbola of the Michaelis–Menten model of enzyme kinetics.

Promyelocytic leukaemia nuclear bodies

Nuclear condensates formed by the promyelocytic leukaemia protein (PML). Fusion of PML to the retinoic acid receptor causes acute promyelocytic leukaemia. PML bodies are implicated in various processes, including transcription regulation, viral immunity, post-translational modification and apoptosis.

CAR T cells

In cancer immunotherapy, T cells that express engineered T cell receptors (TCRs) where the native extracellular domains have been replaced by a heterologous binding domain targeted to a tumour-specific cell-surface protein in order to direct increased cytotoxic activity towards tumour cells.

Kinetic trapping

A phenomenon in which a thermodynamically less stable state is maintained due to the high energy barrier, and thus long time period, required to move to the more stable state.

Split enzyme system

The use of an enzyme that has been expressed as two separate polypeptide chains and is only active when the fragments are brought together to reconstitute the full enzyme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyon, A.S., Peeples, W.B. & Rosen, M.K. A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol 22, 215–235 (2021). https://doi.org/10.1038/s41580-020-00303-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00303-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing