Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA contributions to the form and function of biomolecular condensates

Abstract

Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid–liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA–protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of condensate properties through RNA sequence and length.
Fig. 2: Modifying RNA structure in vitro and in vivo.
Fig. 3: Tuning condensate properties through RNA modifications.
Fig. 4: Examples of cytoplasmic RNA–protein condensates.
Fig. 5: Oocytes may use condensates for long-term RNA storage.

Similar content being viewed by others

References

  1. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, H. et al. RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Milin, A. N. & Deniz, A. A. Reentrant phase transitions and non-equilibrium dynamics in membraneless organelles. Biochemistry 57, 2470–2477 (2018).

    CAS  PubMed  Google Scholar 

  11. Putnam, A., Cassani, M., Smith, J. & Seydoux, G. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26, 220–226 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, C. S. et al. Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins. eLife 9, e52896 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, J. et al. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. eLife 5, e21337 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    CAS  PubMed  Google Scholar 

  15. Franzmann, T. & Alberti, S. Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior. J. Biol. Chem. 294, 7128–7136 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Mitrea, D. M. et al. Methods for physical characterization of phase-separated bodies and membrane-less organelles. J. Mol. Biol. 430, 4773–4805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31–39 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakagawa, S. et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141, 4618–4627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Standaert, L. et al. The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20, 1844–1849 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell Biol. 27, 3970–3981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, D. D. & Gurdon, J. B. Absence of ribosomal RNA synthesis in the anucleolate mutant of Xenopus laevis. Proc. Natl Acad. Sci. USA 51, 139–146 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin, S. et al. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons. J. Neurochem. 125, 175–184 (2013).

    CAS  PubMed  Google Scholar 

  23. Tucker, K. E. et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J. Cell Biol. 154, 293–307 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Schisa, J. A., Pitt, J. N. & Priess, J. R. Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128, 1287–1298 (2001).

    CAS  PubMed  Google Scholar 

  28. Trcek, T. et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6, 7962 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wheeler, J. R., Jain, S., Khong, A. & Parker, R. Isolation of yeast and mammalian stress granule cores. Methods 126, 12–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157.e5 (2017).

    CAS  PubMed  Google Scholar 

  33. Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    CAS  PubMed  Google Scholar 

  35. Bang, I. Untersuchungen über die guanylsäre. Biochemische Z. 26, 293–311 (1910).

    CAS  Google Scholar 

  36. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, R., Harvey, A. R., Hodgetts, S. I. & Fox, A. H. Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA 23, 872–881 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mito, M., Kawaguchi, T., Hirose, T. & Nakagawa, S. Simultaneous multicolor detection of RNA and proteins using super-resolution microscopy. Methods 98, 158–165 (2016).

    CAS  PubMed  Google Scholar 

  41. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Estan, M. C. et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat. Commun. 10, 797 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, J. A. et al. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. J. Cell Biol. 219, e201911129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilbert, W. V., Bell, T. A. & Schaening, C. Messenger RNA modifications: form, distribution, and function. Science 352, 1408–1412 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  49. Meyer, K. D. & Jaffrey, S. R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    CAS  PubMed  Google Scholar 

  51. Zhuang, Y. F. X. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-0524-y (2020).

  52. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyamura, Y. et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 73, 693–699 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bansal, H. et al. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 28, 1171–1174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gokhale, N. S. & Horner, S. M. RNA modifications go viral. PLoS Pathog. 13, e1006188 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Solomon, O. et al. RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat. Commun. 8, 1440 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Butcher, S. E. & Pyle, A. M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc. Chem. Res. 44, 1302–1311 (2011).

    CAS  PubMed  Google Scholar 

  60. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Smola, M. J. & Weeks, K. M. In-cell RNA structure probing with SHAPE-MaP. Nat. Protoc. 13, 1181–1195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, Z., Gong, J. & Zhang, Q. C. PARIS: psoralen analysis of RNA interactions and structures with high throughput and resolution. Methods Mol. Biol. 1649, 59–84 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding, Y., Chan, C. Y. & Lawrence, C. E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135–W141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ding, Y., Chan, C. Y. & Lawrence, C. E. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11, 1157–1166 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lorenz, R. et al. Vienna RNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Alberti, S. et al. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806–4820 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Volkov, V. Quantitative description of ion transport via plasma membrane of yeast and small cells. Front. Plant. Sci. 6, 425 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Bhattacharyya, D., Mirihana Arachchilage, G. & Basu, S. Metal cations in G-quadruplex folding and stability. Front. Chem. 4, 38 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y. et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746–11754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Strulson, C. A., Boyer, J. A., Whitman, E. E. & Bevilacqua, P. C. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions. RNA 20, 331–347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamagami, R., Bingaman, J. L., Frankel, E. A. & Bevilacqua, P. C. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat. Commun. 9, 2149 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Denesyuk, N. A. & Thirumalai, D. Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA. J. Am. Chem. Soc. 133, 11858–11861 (2011).

    CAS  PubMed  Google Scholar 

  75. Dupuis, N. F., Holmstrom, E. D. & Nesbitt, D. J. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc. Natl Acad. Sci. USA 111, 8464–8469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kilburn, D., Roh, J. H., Guo, L., Briber, R. M. & Woodson, S. A. Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132, 8690–8696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakano, S., Karimata, H. T., Kitagawa, Y. & Sugimoto, N. Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J. Am. Chem. Soc. 131, 16881–16888 (2009).

    CAS  PubMed  Google Scholar 

  78. Lee, H. T., Kilburn, D., Behrouzi, R., Briber, R. M. & Woodson, S. A. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids Res. 43, 1170–1176 (2015).

    CAS  PubMed  Google Scholar 

  79. Bernhardt, H. S. & Tate, W. P. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol. Direct 7, 4 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mariani, A., Bonfio, C., Johnson, C. M. & Sutherland, J. D. pH-driven RNA strand separation under prebiotically plausible conditions. Biochemistry 57, 6382–6386 (2018).

    CAS  PubMed  Google Scholar 

  81. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    CAS  PubMed  Google Scholar 

  85. Rajkowitsch, L. et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118–130 (2007).

    CAS  PubMed  Google Scholar 

  86. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    CAS  PubMed  Google Scholar 

  87. Kim, Y. & Myong, S. RNA remodeling activity of DEAD box proteins tuned by protein concentration, RNA length, and ATP. Mol. Cell 63, 865–876 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    CAS  PubMed  Google Scholar 

  89. Buratti, E. & Baralle, F. E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell Biol. 24, 10505–10514 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Trcek, T. et al. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol. Cell 78, 1–10 (2020).

    Google Scholar 

  92. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).

    CAS  PubMed  Google Scholar 

  93. Engreitz, J. M. et al. RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mustoe, A. M., Lama, N. N., Irving, P. S., Olson, S. W. & Weeks, K. M. RNA base-pairing complexity in living cells visualized by correlated chemical probing. Proc. Natl Acad. Sci. USA 116, 24574–24582 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N. & Buchman, V. L. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Hum. Mol. Genet. 23, 5211–5226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  102. Kiledjian, M. & Dreyfuss, G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 11, 2655–2664 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    CAS  PubMed  Google Scholar 

  104. Lee, C., Occhipinti, P. & Gladfelter, A. S. PolyQ-dependent RNA-protein assemblies control symmetry breaking. J. Cell Biol. 208, 533–544 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, C. et al. Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control. Dev. Cell 25, 572–584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heraud-Farlow, J. E. & Kiebler, M. A. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci. 37, 470–479 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).

    CAS  PubMed  Google Scholar 

  108. Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).

    CAS  PubMed  Google Scholar 

  109. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    CAS  PubMed  Google Scholar 

  111. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    CAS  PubMed  Google Scholar 

  112. Conlon, E. G. & Manley, J. L. RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. 31, 1509–1528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Becht, P., Konig, J. & Feldbrugge, M. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J. Cell Sci. 119, 4964–4973 (2006).

    CAS  PubMed  Google Scholar 

  114. Zarnack, K. & Feldbrugge, M. mRNA trafficking in fungi. Mol. Genet. Genomics 278, 347–359 (2007).

    CAS  PubMed  Google Scholar 

  115. Konig, J. et al. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J. 28, 1855–1866 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. Baumann, S., Pohlmann, T., Jungbluth, M., Brachmann, A. & Feldbrugge, M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125, 2740–2752 (2012).

    CAS  PubMed  Google Scholar 

  117. Baumann, S., Konig, J., Koepke, J. & Feldbrugge, M. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 15, 94–102 (2014).

    CAS  PubMed  Google Scholar 

  118. Vogler, T. O. et al. TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature 563, 508–513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Smith, J. A. et al. Regulation of FXR1 by alternative splicing is required for muscle development and controls liquid-like condensates in muscle cells. Preprint at bioRxiv https://doi.org/10.1101/818476 (2019).

    Article  Google Scholar 

  120. Orr-Weaver, T. L. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 31, 307–315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jordina Guille´ n-Boixet, A. K., Holehouse, Alex S., Pappu, Rohit V. & Simon Alberti, T. M. F. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 18, 1–16 (2020).

    Google Scholar 

  124. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Falahati, H., Pelham-Webb, B., Blythe, S. & Wieschaus, E. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr. Biol. 26, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Fang, X. et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569, 265–269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo, Y., Na, Z. & Slavoff, S. A. P-bodies: composition, properties, and functions. Biochemistry 57, 2424–2431 (2018).

    CAS  PubMed  Google Scholar 

  129. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsang, B. et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl Acad. Sci. USA 116, 4218–4227 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, J. T. & Seydoux, G. P granules. Curr. Biol. 24, R637–R638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Seydoux, G. & Braun, R. E. Pathway to totipotency: lessons from germ cells. Cell 127, 891–904 (2006).

    CAS  PubMed  Google Scholar 

  134. Congdon, E. E. & Duff, K. E. Is tau aggregation toxic or protective? J. Alzheimers Dis. 14, 453–457 (2008).

    PubMed  Google Scholar 

  135. Greenblatt, E. J. & Spradling, A. C. Fragile X mental retardation 1 gene enhances the translation of large autism-related proteins. Science 361, 709–712 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Marozzi, A. et al. Association between idiopathic premature ovarian failure and fragile X premutation. Hum. Reprod. 15, 197–202 (2000).

    CAS  PubMed  Google Scholar 

  137. Sullivan, A. K. et al. Association of FMR1 repeat size with ovarian dysfunction. Hum. Reprod. 20, 402–412 (2005).

    CAS  PubMed  Google Scholar 

  138. Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. Cell 166, 637–650 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mugler, C. F. et al. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife 5, e18746 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Rai, A. K., Chen, J. X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216 (2018).

    CAS  PubMed  Google Scholar 

  141. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. eLife 3, e04591 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    CAS  PubMed  Google Scholar 

  143. Walters, R. W., Muhlrad, D., Garcia, J. & Parker, R. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21, 1660–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    CAS  PubMed  Google Scholar 

  145. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).

    CAS  PubMed  Google Scholar 

  146. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    CAS  PubMed  Google Scholar 

  148. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Decker, C. J. & Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286 (2012).

    PubMed  PubMed Central  Google Scholar 

  150. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Iserman for critical reading of this manuscript. This work has been funded by the NIH National Institute of General Medical Sciences (R01-GM081506, A.S.G.; F32 F32GM136164, C.R.), Howard Hughes Medical Institute Faculty Scholars program (A.S.G.), University of North Carolina at Chapel Hill (T32 CA 9156-43, C.R.) and the L’Oreal Women in Science Fellowship (C.R). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Amy S. Gladfelter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intrinsically disordered regions

(IDRs). Sequences of RNA or protein that lack defined 3D order or structure.

P granules

Non-membrane-bound presumptive germ cell granules.

Re-entrant phase behaviour

The behaviour seen when sufficiently high concentrations of a component, such as RNA, prevent condensation, in many cases owing to charge repulsion effects.

Phase diagrams

Charts used to show the state of a mixture at equilibrium, depending on particular conditions; for biomolecular condensates, this state is often a function of the concentration of mixture components such as protein and RNA.

Stress granules

Membraneless condensates consisting of RNA and protein that appear in cells in conditions of stress.

Paraspeckles

Membraneless condensates consisting of RNA and protein in interphase nuclei; scaffolded by the long non-coding RNA NEAT1.

Microspeckles

Membraneless condensates consisting of RNA and protein in interphase nuclei; scaffolded by the long non-coding RNA NEAT1 splicing isoform 1-1.

G-quadruplex

A nucleic acid, four-stranded structure formed by guanine-rich sequences.

Condensed phase

A solid or liquid condensate that forms by electrostatic interactions and demixing from solution.

Dilute phase

The molecules remaining in solution, unincorporated into either solid or liquid condensates.

Speckles

Membraneless condensates in the nucleus that store and modify splicing factors.

Cajal bodies

(Also known as coiled bodies). Membraneless nuclear bodies containing RNA and protein that are sites of post-transcriptional modification of small nuclear and nucleolar RNAs.

PML bodies

Membraneless bodies consisting of RNA and protein and scaffolded by the promyelocytic leukaemia (PML) protein. May have roles in apoptosis, cell division and response to viral infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roden, C., Gladfelter, A.S. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22, 183–195 (2021). https://doi.org/10.1038/s41580-020-0264-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0264-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing