Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The oral microbiome: diversity, biogeography and human health

Abstract

The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biogeography of the oral microbiome and relative sizes of its members.
Fig. 2: Experimental gingivitis in humans reveals three distinct response types.
Fig. 3: Links between the oral microbiota and systemic diseases.

Similar content being viewed by others

References

  1. Dobell, C. Antony van Leeuwenhoek and HisLittle Animals: Being Some Account of the Father of Protozoology and Bacteriology and His Multifarious Discoveries in these Disciplines (Harcourt, Brace and Company, 1932).

  2. Mukherjee, C. et al. Acquisition of oral microbiota is driven by environment, not host genetics. Microbiome 9, 54 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sulyanto, R. M., Thompson, Z. A., Beall, C. J., Leys, E. J. & Griffen, A. L. The predominant oral microbiota is acquired early in an organized pattern. Sci. Rep. 9, 10550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaan, A. M. M., Kahharova, D. & Zaura, E. Acquisition and establishment of the oral microbiota. Periodontol 2000 86, 123–141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaura, E., Keijser, B. J. F., Huse, S. M. & Crielaard, W. Defining the healthy ‘core microbiome’ of oral microbial communities. BMC Microbiol. 9, 259 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Griffen, A. L. et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6, 1176–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Escapa, I. F. et al. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems https://doi.org/10.1128/msystems.00187-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Oren, A. & Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71, 005056 (2021).

    Article  Google Scholar 

  12. Tierney, B. T. et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26, 283–295.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Shaiber, A. et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol. 21, 292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaffe, A. L. et al. Patterns of gene content and co-occurrence constrain the evolutionary path toward animal association in candidate phyla radiation bacteria. mBio 12, e0052121 (2021).

    Article  PubMed  Google Scholar 

  19. Hugenholtz, P., Tyson, G. W., Webb, R. I., Wagner, A. M. & Blackall, L. L. Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67, 411–419 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McLean, J. S. et al. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep. 32, 107939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He, X. et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl Acad. Sci. USA 112, 244–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Bor, B. et al. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc. Natl Acad. Sci. USA 115, 12277–12282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bor, B., Bedree, J. K., Shi, W., McLean, J. S. & He, X. Saccharibacteria (TM7) in the human oral microbiome. J. Dent. Res. 98, 500–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chipashvili, O. et al. Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation. Cell Host Microbe 29, 1649–1662.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, J. et al. Acquisition of the arginine deiminase system benefits epiparasitic Saccharibacteria and their host bacteria in a mammalian niche environment. Proc. Natl Acad. Sci. USA 119, e2114909119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker, J. L. Complete genomes of clade G6 suggest a divergent ecological niche and lifestyle. mSphere 6, e0053021 (2021).

    Article  PubMed  Google Scholar 

  28. Dunn, D. W. et al. A role for parasites in stabilising the fig-pollinator mutualism. PLoS Biol. 6, e59 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Diaz, P. I., Hong, B.-Y., Dupuy, A. K. & Strausbaugh, L. D. Mining the oral mycobiome: methods, components, and meaning. Virulence 8, 313–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Diaz, P. I. & Dongari-Bagtzoglou, A. Critically appraising the significance of the oral mycobiome. J. Dent. Res. 100, 133–140 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Gabaldón, T. et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 14, 623 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turner, S. A. & Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 4, a019778 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ahmad, K. M. et al. Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS Yeast Res. 14, 529–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Hong, B. Y. et al. The salivary mycobiome contains 2 ecologically distinct mycotypes. J. Dent. Res. 99, 730–738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dupuy, A. K. et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS ONE 9, e90899 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Montelongo-Jauregui, D. & Lopez-Ribot, J. L. Candida interactions with the oral bacterial microbiota. J. Fungi 4, 122 (2018).

    Article  CAS  Google Scholar 

  38. Salvatori, O. et al. Bacteria modify Candida albicans hypha formation, microcolony properties, and survival within macrophages. mSphere 5, e00689-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ellepola, K. et al. Multi-omics analyses reveal synergistic carbohydrate metabolism in Streptococcus mutansCandida albicans mixed-species biofilms. Infect. Immun. 87, e00339-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fultz, R., Ticer, T., Glover, J., Stripe, L. & Engevik, M. A. Select Streptococci can degrade Candida mannan to facilitate growth. Appl. Environ. Microbiol. 88, e0223721 (2022).

    Article  PubMed  Google Scholar 

  41. Xiao, J. et al. Association between oral Candida and bacteriome in children with severe ECC. J. Dent. Res. 97, 1468–1476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wan, S. X. et al. Cross-kingdom cell-to-cell interactions in cariogenic biofilm initiation. J. Dent. Res. 100, 74–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H.-E. et al. Synergism of Streptococcus mutans and Candida albicans reinforces biofilm maturation and acidogenicity in saliva: an in vitro study. Front. Cell. Infect. Microbiol. 10, 623980 (2020).

    Article  PubMed  Google Scholar 

  44. Ren, Z. et al. Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions. Proc. Natl Acad. Sci. USA 119, e2209699119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bisson, C., Dridi, S. M. & Machouart, M. Assessment of the role of Trichomonas tenax in the etiopathogenesis of human periodontitis: a systematic review. PLoS ONE 14, e0226266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belmok, A., de Cena, J. A., Kyaw, C. M. & Damé-Teixeira, N. The oral archaeome: a scoping review. J. Dent. Res. 99, 630–643 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Bonner, M., Fresno, M., Gironès, N., Guillén, N. & Santi-Rocca, J. Reassessing the role of Entamoeba gingivalis in periodontitis. Front. Cell. Infect. Microbiol. 8, 379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bao, X., Wiehe, R., Dommisch, H. & Schaefer, A. S. Entamoeba gingivalis causes oral inflammation and tissue destruction. J. Dent. Res. 99, 561–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Bao, X., Weiner, J. III, Meckes, O., Dommisch, H. & Schaefer, A. S. Entamoeba gingivalis exerts severe pathogenic effects on the oral mucosa. J. Dent. Res. 100, 771–776 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. García, G. et al. A new subtype of Entamoeba gingivalis: ‘E. gingivalis ST2, kamaktli variant’. Parasitol. Res. 117, 1277–1284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Benabdelkader, S. et al. Specific clones of Trichomonas tenax are associated with periodontitis. PLoS ONE 14, e0213338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Cena, J. A. et al. Meta-analyses on the periodontal archaeome. Adv. Exp. Med. Biol. 1373, 69–93 (2022).

    Article  PubMed  Google Scholar 

  54. Vianna, M. E., Holtgraewe, S., Seyfarth, I., Conrads, G. & Horz, H. P. Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. J. Bacteriol. 190, 3779–3785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng, Z.-L., Szafrański, S. P., Jarek, M., Bhuju, S. & Wagner-Döbler, I. Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. Sci. Rep. 7, 3703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Djemai, K., Drancourt, M. & Tidjani Alou, M. Bacteria and methanogens in the human microbiome: a review of syntrophic interactions. Microb. Ecol. 83, 536–554 (2022).

    Article  PubMed  Google Scholar 

  57. Grine, G. et al. Tobacco-smoking-related prevalence of methanogens in the oral fluid microbiota. Sci. Rep. 8, 9197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hitch, G., Pratten, J. & Taylor, P. W. Isolation of bacteriophages from the oral cavity. Lett. Appl. Microbiol. 39, 215–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Camargo, A. P. et al. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res https://doi.org/10.1093/nar/gkac1037 (2022).

    Article  PubMed Central  Google Scholar 

  60. Yahara, K. et al. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat. Commun. 12, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Münch, P. C., Franzosa, E. A., Stecher, B., McHardy, A. C. & Huttenhower, C. Identification of natural CRISPR systems and targets in the human microbiome. Cell Host Microbe 29, 94–106.e4 (2021).

    Article  PubMed  Google Scholar 

  62. Lum, A. G. et al. Global transcription of CRISPR loci in the human oral cavity. BMC Genom. 16, 401 (2015).

    Article  Google Scholar 

  63. Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc. Natl Acad. Sci. USA 118, e2023202118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, S. et al. A catalog of 48,425 nonredundant viruses from oral metagenomes expands the horizon of the human oral virome. iScience 25, 104418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matrishin, C. B. et al. Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. Microbiome 11, 161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tylenda, C. A., Enriquez, E., Kolenbrander, P. E. & Delisle, A. L. Simultaneous loss of bacteriophage receptor and coaggregation mediator activities in Actinomyces viscosus MG-1. Infect. Immun. 48, 228–233 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Szafrański, S. P., Slots, J. & Stiesch, M. The human oral phageome. Periodontol 2000 86, 79–96 (2021).

    Article  PubMed  Google Scholar 

  69. Kauffman, K. M. et al. Viruses of the Nahant Collection, characterization of 251 marine Vibrionaceae viruses. Sci. Data 5, 180114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Armau, E., Bousque, J. L., Boue, D. & Tiraby, G. Isolation of lytic bacteriophages for Streptococcus mutans and Streptococcus sobrinus. J. Dent. Res. 67 (Suppl. 1), 121 (1988).

    Google Scholar 

  73. Guerin, E. et al. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. Microbiome 9, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Kinsella, C. M. et al. Entamoeba and Giardia parasites implicated as hosts of CRESS viruses. Nat. Commun. 11, 4620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Graves, K. J., Ghosh, A. P., Kissinger, P. J. & Muzny, C. A. Trichomonas vaginalis virus: a review of the literature. Int. J. STD AIDS 30, 496–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Rada, P. et al. Double-stranded RNA viruses are released from Trichomonas vaginalis inside small extracellular vesicles and modulate the exosomal cargo. Front. Microbiol. 13, 893692 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Park, M. et al. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio 11, e01521-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Abbas, A. A. et al. Redondoviridae, a family of small, circular DNA viruses of the human oro-respiratory tract associated with periodontitis and critical illness. Cell Host Microbe 25, 719–729.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Keeler, E. L. et al. Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell Host Microbe 31, 58–68.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Diaz, P. I. Subgingival fungi, Archaea, and viruses under the omics loupe. Periodontol 2000 85, 82–89 (2021).

    Article  PubMed  Google Scholar 

  82. Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Kaczorowska, J. & van der Hoek, L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol. Rev. 44, 305–313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Slots, J. Human viruses in periodontitis. Periodontol 2000 53, 89–110 (2010).

    Article  PubMed  Google Scholar 

  86. Edlund, A., Santiago-Rodriguez, T. M., Boehm, T. K. & Pride, D. T. Bacteriophage and their potential roles in the human oral cavity. J. Oral Microbiol. 7, 27423 (2015).

    Article  PubMed  Google Scholar 

  87. Mark Welch, J. L., Dewhirst, F. E. & Borisy, G. G. Biogeography of the oral microbiome: the site-specialist hypothesis. Annu. Rev. Microbiol. 73, 335–358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eren, A. M., Borisy, G. G., Huse, S. M. & Mark Welch, J. L. Oligotyping analysis of the human oral microbiome. Proc. Natl Acad. Sci. USA 111, E2875–E2884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Proctor, D. M. & Relman, D. A. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 21, 421–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mark Welch, J. L., Ramírez-Puebla, S. T. & Borisy, G. G. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe 28, 160–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dal Co,A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).

    Article  PubMed  Google Scholar 

  92. Diaz, P. I. & Valm, A. M. Microbial interactions in oral communities mediate emergent biofilm properties. J. Dent. Res. 99, 18–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Palmer, R. J. Jr et al. Interbacterial adhesion networks within early oral biofilms of single human hosts. Appl. Environ. Microbiol. 83, e00407-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wilbert, S. A., Mark Welch, J. L. & Borisy, G. G. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 30, 4003–4015.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, D. et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc. Natl Acad. Sci. USA 117, 12375–12386 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perera, D. et al. Mechanisms underlying interactions between two abundant oral commensal bacteria. ISME J. 16, 948–957 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Morillo-Lopez, V., Sjaarda, A., Islam, I., Borisy, G. G. & Mark Welch, J. L. Corncob structures in dental plaque reveal microhabitat taxon specificity. Microbiome 10, 145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kolenbrander, P. E. et al. Bacterial interactions and successions during plaque development. Periodontol 2000 42, 47–79 (2006).

    Article  PubMed  Google Scholar 

  100. Sakanaka, A. et al. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms. mSystems https://doi.org/10.1128/msystems.00170-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. McLean, A. R., Torres-Morales, J., Dewhirst, F. E., Borisy, G. G. & Mark Welch, J. L. Site-tropism of streptococci in the oral microbiome. Mol. Oral Microbiol. https://doi.org/10.1111/omi.12387 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Simon-Soro, A. et al. Polymicrobial aggregates in human saliva build the oral biofilm. mBio 13, e0013122 (2022).

    Article  PubMed  Google Scholar 

  103. Pitts, N. B. et al. Dental caries. Nat. Rev. Dis. Primers 3, 17030 (2017).

    Article  PubMed  Google Scholar 

  104. Banas, J. A. & Drake, D. R. Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health 18, 129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Baker, J. L. et al. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res. 31, 64–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simón-Soro, A. & Mira, A. Solving the etiology of dental caries. Trends Microbiol. 23, 76–82 (2015).

    Article  PubMed  Google Scholar 

  107. Teng, F. et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 18, 296–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Agnello, M. et al. Microbiome associated with severe caries in Canadian first nations children. J. Dent. Res. 96, 1378–1385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Havsed, K. et al. Bacterial composition and metabolomics of dental plaque from adolescents. Front. Cell. Infect. Microbiol. 11, 716493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosier, B. T., Buetas, E., Moya-Gonzalvez, E. M., Artacho, A. & Mira, A. Nitrate as a potential prebiotic for the oral microbiome. Sci. Rep. 10, 12895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosier, B. T. et al. The importance of nitrate reduction for oral health. J. Dent. Res. https://doi.org/10.1177/00220345221080982 (2022).

    Article  PubMed  Google Scholar 

  112. Eick, S. & Lussi, A. Arginine: a weapon against cariogenic biofilm? Monogr. Oral Sci. 29, 80–90 (2021).

    Article  PubMed  Google Scholar 

  113. Baker, J. L. & Edlund, A. Exploiting the oral microbiome to prevent tooth decay: has evolution already provided the best tools? Front. Microbiol. 9, 3323 (2018).

    Article  PubMed  Google Scholar 

  114. Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Caton, J. G. et al. A new classification scheme for periodontal and peri-implant diseases and conditions — introduction and key changes from the 1999 classification. J. Periodontol. 89, S1–S8 (2018).

    PubMed  Google Scholar 

  116. Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Primers 3, 17038 (2017).

    Article  PubMed  Google Scholar 

  117. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090–4104.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen, C. et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 12, 1210–1224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yost, S., Duran-Pinedo, A. E., Teles, R., Krishnan, K. & Frias-Lopez, J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 7, 27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Miralda, I. & Uriarte, S. M. Periodontal pathogens’ strategies disarm neutrophils to promote dysregulated inflammation. Mol. Oral Microbiol. 36, 103–120 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Abusleme, L., Hoare, A., Hong, B.-Y. & Diaz, P. I. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 86, 57–78 (2021).

    Article  PubMed  Google Scholar 

  123. Cai, Z., Lin, S., Hu, S. & Zhao, L. Structure and function of oral microbial community in periodontitis based on integrated data. Front. Cell. Infect. Microbiol. 11, 663756 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Martínez, A., Kuraji, R. & Kapila, Y. L. The human oral virome: shedding light on the dark matter. Periodontol 2000 87, 282–298 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bamashmous, S. et al. Human variation in gingival inflammation. Proc. Natl Acad. Sci. USA 118, e2012578118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tatakis, D. N. & Trombelli, L. Modulation of clinical expression of plaque-induced gingivitis. I. Background review and rationale. J. Clin. Periodontol. 31, 229–238 (2004).

    Article  PubMed  Google Scholar 

  127. Nascimento, G. G., Danielsen, B., Baelum, V. & Lopez, R. Identification of inflammatory response patterns in experimental gingivitis studies. Eur. J. Oral Sci. 127, 33–39 (2019).

    Article  PubMed  Google Scholar 

  128. Tsao, S. W., Tsang, C. M. & Lo, K. W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Economopoulou, P., Kotsantis, I. & Psyrri, A. Special issue about head and neck cancers: HPV positive cancers. Int. J. Mol. Sci. 21, 3398 (2020).

    Article  Google Scholar 

  130. Perera, M. et al. A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamous-cell carcinomas. J. Oral Microbiol. 9, 1385369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mohamed, N. et al. Analysis of salivary mycobiome in a cohort of oral squamous cell carcinoma patients from Sudan identifies higher salivary carriage of as an independent and favorable predictor of overall survival. Front. Cell. Infect. Microbiol. 11, 673465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zong, Y. et al. The interaction between the microbiome and tumors. Front. Cell. Infect. Microbiol. 11, 673724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baraniya, D. et al. Screening of health-associated oral bacteria for anticancer properties. Front. Cell. Infect. Microbiol. 10, 575656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kelly, L. & Khan, S. Oral microbes are a signature of disease in the gut. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1631596/v1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, B. & Han, Y. W. Oral bacteria, oral health, and adverse pregnancy outcomes. Periodontol 2000 89, 181–189 (2022).

    Article  PubMed  Google Scholar 

  138. Mammen, M. J., Scannapieco, F. A. & Sethi, S. Oral–lung microbiome interactions in lung diseases. Periodontol 2000 83, 234–241 (2020).

    Article  PubMed  Google Scholar 

  139. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Acharya, C., Sahingur, S. E. & Bajaj, J. S. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight 2, e94416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Abed, J. et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front. Cell. Infect. Microbiol. 10, 400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Meng, Q. et al. Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity. EMBO Rep. 22, e52891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gur, C. et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology 8, e1581531 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Teles, R. & Wang, C.-Y. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 17, 450–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Genco, R. J. & Sanz, M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol 2000 83, 7–13 (2020).

    Article  PubMed  Google Scholar 

  151. Farrugia, C. et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 288, 1479–1495 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhao, Y. et al. Characterization and regulation of osteoclast precursors following chronic infection. J. Leukoc. Biol. 108, 1037–1050 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Herrera, B. S. et al. Peripheral blood mononuclear phagocytes from patients with chronic periodontitis are primed for osteoclast formation. J. Periodontol. 85, e72–e81 (2014).

    PubMed  Google Scholar 

  155. Dioguardi, M. et al. The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimer’s disease: a systematic review. J. Clin. Med. Res. 9, 495 (2020).

    CAS  Google Scholar 

  156. Miles, B. et al. Secondary lymphoid organ homing phenotype of human myeloid dendritic cells disrupted by an intracellular oral pathogen. Infect. Immun. 82, 101–111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sainz, J. & Sata, M. CXCR4, a key modulator of vascular progenitor cells. Arterioscler. Thromb. Vasc. Biol. 27, 263–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Rojas-Tapias, D. F. et al. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol. 7, 1673–1685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl Med. 8, 369ra176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gully, N. et al. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS ONE 9, e100838 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Calderón-Gómez, E. et al. Commensal-specific CD4(+) cells from patients with Crohn’s disease have a T-helper 17 inflammatory profile. Gastroenterology 151, 489–500.e3 (2016).

    Article  PubMed  Google Scholar 

  162. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xiao, E. et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22, 120–128.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Teles, F., Wang, Y., Hajishengallis, G., Hasturk, H. & Marchesan, J. T. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 85, 126–160 (2021).

    Article  PubMed  Google Scholar 

  165. Balachandran, M., Cross, K. L. & Podar, M. Single-cell genomics and the oral microbiome. J. Dent. Res. 99, 613–620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Huber, H. & Stetter, K. O. in The Prokaryotes Vol. 3 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 101–112 (Springer New York, 2006).

  168. Germano, F., Testi, D., Campagnolo, L., Scimeca, M. & Arcuri, C. Cell-wall-deficient bacteria in oral biofilm: association with periodontitis. Sci. Repos. https://doi.org/10.31487/j.DOBCR.2020.06.03 (2020).

    Article  Google Scholar 

  169. Collins, A. J., Murugkar, P. P. & Dewhirst, F. E. Establishing stable binary cultures of symbiotic Saccharibacteria from the oral cavity. J. Vis. Exp. https://doi.org/10.3791/62484 (2021).

    Article  PubMed  Google Scholar 

  170. Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4, 470–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Richter, Ł. et al. Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Sci. Rep. 11, 7387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vartoukian, S. R. et al. In vitro cultivation of ‘Unculturable’ oral bacteria, facilitated by community culture and media supplementation with siderophores. PLoS ONE 11, e0146926 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Vartoukian, S. R., Moazzez, R. V., Paster, B. J., Dewhirst, F. E. & Wade, W. G. First cultivation of health-associated Tannerella sp. HOT-286 (BU063). J. Dent. Res. 95, 1308–1313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kearney, S. M., Coe, A., Castro, K. G. & Chisholm, S. W. Filter plating method for rendering picocyanobacteria cultures free of heterotrophic bacterial contaminants and clonal. Front. Microbiol. 13, 821803 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ruscitto, A. et al. Regulation and molecular basis of environmental muropeptide uptake and utilization in fastidious oral anaerobe Tannerella forsythia. Front. Microbiol. 8, 648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tanaka, T. et al. A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl. Environ. Microbiol. 80, 7659–7666 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Khelaifia, S. et al. Aerobic culture of methanogenic archaea without an external source of hydrogen. Eur. J. Clin. Microbiol. Infect. Dis. 35, 985–991 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Lagier, J.-C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Guindo, C. O. et al. Culture of salivary methanogens assisted by chemically produced hydrogen. Anaerobe 61, 102128 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. García-Bayona, L. et al. Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts. Proc. Natl Acad. Sci. USA 117, 24484–24493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dridi, B., Henry, M., El Khéchine, A., Raoult, D. & Drancourt, M. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4, e7063 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Horz, H.-P. & Conrads, G. Methanogenic Archaea and oral infections — ways to unravel the black box. J. Oral Microbiol. 3, 5940 (2011).

    Article  Google Scholar 

  184. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764–D775 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Bor, B., Cen, L., Agnello, M., Shi, W. & He, X. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep. 6, 27956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bedree, J. K. et al. Quorum sensing modulates the epibiotic–parasitic relationship between Actinomyces odontolyticus and its Saccharibacteria epibiont, a Nanosynbacter lyticus strain, TM7x. Front. Microbiol. 9, 2049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by NIH NIDCR K99-DE029228 (J.L.B.); NIH NIDCR R01DE022586 (J.L.M.W.); NIH NIDCR R03DE030987 and R01DE016937 (K.M.K.); NIH NIDCR R01DE031470 (J.S.M.); NIH NIDCR R01DE023810 (J.S.M. and X.H.) and NIH NIDCR R01DE029479 and R01DE030943 (X.H.). The authors acknowledge the many authors whose work in this domain was not included owing to text and citation constraints and thank F. Scannapieco, F. Dewhirst, C. Matrishin, E. Haase, W. Mei, H. Koo, B. Bor, G. Lewin, M. Freire, M. Kintzing and J. Tian for feedback and ideas for Fig. 1 and the illustration in Box 2.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Xuesong He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Jorge Frias-Lopez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cenote Human Virome Database: https://zenodo.org/record/4498884

Human Oral Microbiome Database: https://homd.org/

Human Oral Virome Database: https://github.com/RChGO/OVD

IMG/VR Viral Resources: https://img.jgi.doe.gov/cgi-bin/vr/main.cgi

Supplementary information

Glossary

16S rRNA gene amplicon sequencing

A microbiome sequencing technique whereby the variable region or regions of 16S rRNA genes are amplified by PCR using primers specific to the flanking conserved regions; the amplicons are then sequenced, providing information about the presence of and qualitative information about the relative abundances of the various taxa within the sample.

Candidate phyla radiation bacteria

(CPR bacteria). A large, monophyletic group of bacteria that have reduced genomes and ultrasmall cell size and are thought to have an epiparasitic lifestyle dependent on bacterial host organism or organisms.

Combinatorial labelling and spectral imaging fluorescence in situ hybridization

(CLASI-FISH). A microscopy technique whereby each taxon of interest is labelled with multiple fluorophores to greatly expand the number of distinguishable targets. Microscopes capable of spectral imaging allow the use of fluorophores with overlapping emission spectra.

Dysbiosis

A disruption (that is, a change in taxonomic abundance, metabolism and or ecology) in the normal, health-associated microbiota that results in an ecological imbalance, frequently contributing to or resulting in a pathological state.

Fluorescence in situ hybridization-based microscopy

(FISH-based microscopy). Microscopy that uses fluorescently labelled DNA oligonucleotides complementary to specific DNA or RNA sequences as probes in FISH. Hybridization of probe to target enables cells or structures containing the sequence of interest to be observed directly using a fluorescence microscope.

Gingipains

A family of proteases secreted by the pathogen, Porphyromonas gingivalis, which can degrade cytokines and alter the host inflammatory response.

Gingival crevicular fluid

(GCF). A serum-like fluid that flows into the gingival sulcus (the gap between gums and teeth) from the blood vessels within the gingival connective tissue.

Metagenomic sequencing

A microbiome sequencing technique whereby an arbitrary subset of the DNA extracted from the sample is sequenced (as opposed to the sequencing of a targeted region by PCR, as in 16S rRNA gene amplicon sequencing), providing genomic information and taxonomic resolution that is not possible with amplicon sequencing.

Pathobiont

Opportunistic microorganism that emerges as a result of perturbations in the healthy microbiome.

Prebiotic

Compounds that foster growth or activity of microorganisms that are generally beneficial to the human host.

Probiotics

Live microorganisms that are intended to have health benefits when administered or consumed.

Syntrophy

A phenomenon (also known as cross-feeding) whereby one species is living off the metabolic products of another species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, J.L., Mark Welch, J.L., Kauffman, K.M. et al. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 22, 89–104 (2024). https://doi.org/10.1038/s41579-023-00963-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00963-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing