Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes

Abstract

The inability of current battery technologies to keep up with the performance requirements of industry is pushing forward developments in electrochemistry. Specifically, the battery’s negative electrode, the anode, presents many unique chemical, physical and engineering challenges. Lithium-based battery technologies have dominated the past decade, but concerns about the limited supply of lithium in the Earth’s crust have led researchers to look towards alternative metal-ion technologies. Various alkali metals (such as sodium and potassium) and alkali earth metals (such as magnesium and calcium) have attracted significant research interest. In this Review, we analyse these technologies in a coherent manner, addressing the problems of each type of anode, rather than those of specific types of metal-ion batteries. Covering direct metal plating and stripping, intercalation-based, alloy-based and conversion-reaction-based anode technologies, this analysis will offer the reader a comprehensive understanding of the behaviour of different metal-ion anodes and of what can be learned by transferring knowledge between these different systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanical stress during deposition of Li.
Fig. 2: Binding energy between various intercalation hosts and alkali and alkali earth metals.
Fig. 3: Na-ion intercalation in expanded graphite.
Fig. 4: Nature of the alloying reactions between metal ions and candidate anode materials.
Fig. 5: Anodes based on conversion reactions with multivalent metal ions.
Fig. 6: Intercalation of metal ions into various types of titanates.

References

  1. 1.

    Liang, Y. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019).

    Google Scholar 

  2. 2.

    Fan, X., Liu, X., Hu, W., Zhong, C. & Lu, J. Advances in the development of power supplies for the Internet of Everything. InfoMat 1, 130–139 (2019).

    Google Scholar 

  3. 3.

    Yaroshevsky, A. A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44, 48–55 (2006).

    Google Scholar 

  4. 4.

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Google Scholar 

  5. 5.

    David, L., Bhandavat, R. & Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014).

    CAS  Google Scholar 

  6. 6.

    Kalisvaart, W. P., Olsen, B. C., Luber, E. J. & Buriak, J. M. Sb–Si alloys and multilayers for sodium-ion battery anodes. ACS Appl. Energy Mater. 2, 2205–2213 (2019).

    CAS  Google Scholar 

  7. 7.

    Xiao, Y. et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 9, 1803978 (2019).

    Google Scholar 

  8. 8.

    Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    CAS  Google Scholar 

  9. 9.

    Li, M., Lu, J., Chen, Z. W. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Google Scholar 

  10. 10.

    Nayak, P., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2017).

    Google Scholar 

  11. 11.

    Deivanayagam, R., Ingram, B. J. & Shahbazian-Yassar, R. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136–153 (2019).

    Google Scholar 

  12. 12.

    Lee, B., Paek, E., Mitlin, D. & Lee, S. W. Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019).

    CAS  Google Scholar 

  13. 13.

    Yang, D., Liu, C., Rui, X. & Yan, Q. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review. Nanoscale 11, 15402–15417 (2019).

    CAS  Google Scholar 

  14. 14.

    Lewis, G. N. & Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340–344 (1913).

    CAS  Google Scholar 

  15. 15.

    Fouchard, D. & Taylor, J. The molicel® rechargeable lithium system: multicell aspects. J. Power Sources 21, 195–205 (1987).

    CAS  Google Scholar 

  16. 16.

    Gingrich, N. & Heaton, L. Structure of alkali metals in the liquid state. J. Chem. Phys. 34, 873–878 (1961).

    CAS  Google Scholar 

  17. 17.

    Jiao, S. et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2, 110–124 (2018).

    CAS  Google Scholar 

  18. 18.

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    CAS  Google Scholar 

  19. 19.

    Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    CAS  Google Scholar 

  20. 20.

    Luo, W. et al. Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 7, 1601526 (2017).

    Google Scholar 

  21. 21.

    Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).

    CAS  Google Scholar 

  22. 22.

    Philippe, B., Valvo, M., Lindgren, F., Rensmo, H. & Edström, K. Investigation of the electrode/electrolyte interface of Fe2O3 composite electrodes: Li vs Na batteries. Chem. Mater. 26, 5028–5041 (2014).

    CAS  Google Scholar 

  23. 23.

    Moshkovich, M., Gofer, Y. & Aurbach, D. Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc. 148, E155–E167 (2001).

    CAS  Google Scholar 

  24. 24.

    Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    CAS  Google Scholar 

  25. 25.

    Eftekhari, A., Jian, Z. & Ji, X. Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404–4419 (2017).

    CAS  Google Scholar 

  26. 26.

    Tang, S. & Zhao, H. Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv. 4, 11251–11287 (2014).

    CAS  Google Scholar 

  27. 27.

    Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).

    CAS  Google Scholar 

  28. 28.

    Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).

    CAS  Google Scholar 

  29. 29.

    Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions. Electrochim. Acta 35, 625–638 (1990).

    CAS  Google Scholar 

  30. 30.

    Aurbach, D. et al. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes. J. Power Sources 97–98, 269–273 (2001).

    Google Scholar 

  31. 31.

    Lu, Z., Schechter, A., Moshkovich, M. & Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203–217 (1999).

    CAS  Google Scholar 

  32. 32.

    Aurbach, D., Skaletsky, R. & Gofer, Y. The electrochemical behavior of calcium electrodes in a few organic electrolytes. J. Electrochem. Soc. 138, 3536–3545 (1991).

    CAS  Google Scholar 

  33. 33.

    Grjotheim, K. Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process (Aluminium-Verlag, 1982).

  34. 34.

    Li, Q. & Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002).

    CAS  Google Scholar 

  35. 35.

    Overcash, D. M. & Mathers, F. C. The electrodeposition of magnesium. Trans. Electrochem. Soc. 64, 305–311 (1933).

    Google Scholar 

  36. 36.

    Liebenow, C. Reversibility of electrochemical magnesium deposition from Grignard solutions. J. Appl. Electrochem. 27, 221–225 (1997).

    CAS  Google Scholar 

  37. 37.

    Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).

    CAS  Google Scholar 

  38. 38.

    Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900–7904 (2015).

    CAS  Google Scholar 

  39. 39.

    Jay, R. et al. Comparative study of Mg(CB11H12)2 and Mg(TFSI)2 at the magnesium/electrolyte interface. ACS Appl. Mater. Interfaces 11, 11414–11420 (2019).

    CAS  Google Scholar 

  40. 40.

    Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  Google Scholar 

  41. 41.

    Liao, C. et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 3, 6082–6087 (2015).

    CAS  Google Scholar 

  42. 42.

    Muldoon, J. et al. Corrosion of magnesium electrolytes: chlorides–the culprit. Energy Environ. Sci. 6, 482–487 (2013).

    CAS  Google Scholar 

  43. 43.

    Lv, D. et al. A scientific study of current collectors for Mg batteries in Mg(AlCl2EtBu)2/THF electrolyte. J. Electrochem. Soc. 160, A351–A355 (2013).

    CAS  Google Scholar 

  44. 44.

    Singh, N. et al. Achieving high cycling rates via in situ generation of active nanocomposite metal anodes. ACS Appl. Energy Mater. 1, 4651–4661 (2018).

    CAS  Google Scholar 

  45. 45.

    Arthur, T. S. et al. Interfacial insight from operando XAS/TEM for magnesium metal deposition with borohydride electrolytes. Chem. Mater. 29, 7183–7188 (2017).

    CAS  Google Scholar 

  46. 46.

    Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S.-J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780–9783 (2012).

    CAS  Google Scholar 

  47. 47.

    Yoo, D. J., Kim, J. S., Shin, J., Kim, K. J. & Choi, J. W. Stable performance of aluminum-metal battery by incorporating lithium-ion chemistry. ChemElectroChem 4, 2345–2351 (2017).

    CAS  Google Scholar 

  48. 48.

    Krishnan, A., Pal, U. & Lu, X. Solid oxide membrane process for magnesium production directly from magnesium oxide. Metall. Mater. Trans. B 36, 463–473 (2005).

    Google Scholar 

  49. 49.

    Sadoway, D. R. Inert anodes for the Hall-Héroult cell: the ultimate materials challenge. JOM 53, 34–35 (2001).

    CAS  Google Scholar 

  50. 50.

    Giffin, G. A. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J. Mater. Chem. A 4, 13378–13389 (2016).

    CAS  Google Scholar 

  51. 51.

    Jayaprakash, N., Das, S. K. & Archer, L. A. The rechargeable aluminum-ion battery. Chem. Comm. 47, 12610–12612 (2011).

    CAS  Google Scholar 

  52. 52.

    Angell, M. et al. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl Acad. Sci. USA 114, 834–839 (2017).

    CAS  Google Scholar 

  53. 53.

    Reed, L. D. & Menke, E. The roles of V2O5 and stainless steel in rechargeable Al–ion batteries. J. Electrochem. Soc. 160, A915–A917 (2013).

    CAS  Google Scholar 

  54. 54.

    Watkins, T., Kumar, A. & Buttry, D. A. Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J. Am. Chem. Soc. 138, 641–650 (2016).

    CAS  Google Scholar 

  55. 55.

    See, K. A. et al. A high capacity calcium primary cell based on the Ca–S system. Adv. Energy Mater. 3, 1056–1061 (2013).

    CAS  Google Scholar 

  56. 56.

    Hayashi, M., Arai, H., Ohtsuka, H. & Sakurai, Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119–121, 617–620 (2003).

    Google Scholar 

  57. 57.

    Rogosic, J. Towards the Development of Calcium Ion Batteries. Thesis, Massachusetts Institute of Technology (2014).

  58. 58.

    Gheytani, S. et al. An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017).

    Google Scholar 

  59. 59.

    Lipson, A. L. et al. Rechargeable Ca-ion batteries: a new energy storage system. Chem. Mater. 27, 8442–8447 (2015).

    CAS  Google Scholar 

  60. 60.

    Lipson, A. L. et al. Current collector corrosion in Ca-ion batteries. J. Electrochem. Soc. 162, A1574–A1578 (2015).

    CAS  Google Scholar 

  61. 61.

    Westerhausen, M. et al. Heavy Grignard reagents: challenges and possibilities of aryl alkaline earth metal compounds. Chem. Eur. J. 13, 6292–6306 (2007).

    CAS  Google Scholar 

  62. 62.

    Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16–20 (2018).

    CAS  Google Scholar 

  63. 63.

    Ponrouch, A., Frontera, C., Bardé, F. & Palacin, M. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    CAS  Google Scholar 

  64. 64.

    Son, S.-B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    CAS  Google Scholar 

  65. 65.

    Sun, X., Duffort, V., Mehdi, B. L., Browning, N. D. & Nazar, L. F. Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-ion batteries. Chem. Mater. 28, 534–542 (2016).

    CAS  Google Scholar 

  66. 66.

    Lapidus, S. H. et al. Solvation structure and energetics of electrolytes for multivalent energy storage. Phys. Chem. Chem. Phys. 16, 21941–21945 (2014).

    CAS  Google Scholar 

  67. 67.

    Nemori, H. et al. Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3. Solid State Ion. 317, 136–141 (2018).

    CAS  Google Scholar 

  68. 68.

    Li, S. et al. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018).

    Google Scholar 

  69. 69.

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    CAS  Google Scholar 

  70. 70.

    Shim, J. et al. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 10, 1911–1916 (2017).

    CAS  Google Scholar 

  71. 71.

    Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).

    Google Scholar 

  72. 72.

    Kazyak, E., Wood, K. N. & Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457–6462 (2015).

    CAS  Google Scholar 

  73. 73.

    Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    CAS  Google Scholar 

  74. 74.

    Li, Q., Zhu, S. & Lu, Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017).

    Google Scholar 

  75. 75.

    Wei, S. et al. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29, 1605512 (2017).

    Google Scholar 

  76. 76.

    Kim, J.-S. et al. The short-term cycling properties of Na/PVdF/S battery at ambient temperature. J. Solid State Electrochem. 12, 861–865 (2008).

    CAS  Google Scholar 

  77. 77.

    Aryanfar, A. et al. Thermal relaxation of lithium dendrites. Phys. Chem. Chem. Phys. 17, 8000–8005 (2015).

    CAS  Google Scholar 

  78. 78.

    Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

    CAS  Google Scholar 

  79. 79.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    CAS  Google Scholar 

  80. 80.

    Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    CAS  Google Scholar 

  81. 81.

    Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    CAS  Google Scholar 

  82. 82.

    Cammarata, R. C. Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237, 180–184 (1997).

    Google Scholar 

  83. 83.

    Abermann, R. & Koch, R. The internal stress in thin silver, copper and gold films. Thin Solid Films 129, 71–78 (1985).

    CAS  Google Scholar 

  84. 84.

    Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. & Hearne, S. J. Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).

    CAS  Google Scholar 

  85. 85.

    Lang, N. D. & Kohn, W. Theory of metal surfaces: charge density and surface energy. Phys. Rev. B 1, 4555 (1970).

    Google Scholar 

  86. 86.

    Skriver, H. L. & Rosengaard, N. Surface energy and work function of elemental metals. Phys. Rev. B 46, 7157 (1992).

    CAS  Google Scholar 

  87. 87.

    Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    CAS  Google Scholar 

  88. 88.

    Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    CAS  Google Scholar 

  89. 89.

    Kittel, C. in Introduction to Solid State Physics Ch. 3 (Wiley, 2005).

  90. 90.

    Jiang, T., Brym, M. J. C., Dubé, G., Lasia, A. & Brisard, G. M. Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201, 1–9 (2006).

    CAS  Google Scholar 

  91. 91.

    Aurbach, D., Schechter, A., Moshkovich, M. & Cohen, Y. On the mechanisms of reversible magnesium deposition processes. J. Electrochem. Soc. 148, A1004–A1014 (2001).

    CAS  Google Scholar 

  92. 92.

    Davidson, R. et al. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4, 375–376 (2019).

    CAS  Google Scholar 

  93. 93.

    Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at arXiv http://arxiv.org/abs/1504.05799 (2015).

  94. 94.

    Jäckle, M. & Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).

    Google Scholar 

  95. 95.

    Han, J.-H., Khoo, E., Bai, P. & Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 4, 7056 (2014).

    CAS  Google Scholar 

  96. 96.

    Zhang, J.-G., Xu, W. & Henderson, W. A. in Lithium Metal Anodes and Rechargeable Lithium Metal Batteries 5–43 (Springer International Publishing, 2017).

  97. 97.

    Sand, H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Proc. Phys. Soc. Lond. 17, 496 (1899).

    Google Scholar 

  98. 98.

    Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).

    CAS  Google Scholar 

  99. 99.

    Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97, 804–806 (2001).

    Google Scholar 

  100. 100.

    Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Google Scholar 

  101. 101.

    Schafzahl, L., Hanzu, I., Wilkening, M. & Freunberger, S. A. An electrolyte for reversible cycling of sodium metal and intercalation compounds. ChemSusChem 10, 401–408 (2017).

    CAS  Google Scholar 

  102. 102.

    Xiao, N., McCulloch, W. D. & Wu, Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017).

    CAS  Google Scholar 

  103. 103.

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    CAS  Google Scholar 

  104. 104.

    Zhao, Y. & VanderNoot, T. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim. Acta 42, 3–13 (1997).

    CAS  Google Scholar 

  105. 105.

    Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    CAS  Google Scholar 

  106. 106.

    Liu, B., Zhang, J.-G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    CAS  Google Scholar 

  107. 107.

    Xu, R. et al. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018).

    Google Scholar 

  108. 108.

    Choudhury, S. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).

    Google Scholar 

  109. 109.

    Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    CAS  Google Scholar 

  110. 110.

    Jaber, A. Y., Alamri, S. N. & Aida, M. S. CdS thin films growth by ammonia free chemical bath deposition technique. Thin Solid Films 520, 3485–3489 (2012).

    CAS  Google Scholar 

  111. 111.

    Zhang, W., Nie, J., Li, F., Wang, Z. L. & Sun, C. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45, 413–419 (2018).

    CAS  Google Scholar 

  112. 112.

    Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).

    Google Scholar 

  113. 113.

    Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).

    CAS  Google Scholar 

  114. 114.

    Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  115. 115.

    Park, M. S. et al. A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).

    Google Scholar 

  116. 116.

    Obreja, V. V. N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Phys. E 40, 2596–2605 (2008).

    CAS  Google Scholar 

  117. 117.

    Wu, Z.-S. et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012).

    CAS  Google Scholar 

  118. 118.

    Li, X., Rui, M., Song, J., Shen, Z. & Zeng, H. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015).

    CAS  Google Scholar 

  119. 119.

    Zhu, J., Yang, D., Yin, Z., Yan, Q. & Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014).

    CAS  Google Scholar 

  120. 120.

    Dahn, J. R. & Seel, J. A. Energy and capacity projections for practical dual-graphite cells. J. Electrochem. Soc. 147, 899–901 (2000).

    CAS  Google Scholar 

  121. 121.

    Hofmann, U. & Rüdorff, W. The formation of salts from graphite by strong acids. Trans. Faraday Soc. 34, 1017–1021 (1938).

    CAS  Google Scholar 

  122. 122.

    Tamor, M. A. & Vassell, W. J. Raman “fingerprinting” of amorphous carbon films. J. App. Phys. 76, 3823–3830 (1994).

    CAS  Google Scholar 

  123. 123.

    Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).

    CAS  Google Scholar 

  124. 124.

    Zhang, S., Liu, H., Huang, C., Cui, G. & Li, Y. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 51, 1834–1837 (2015).

    CAS  Google Scholar 

  125. 125.

    Stevens, D. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000).

    CAS  Google Scholar 

  126. 126.

    Bommier, C., Surta, T. W., Dolgos, M. & Ji, X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15, 5888–5892 (2015).

    CAS  Google Scholar 

  127. 127.

    Stratford, J. M., Allan, P. K., Pecher, O., Chater, P. A. & Grey, C. P. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52, 12430–12433 (2016).

    CAS  Google Scholar 

  128. 128.

    Liu, Y., Merinov, B. V. & Goddard, W. A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl Acad. Sci. USA 113, 3735–3739 (2016).

    CAS  Google Scholar 

  129. 129.

    Fong, R., Von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    CAS  Google Scholar 

  130. 130.

    Jian, Z., Luo, W. & Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015).

    CAS  Google Scholar 

  131. 131.

    Jache, B. & Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169–10173 (2014).

    CAS  Google Scholar 

  132. 132.

    Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    CAS  Google Scholar 

  133. 133.

    Komaba, S., Hasegawa, T., Dahbi, M. & Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015).

    CAS  Google Scholar 

  134. 134.

    Sagane, F., Abe, T., Iriyama, Y. & Ogumi, Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 146, 749–752 (2005).

    CAS  Google Scholar 

  135. 135.

    Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014).

    CAS  Google Scholar 

  136. 136.

    Guo, B. et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 23, 4661–4666 (2011).

    CAS  Google Scholar 

  137. 137.

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS  Google Scholar 

  138. 138.

    Bugga, R. V. & Smart, M. C. Lithium plating behavior in lithium-ion cells. ECS Trans. 25, 241–252 (2010).

    Google Scholar 

  139. 139.

    Jian, Z., Xing, Z., Bommier, C., Li, Z. & Ji, X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016).

    Google Scholar 

  140. 140.

    Brecher, A. in Lithium-Ion Batteries (ed. Pistoia, G.) 177–203 (Elsevier, 2014).

  141. 141.

    Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423–1439 (2002).

    CAS  Google Scholar 

  142. 142.

    Li, Z. et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7, 1602894 (2017).

    Google Scholar 

  143. 143.

    Rousse, G. et al. Rationalization of intercalation potential and redox mechanism for A2Ti3O7 (A = Li, Na). Chem. Mater. 25, 4946–4956 (2013).

    CAS  Google Scholar 

  144. 144.

    Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  145. 145.

    Park, C.-M., Kim, J.-H., Kim, H. & Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010).

    CAS  Google Scholar 

  146. 146.

    Li, W., Sun, X. & Yu, Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods 1, 1600037 (2017).

    Google Scholar 

  147. 147.

    Yang, F., Gao, H., Chen, J. & Guo, Z. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods 1, 1700216 (2017).

    Google Scholar 

  148. 148.

    Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013).

    CAS  Google Scholar 

  149. 149.

    Huang, J., Lin, X., Tan, H. & Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 8, 1703496 (2018).

    Google Scholar 

  150. 150.

    Sultana, I., Ramireddy, T., Rahman, M. M., Chen, Y. & Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 52, 9279–9282 (2016).

    CAS  Google Scholar 

  151. 151.

    Tan, Y.-H. et al. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano 12, 5856–5865 (2018).

    CAS  Google Scholar 

  152. 152.

    Arthur, T. S., Singh, N. & Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012).

    CAS  Google Scholar 

  153. 153.

    Singh, N., Arthur, T. S., Ling, C., Matsui, M. & Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013).

    CAS  Google Scholar 

  154. 154.

    Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).

    CAS  Google Scholar 

  155. 155.

    Zhang, L. et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv. Mater. 29, 1604708 (2017).

    Google Scholar 

  156. 156.

    Morito, H., Yamada, T., Ikeda, T. & Yamane, H. Na–Si binary phase diagram and solution growth of silicon crystals. J. Alloy. Compd. 480, 723–726 (2009).

    CAS  Google Scholar 

  157. 157.

    Wen, C. J. & Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 37, 271–278 (1981).

    CAS  Google Scholar 

  158. 158.

    Sigli, C. & Sanchez, J. M. Calculation of phase equilibrium in Al-Li alloys. Acta Metall. 34, 1021–1028 (1986).

    CAS  Google Scholar 

  159. 159.

    Hamon, Y. et al. Aluminum negative electrode in lithium ion batteries. J. Power Sources 97–98, 185–187 (2001).

    Google Scholar 

  160. 160.

    Feng, K. et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14, 1702737 (2018).

    Google Scholar 

  161. 161.

    Feng, K. et al. Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 19, 187–197 (2016).

    CAS  Google Scholar 

  162. 162.

    Feng, K. et al. Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. J. Power Sources 399, 98–104 (2018).

    CAS  Google Scholar 

  163. 163.

    Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).

    CAS  Google Scholar 

  164. 164.

    Wang, J., Eng, C., Chen-Wiegart, Y.-c. K. & Wang, J. Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat. Commun. 6, 7496 (2015).

    CAS  Google Scholar 

  165. 165.

    Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011).

    CAS  Google Scholar 

  166. 166.

    Cui, J., Yao, S. & Kim, J.-K. Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 7, 64–114 (2017).

    Google Scholar 

  167. 167.

    Yoon, T. et al. Electrochemically induced fractures in crystalline silicon anodes. J. Power Sources 425, 44–49 (2019).

    CAS  Google Scholar 

  168. 168.

    Ryu, I., Choi, J. W., Cui, Y. & Nix, W. D. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011).

    CAS  Google Scholar 

  169. 169.

    Boebinger, M. G. et al. Avoiding fracture in a conversion battery material through reaction with larger ions. Joule 2, 1783–1799 (2018).

    CAS  Google Scholar 

  170. 170.

    Tran, T. T. & Obrovac, M. N. Alloy negative electrodes for high energy density metal-ion cells. J. Electrochem. Soc. 158, A1411–A1416 (2011).

    CAS  Google Scholar 

  171. 171.

    Shao, Y. et al. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 14, 255–260 (2014).

    CAS  Google Scholar 

  172. 172.

    Parent, L. R. et al. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn. Nano Lett. 15, 1177–1182 (2015).

    CAS  Google Scholar 

  173. 173.

    Ponrouch, A. et al. Assessing Si-based anodes for Ca-ion batteries: electrochemical decalciation of CaSi2. Electrochem. Commun. 66, 75–78 (2016).

    CAS  Google Scholar 

  174. 174.

    Heise, G. W., Schumacher, E. A. & Cahoon, N. C. A heavy duty chlorine-depolarized cell. J. Electrochem. Soc. 94, 99–105 (1948).

    CAS  Google Scholar 

  175. 175.

    Yu, S.-H., Lee, S. H., Lee, D. J., Sung, Y.-E. & Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016).

    CAS  Google Scholar 

  176. 176.

    Asayesh-Ardakani, H. et al. In situ TEM investigation of ZnO nanowires during sodiation and lithiation cycling. Small Methods 1, 1700202 (2017).

    Google Scholar 

  177. 177.

    Kim, Y. et al. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26, 4139–4144 (2014).

    CAS  Google Scholar 

  178. 178.

    Lin, F. et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 5, 3358 (2014).

    Google Scholar 

  179. 179.

    Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045–2052 (1997).

    CAS  Google Scholar 

  180. 180.

    Wu, L. et al. A tin(ii) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2, 16424–16428 (2014).

    CAS  Google Scholar 

  181. 181.

    Zhang, W., Mao, J., Li, S., Chen, Z. & Guo, Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017).

    CAS  Google Scholar 

  182. 182.

    Klein, F., Jache, B., Bhide, A. & Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 15, 15876–15887 (2013).

    CAS  Google Scholar 

  183. 183.

    Klein, F. et al. Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: an XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J. Phys. Chem. C. 120, 1400–1414 (2016).

    CAS  Google Scholar 

  184. 184.

    Yuan, Y. et al. Dynamic study of (de)sodiation in alpha-MnO2 nanowires. Nano Energy 19, 382–390 (2016).

    CAS  Google Scholar 

  185. 185.

    Tompsett, D. A. & Islam, M. S. Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 25, 2515–2526 (2013).

    CAS  Google Scholar 

  186. 186.

    Li, B., Rong, G., Xie, Y., Huang, L. & Feng, C. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404–6410 (2006).

    CAS  Google Scholar 

  187. 187.

    Ling, C., Zhang, R., Arthur, T. S. & Mizuno, F. How general is the conversion reaction in Mg battery cathode: a case study of the magnesiation of α-MnO2. Chem. Mater. 27, 5799–5807 (2015).

    CAS  Google Scholar 

  188. 188.

    Zhang, R. et al. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012).

    CAS  Google Scholar 

  189. 189.

    Zhang, R., Arthur, T. S., Ling, C. & Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources 282, 630–638 (2015).

    CAS  Google Scholar 

  190. 190.

    Fong, R., Dahn, J. R. & Jones, C. H. W. Electrochemistry of pyrite-based cathodes for ambient temperature lithium batteries. J. Electrochem. Soc. 136, 3206–3210 (1989).

    CAS  Google Scholar 

  191. 191.

    Choi, J.-W., Cheruvally, G., Ahn, H.-J., Kim, K.-W. & Ahn, J.-H. Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources 163, 158–165 (2006).

    CAS  Google Scholar 

  192. 192.

    Mori, T. et al. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C. J. Power Sources 313, 9–14 (2016).

    CAS  Google Scholar 

  193. 193.

    Wagemaker, M., Kentgens, A. P. M. & Mulder, F. M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397–399 (2002).

    CAS  Google Scholar 

  194. 194.

    Zhao, L., Pan, H.-L., Hu, Y.-S., Li, H. & Chen, L.-Q. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin. Phys. B 21, 028201 (2012).

    Google Scholar 

  195. 195.

    Doeff, M. M., Cabana, J. & Shirpour, M. Titanate anodes for sodium ion batteries. J. Inorg. Organomet. Polym. Mater. 24, 5–14 (2014).

    CAS  Google Scholar 

  196. 196.

    Kim, C. S., Jeong, Y. T. & Jeong, S. K. A preliminary study on Li4Ti5O12 as a novel electrode material for calcium ion batteries. Adv. Mater. Res. 1120–1121, 119–122 (2015).

    Google Scholar 

  197. 197.

    Lee, C. H., Kim, C. S. & Jeong, S. K. Electrochemical properties of Li4Ti5O12 as a negative electrode for calcium secondary batteries in Ca(TFSI)2/THF electrolyte. Key Eng. Mater. 724, 97-101, (2016).

  198. 198.

    Chiba, K., Kijima, N., Takahashi, Y., Idemoto, Y. & Akimoto, J. Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure. Solid State Ion. 178, 1725–1730 (2008).

    CAS  Google Scholar 

  199. 199.

    Wu, N. et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. Npg Asia Mater. 6, e120 (2014).

    CAS  Google Scholar 

  200. 200.

    Li, Z. et al. Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. J. Mater. Chem. A 4, 17111–17120 (2016).

    CAS  Google Scholar 

  201. 201.

    Yang, Z. et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009).

    CAS  Google Scholar 

  202. 202.

    Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).

    Google Scholar 

  203. 203.

    Kishore, B., Venkatesh, G. & Munichandraiah, N. K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163, A2551–A2554 (2016).

    CAS  Google Scholar 

  204. 204.

    Dong, Y. et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017).

    CAS  Google Scholar 

  205. 205.

    Han, J. et al. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52, 11274–11276 (2016).

    CAS  Google Scholar 

  206. 206.

    Han, J. et al. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. Chem. Commun. 52, 11661–11664 (2016).

    CAS  Google Scholar 

  207. 207.

    Shirpour, M., Cabana, J. & Doeff, M. Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem. Mater. 26, 2502–2512 (2014).

    CAS  Google Scholar 

  208. 208.

    Reeves, K. G. et al. Insights into Li+, Na+, and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl. Energy Mater. 1, 2078–2086 (2018).

    CAS  Google Scholar 

  209. 209.

    Yu, X. et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 13, 4721–4727 (2013).

    CAS  Google Scholar 

  210. 210.

    Liu, Z. et al. Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries. Prog. Nat. Sci. Mater. Int. 23, 235–244 (2013).

    Google Scholar 

  211. 211.

    Pal, D., Abdi, S. H. & Shukla, M. Structural and EPR studies of lithium inserted layered potassium tetra titanate K2Ti4O9 as material for K ions battery. J. Mater. Sci. 26, 6647–6652 (2015).

    CAS  Google Scholar 

  212. 212.

    Que, L., Yu, F., Zheng, L., Wang, Z.-B. & Gu, D. Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability. Nano Energy 45, 337–345, (2018).

  213. 213.

    Wang, P. et al. Effect of sodium-site doping on enhancing the lithium storage performance of sodium lithium titanate. ACS Appl. Mater. Interfaces 8, 10302–10314 (2016).

    CAS  Google Scholar 

  214. 214.

    Koketsu, T. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017).

    CAS  Google Scholar 

  215. 215.

    Zhang, M., MacRae, A. C., Liu, H. & Meng, Y. S. Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J. Electrochem. Soc. 163, A2368–A2370 (2016).

    CAS  Google Scholar 

  216. 216.

    Gershinsky, G., Yoo, H. D., Gofer, Y. & Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964–10972 (2013).

    CAS  Google Scholar 

  217. 217.

    Lahan, H., Boruah, R., Hazarika, A. & Das, S. K. Anatase TiO2 as an anode material for rechargeable aqueous aluminum-ion batteries: remarkable graphene induced aluminum ion storage phenomenon. J. Phys. Chem. C. 121, 26241–26249 (2017).

    Google Scholar 

  218. 218.

    Liu, S. et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 5, 9743–9746 (2012).

    CAS  Google Scholar 

  219. 219.

    Liu, M. et al. Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy Environ. Sci. 9, 3201–3209 (2016).

    CAS  Google Scholar 

  220. 220.

    Rong, Z. et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015).

    CAS  Google Scholar 

  221. 221.

    Liu, M. et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2015).

    CAS  Google Scholar 

  222. 222.

    Burdett, J. K., Price, G. D. & Price, S. L. Role of the crystal-field theory in determining the structures of spinels. J. Am. Chem. Soc. 104, 92–95 (1982).

    CAS  Google Scholar 

  223. 223.

    Wenger, M. & Armbruster, T. Crystal chemistry of lithium: oxygen coordination and bonding. Eur. J. Mineral. 3, 387–400 (1991).

    CAS  Google Scholar 

  224. 224.

    Brown, I. D. What factors determine cation coordination numbers? Acta Crystallogr. B 44, 545–553 (1988).

    Google Scholar 

  225. 225.

    Huang, W. et al. Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19, 5140–5148 (2019).

    CAS  Google Scholar 

  226. 226.

    Pacchioni, G. An upgrade to a bright future. Nat. Rev. Phys. 1, 100–101 (2019).

    Google Scholar 

  227. 227.

    Zhang, S., He, M., Su, C.-C. & Zhang, Z. Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Curr. Opin. Chem. Eng. 13, 24–35 (2016).

    CAS  Google Scholar 

  228. 228.

    Yuan, Y., Amine, K., Lu, J. & Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    CAS  Google Scholar 

  229. 229.

    Xiao, Li et al. Electrospinning synthesis of spinel Li4Ti5O12 and its characterization. IOP Conf. Ser. Mater. Sci. Eng. 87, 012098 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357. M.L. and Z.C. would like to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and the University of Waterloo. C.Z. greatly acknowledges support from the National Science Foundation for Excellent Young Scholar (No. 51722403) and the National Youth Talent Support Program.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jun Lu or Cheng Zhong or Khalil Amine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lu, J., Ji, X. et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat Rev Mater 5, 276–294 (2020). https://doi.org/10.1038/s41578-019-0166-4

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing