Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution

Abstract

The intestine, like the liver and kidney, in various vertebrates and humans is able to carry out gluconeogenesis and release glucose into the blood. In the fed post-absorptive state, intestinal glucose is sensed by the gastrointestinal nervous system. The latter initiates a signal to the brain regions controlling energy homeostasis and stress-related behaviour. Intestinal gluconeogenesis (IGN) is activated by several complementary mechanisms, in particular nutritional situations (for example, when food is enriched in protein or fermentable fibre and after gastric bypass surgery in obesity). In these situations, IGN has several metabolic and behavioural benefits. As IGN is activated by nutrients capable of fuelling systemic gluconeogenesis, IGN could be a signal to the brain that food previously ingested is suitable for maintaining plasma glucose for a while. This process might account for the benefits observed. Finally, in this Perspective, we discuss how the benefits of IGN in fasting and fed states could explain why IGN emerged and was maintained in vertebrates by natural selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence from nutrient induction of IGN to glucose detection in the portal vein.
Fig. 2: Metabolic processes targeted by IGN.
Fig. 3: Brain targets of IGN.
Fig. 4: Evolution of G6PC genes.
Fig. 5: Changes in EGP during human evolution concerning food habits.
Fig. 6: Proposed sequence of signals to the brain concerning the presence and absence of food and its composition.

Similar content being viewed by others

Data availability

Accession numbers of the amino acid sequences used for Fig. 4 are provided as an Excel spreadsheet (Supplementary Table 1); each row corresponds to a protein-coding gene. Protein-coding genes present in the phylogenetic tree of Fig. 4b are indicated in red. The sequence alignment corresponding to the TreeFam family TF324388 is provided as a text file (Supplementary Table 2). These data were freely obtained from the TreeFam v9 database hosted at the European Bioinformatics Institute (EBI).

References

  1. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bernard, C. Nouvelle fonction du foie considéré comme organe producteur de matière sucrée chez l’homme et les animaux (J.-B. Baillie, 1853).

  3. Krebs, H. A. Renal gluconeogenesis. Adv. Enzym. Regul. 1, 385–400 (1963).

    Article  CAS  Google Scholar 

  4. Rajas, F., Bruni, N., Montano, S., Zitoun, C. & Mithieux, G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology 117, 132–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Croset, M. et al. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50, 740–746 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Battezzati, A. et al. Nonhepatic glucose production in humans. Am. J. Physiol. Endocrinol. Metab. 286, E129–E135 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hayes, M. T., Foo, J., Besic, V., Tychinskaya, Y. & Stubbs, R. S. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass? Obes. Surg. 21, 759–762 (2011).

    Article  PubMed  Google Scholar 

  8. Mithieux, G. Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011. Obes. Surg. 22, 1920–1922 (2012).

    Article  PubMed  Google Scholar 

  9. Gerich, J. E., Meyer, C., Woerle, H. J. & Stumvoll, M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24, 382–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pillot, B., Soty, M., Gautier-Stein, A., Zitoun, C. & Mithieux, G. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology 150, 616–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48, 574–583 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mutel, E. et al. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 60, 3121–3131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Russek, M. Participation of hepatic glucoreceptors in the control of intake of food. Nature 197, 79–80 (1963).

    Article  CAS  PubMed  Google Scholar 

  14. Tordoff, M. G. & Friedman, M. I. Hepatic portal glucose infusions decrease food intake and increase food preference. Am. J. Physiol. 251, R192–R196 (1986).

    CAS  PubMed  Google Scholar 

  15. Niijima, A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J. Physiol. 332, 315–323 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fournel, A. et al. Glucosensing in the gastrointestinal tract: Impact on glucose metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G645–G658 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Duca, F. A., Waise, T. M. Z., Peppler, W. T. & Lam, T. K. T. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 12, 903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Booth, D. A., Chase, A. & Campbell, A. T. Relative effectiveness of protein in the late stages of appetite suppression in man. Physiol. Behav. 5, 1299–1302 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Rolls, B. J., Hetherington, M. & Burley, V. J. The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety. Physiol. Behav. 43, 145–153 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Mithieux, G. et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2, 321–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, V. H. Membrane transporters. Eur. J. Pharm. Sci. 11, S41–S50 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Duraffourd, C. et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 150, 377–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Penhoat, A. et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 105, 89–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Ray, T. K. et al. Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am. J. Clin. Nutr. 37, 376–381 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Mendeloff, A. I. Dietary fiber and human health. N. Engl. J. Med. 297, 811–814 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Mithieux, G., Gautier-Stein, A., Rajas, F. & Zitoun, C. Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 195–200 (2006).

    Article  PubMed  Google Scholar 

  28. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  29. De Vadder, F., Plessier, F., Gautier-Stein, A. & Mithieux, G. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis. Neurogastroenterol. Motil. 27, 443–448 (2015).

    Article  PubMed  Google Scholar 

  30. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. De Vadder, F. et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 24, 151–157 (2016).

    Article  PubMed  Google Scholar 

  32. Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26, 222–235.e5 (2019).

    Article  PubMed  Google Scholar 

  33. Minassian, C., Ajzannay, A., Riou, J. P. & Mithieux, G. Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats. J. Biol. Chem. 269, 16585–16588 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Mithieux, G., Daniele, N., Payrastre, B. & Zitoun, C. Liver microsomal glucose-6-phosphatase is competitively inhibited by the lipid products of phosphatidylinositol 3-kinase. J. Biol. Chem. 273, 17–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Daniele, N. et al. Phosphatidylinositol 3-kinase translocates onto liver endoplasmic reticulum and may account for the inhibition of glucose-6-phosphatase during refeeding. J. Biol. Chem. 274, 3597–3601 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Mithieux, G. The gut microbiota: stable bioreactor of variable composition? Trends Endocrinol. Metab. 33, 443–446 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Pories, W. J. Diabetes: the evolution of a new paradigm. Ann. Surg. 239, 12–13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barataud, A. et al. Metabolic benefits of gastric bypass surgery in the mouse: the role of fecal losses. Mol. Metab. 31, 14–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Troy, S. et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 8, 201–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, M., Son, Y. G., Kang, Y. N., Ha, T. K. & Ha, E. Changes in glucose transporters, gluconeogenesis, and circadian clock after duodenal–jejunal bypass surgery. Obes. Surg. 25, 635–641 (2015).

    Article  PubMed  Google Scholar 

  41. Sun, D. et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats. Obes. Surg. 23, 1734–1742 (2013).

    Article  PubMed  Google Scholar 

  42. Yan, Y. et al. Roux-en-Y gastric bypass surgery suppresses hepatic gluconeogenesis and increases intestinal gluconeogenesis in a T2DM rat model. Obes. Surg. 26, 2683–2690 (2016).

    Article  PubMed  Google Scholar 

  43. Gutierrez-Repiso, C. et al. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 13, 623–630 (2017).

    Article  PubMed  Google Scholar 

  44. Jean, C. et al. Metabolic evidence for adaptation to a high protein diet in rats. J. Nutr. 131, 91–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Sjöström, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    Article  PubMed  Google Scholar 

  46. Vily-Petit, J. et al. Intestinal gluconeogenesis regulates brown and white adipose tissues functions in mice. Preprint at bioRxiv https://doi.org/10.1101/2021.10.25.465675 (2021).

    Article  Google Scholar 

  47. Vily-Petit, J. et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 69, 2193–2202 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Soty, M. et al. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health. Mol. Metab. 4, 106–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Parlati, L., Régnier, M., Guillou, H. & Postic, C. New targets for NAFLD. JHEP Rep. 3, 100346 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Delaere, F. et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2, 47–53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Delaere, F., Akaoka, H., De Vadder, F., Duchampt, A. & Mithieux, G. Portal glucose influences the sensory, cortical and reward systems in rats. Eur. J. Neurosci. 38, 3476–3486 (2013).

    Article  PubMed  Google Scholar 

  52. Thorens, B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Diez-Sampedro, A. et al. A glucose sensor hiding in a family of transporters. Proc. Natl Acad. Sci. 100, 11753–11758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soták, M., Marks, J. & Unwin, R. J. Putative tissue location and function of the SLC5 family member SGLT3: developments in SGLT3 biology. Exp. Physiol. 102, 5–13 (2017).

    Article  PubMed  Google Scholar 

  55. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soty, M. et al. Calcitonin gene-related peptide-induced phosphorylation of STAT3 in arcuate neurons is a link in the metabolic benefits of portal glucose. Neuroendocrinology 111, 555–567 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Nogueiras, R., López, M. & Diéguez, C. Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes. Rev. 11, 185–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, S. B. et al. Intermittent restraint-induced sympathetic activation attenuates hepatic steatosis and inflammation in a high-fat diet-fed mouse model. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G811–G823 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bachman, E. S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Berland, C., Small, D. M., Luquet, S. & Gangarossa, G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol. Metab. 32, 693–705 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Sinet, F. et al. Dietary fibers and proteins modulate behavior via the activation of intestinal gluconeogenesis. Neuroendocrinology 111, 1249–1265 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Pariante, C. M. & Miller, A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry 49, 391–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, L.-J. et al. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity. PLoS ONE 9, e97689 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zemdegs, J. et al. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br. J. Pharmacol. 173, 2095–2110 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Spencer, S. J., Korosi, A., Layé, S., Shukitt-Hale, B. & Barrientos, R. M. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci. Food 1, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wolfe, A. R. et al. Dietary protein and protein-rich food in relation to severely depressed mood: a 10 year follow-up of a national cohort. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 232–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Hutton, J. C. & O’Brien, R. M. Glucose-6-phosphatase catalytic subunit gene family. J. Biol. Chem. 284, 29241–29245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hübscher, G., West, G. R. & Brindley, D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem. J. 97, 629–642 (1965).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shittu, S. T., Alada, A. R. A. & Oyebola, D. D. O. Metabolic fate of the glucose taken up by the intestine during induced hyperglycaemia in dogs. Niger. J. Physiol. Sci. 33, 37–49 (2018).

    CAS  PubMed  Google Scholar 

  73. Lohrenz, A.-K. et al. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch. J. Dairy. Sci. 94, 4546–4555 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Tournaire, D., Bastide, P. & Dastugue, G. Enzymatic activities in the small intestine of the lamb. (Acid and alkaline phosphatases, glucose-6-phosphatase, alpha-D-methylglucosidase, invertase and lactase). C. R. Seances Soc. Biol. Fil. 160, 1597–1600 (1966).

    CAS  PubMed  Google Scholar 

  75. Radecki, S. V., Ku, P. K., Bennink, M. R., Yokoyama, M. T. & Miller, E. R. Effect of dietary copper on intestinal mucosa enzyme activity, morphology, and turnover rates in weanling pigs. J. Anim. Sci. 70, 1424–1431 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Bismut, H., Hers, H. G. & Van Schaftingen, E. Conversion of fructose to glucose in the rabbit small intestine. A reappraisal of the direct pathway. Eur. J. Biochem. 213, 721–726 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Anderson, J. W. & Rosendall, A. F. Gluconeogenesis in jejunal mucosa of guinea pig. Biochim. Biophys. Acta 304, 384–388 (1973).

    Article  CAS  PubMed  Google Scholar 

  78. Palmer, M. F. & Rolls, B. A. The activities of some metabolic enzymes in the intestines of germ-free and conventional chicks. Br. J. Nutr. 50, 783–790 (1983).

    Article  CAS  PubMed  Google Scholar 

  79. Su, J. et al. The characteristics of glucose homoeostasis in grass carp and Chinese longsnout catfish after oral starch administration: a comparative study between herbivorous and carnivorous species of fish. Br. J. Nutr. 123, 627–641 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, Y.-J. et al. Simultaneous stimulation of glycolysis and gluconeogenesis by feeding in the anterior intestine of the omnivorous GIFT tilapia, Oreochromis niloticus. Biol. Open 6, 818–824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kirchner, S., Seixas, P., Kaushik, S. & Panserat, S. Effects of low protein intake on extra-hepatic gluconeogenic enzyme expression and peripheral glucose phosphorylation in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 333–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Penhoat, A., Fayard, L., Stefanutti, A., Mithieux, G. & Rajas, F. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice. Metabolism 63, 104–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Hartmann, F. & Plauth, M. Intestinal glutamine metabolism. Metabolism 38, 18–24 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Windmueller, H. G. & Spaeth, A. E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J. Biol. Chem. 253, 69–76 (1978).

    Article  CAS  PubMed  Google Scholar 

  85. Watford, M. Glutamine metabolism in rat small intestine: synthesis of three-carbon products in isolated enterocytes. Biochim. Biophys. Acta 1200, 73–78 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Mithieux, G., Rajas, F. & Gautier-Stein, A. A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis. J. Biol. Chem. 279, 44231–44234 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11, 411–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Geiselman, P. J. & Novin, D. The role of carbohydrates in appetite, hunger and obesity. Appetite 3, 203–223 (1982).

    Article  CAS  PubMed  Google Scholar 

  89. Little, T. J. & Feinle-Bisset, C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol. Behav. 104, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Schwartz, M. W. & Morton, G. J. Obesity: keeping hunger at bay. Nature 418, 595–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Eaton, S. B. & Konner, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312, 283–289 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Ben-Dor, M., Sirtoli, R. & Barkai, R. The evolution of the human trophic level during the Pleistocene. Am. J. Phys. Anthropol. 175, 27–56 (2021).

    Article  PubMed  Google Scholar 

  93. Mithieux, G., Rajas, F. & Zitoun, C. Glucose utilization is suppressed in the gut of insulin-resistant high fat-fed rats and is restored by metformin. Biochem. Pharmacol. 72, 1757–1762 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Andreelli, F. et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147, 2432–2441 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Flak, J. N. & Myers, M. G. Minireview: CNS mechanisms of leptin action. Mol. Endocrinol. 30, 3–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Enriori, P. J., Sinnayah, P., Simonds, S. E., Garcia Rudaz, C. & Cowley, M. A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, J., Perez, S. M., Zhang, W., Lodge, D. J. & Lu, X.-Y. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol. Psychiatry 16, 1024–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jacobs, B. L. Adult brain neurogenesis and depression. Brain Behav. Immun. 16, 602–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Garza, J. C., Guo, M., Zhang, W. & Lu, X.-Y. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol. Psychiatry 17, 790–808 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Londraville, R. L., Prokop, J. W., Duff, R. J., Liu, Q. & Tuttle, M. On the molecular evolution of leptin, leptin receptor, and endospanin. Front. Endocrinol. 8, 58 (2017).

    Article  Google Scholar 

  101. Ricardo-Silgado, M. L., McRae, A. & Acosta, A. Role of enteroendocrine hormones in appetite and glycemia. Obes. Med. 23, 100332 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kim, Y.-K., Kim, O. Y. & Song, J. Alleviation of depression by glucagon-like peptide 1 through the regulation of neuroinflammation, neurotransmitters, neurogenesis, and synaptic function. Front. Pharmacol. 11, 1270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Crespi, F. On the role of cholecystokinin (CCK) in fear and anxiety: a review and research proposal. J. Hum. Psychol. https://doi.org/10.14302/issn.2644-1101.jhp-19-2766 (2019).

    Article  Google Scholar 

  104. Ruan, J. et al. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their team and the countless number of past members and collaborators, without whom the work analysed herein would not have been possible, and more particularly F. Rajas, J. Vily-Petit and E. Van Obberghen for critical reading and help in the preparation of the manuscript, and G. Escarguel, V. Balter and Y. Voituron for help in relation to the evolution of human nutrition. The authors are also grateful to the University Claude Bernard Lyon 1 and INSERM for hosting and funding their laboratory and the INRAe and the CNRS for funding their salary.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Amandine Gautier-Stein or Gilles Mithieux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Petia Kovatcheva-Datchary, Ruben Nogueiras and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautier-Stein, A., Mithieux, G. Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution. Nat Rev Gastroenterol Hepatol 20, 183–194 (2023). https://doi.org/10.1038/s41575-022-00707-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00707-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing