Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Intestinal plasticity and metabolism as regulators of organismal energy homeostasis

Abstract

The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic anatomy of small intestine and colon.
Fig. 2: Dietary and microbial cues model the intestinal absorptive surface.
Fig. 3: Interplay of metabolites controls the balance between intestinal cell division, differentiation and growth.
Fig. 4: Nutrient uptake in the intestine is modified by circuitry of enteroendocrine cells, enterocytes and peripheral organs.

Similar content being viewed by others

References

  1. Hounnou, G., Destrieux, C., Desme, J., Bertrand, P. & Velut, S. Anatomical study of the length of the human intestine. Surg. Radiol. Anat. 24, 290–294 (2002).

    CAS  PubMed  Google Scholar 

  2. Guzman, I. J., Fitch, L. L., Varco, R. L. & Buchwald, H. Small bowel length in hyperlipidemia and massive obesity. Am. J. Clin. Nutr. 30, 1006–1008 (1977).

    CAS  PubMed  Google Scholar 

  3. Hosseinpour, M. & Behdad, A. Evaluation of small bowel measurement in alive patients. Surg. Radiol. Anat. 30, 653–655 (2008).

    PubMed  Google Scholar 

  4. Bekheit, M., Ibrahim, M. Y., Tobar, W., Galal, I. & Elward, A. S. Correlation between the total small bowel length and anthropometric measures in living humans: cross-sectional study. Obes. Surg. 30, 681–686 (2020).

    PubMed  Google Scholar 

  5. Helander, H. F. & Fandriks, L. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    PubMed  Google Scholar 

  6. Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ariyapala, I. S. et al. Identification of split-GAL4 drivers and enhancers that allow regional cell type manipulations of the Drosophila melanogaster intestine. Genetics 216, 891–903 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim, S. Y. et al. Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut. J. Neurogenet. 35, 33–44 (2021).

    CAS  PubMed  Google Scholar 

  9. van Rheenen, J. & Bruens, L. Cellular protection mechanisms that minimise accumulation of mutations in intestinal tissue. Swiss Med. Wkly 147, w14539 (2017).

    PubMed  Google Scholar 

  10. Baker, A. M. et al. Crypt fusion as a homeostatic mechanism in the human colon. Gut 68, 1986–1993 (2019).

    CAS  PubMed  Google Scholar 

  11. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  12. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  13. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    CAS  PubMed  Google Scholar 

  14. Sei, Y., Feng, J., Chow, C. C. & Wank, S. A. Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G64–G74 (2019).

    CAS  PubMed  Google Scholar 

  15. Joly, A. & Rousset, R. Tissue adaptation to environmental cues by symmetric and asymmetric division modes of intestinal stem cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21176362 (2020).

  16. Noah, T. K., Donahue, B. & Shroyer, N. F. Intestinal development and differentiation. Exp. Cell. Res. 317, 2702–2710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    PubMed  Google Scholar 

  18. Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).

    CAS  PubMed  Google Scholar 

  19. Jones, D. E. & Bevins, C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216–23225 (1992).

    CAS  PubMed  Google Scholar 

  20. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    CAS  PubMed  Google Scholar 

  21. Corr, S. C., Gahan, C. C. & Hill, C. M cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).

    CAS  PubMed  Google Scholar 

  22. Wozniak, D., Cichy, W., Przyslawski, J. & Drzymala-Czyz, S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv. Med. Sci. 66, 284–292 (2021).

    CAS  PubMed  Google Scholar 

  23. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    CAS  PubMed  Google Scholar 

  24. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Azkanaz, M. et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature 607, 548–554 (2022).

    CAS  PubMed  Google Scholar 

  26. Beumer, J. & Clevers, H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143, 3639–3649 (2016).

    CAS  PubMed  Google Scholar 

  27. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    CAS  PubMed  Google Scholar 

  28. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    CAS  PubMed  Google Scholar 

  30. Tetteh, P. W. et al. Replacement of lost lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213 (2016).

    CAS  PubMed  Google Scholar 

  31. Marianes, A. & Spradling, A. C. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2, e00886 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Kraiczy, J. et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68, 49–61 (2019).

    CAS  PubMed  Google Scholar 

  33. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32, 1083–1091 (2014).

    CAS  PubMed  Google Scholar 

  34. Harnik, Y. et al. Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nat. Metab. 3, 1680–1693 (2021).

    CAS  PubMed  Google Scholar 

  35. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    CAS  PubMed  Google Scholar 

  36. Yang, H., Wang, X., Xiong, X. & Yin, Y. Energy metabolism in intestinal epithelial cells during maturation along the crypt–villus axis. Sci. Rep. 6, 31917 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Der Schoor, S. R. et al. The high metabolic cost of a functional gut. Gastroenterology 123, 1931–1940 (2002).

    PubMed  Google Scholar 

  38. Tome, D. The roles of dietary glutamate in the intestine. Ann. Nutr. Metab. 73, 15–20 (2018).

    CAS  PubMed  Google Scholar 

  39. Bahar Halpern, K. et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat. Commun. 11, 1936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tappenden, K. A. Intestinal adaptation following resection. JPEN J. Parenter. Enteral Nutr. 38, 23S–31S (2014).

    PubMed  Google Scholar 

  41. Weale, A. R., Edwards, A. G., Bailey, M. & Lear, P. A. Intestinal adaptation after massive intestinal resection. Postgrad. Med. J. 81, 178–184 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. Level of nutrition and visceral organ size and metabolic activity in sheep. Br. J. Nutr. 64, 439–448 (1990).

    CAS  PubMed  Google Scholar 

  43. Mao, J. et al. Overnutrition stimulates intestinal epithelium proliferation through beta-catenin signaling in obese mice. Diabetes 62, 3736–3746 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stojanovic, O. et al. Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα. Nat. Commun. https://doi.org/10.1038/s41467-021-27133-7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    CAS  PubMed  Google Scholar 

  46. Mercado-Perez, A. & Beyder, A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-021-00561-y (2022).

  47. Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez-Gonzalez, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603–614 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Li, Q. et al. Ingestion of food particles regulates the mechanosensing Misshapen–Yorkie pathway in Drosophila intestinal growth. Dev. Cell 45, 433–449 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147–4158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. He, L., Si, G., Huang, J., Samuel, A. D. T. & Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555, 103–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Spiljar, M. et al. Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab. 33, 2231–2246 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao, W. H., Henneberg, M. & Langhans, W. Immunity-based evolutionary interpretation of diet-induced thermogenesis. Cell Metab. 23, 971–979 (2016).

    CAS  PubMed  Google Scholar 

  55. Toloza, E. M., Lam, M. & Diamond, J. Nutrient extraction by cold-exposed mice: a test of digestive safety margins. Am. J. Physiol. 261, G608–G620 (1991).

    CAS  PubMed  Google Scholar 

  56. Chevalier, C. et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 32, 575–590 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 375–398 (2008).

    PubMed  Google Scholar 

  58. Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland Biol. Neoplasia 2, 243–252 (1997).

    CAS  PubMed  Google Scholar 

  59. Weaver, L. T., Austin, S. & Cole, T. J. Small intestinal length: a factor essential for gut adaptation. Gut 32, 1321–1323 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. White, M. A., Bonfini, A., Wolfner, M. F. & Buchon, N. Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2018112118 (2021).

  63. Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Gall, M. et al. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr. Rev. 77, 129–143 (2019).

    PubMed  Google Scholar 

  65. Le Beyec, J., Billiauws, L., Bado, A., Joly, F. & Le Gall, M. Short bowel syndrome: a paradigm for intestinal adaptation to nutrition? Annu. Rev. Nutr. 40, 299–321 (2020).

    PubMed  Google Scholar 

  66. Weser, E. Nutritional aspects of malabsorption. Short gut adaptation. Am. J. Med. 67, 1014–1020 (1979).

    CAS  PubMed  Google Scholar 

  67. Booth, C. C., Evans, K. T., Menzies, T. & Street, D. F. Intestinal hypertrophy following partial resection of the small bowel in the rat. Br. J. Surg. 46, 403–410 (1959).

    CAS  PubMed  Google Scholar 

  68. Jeppesen, P. B. & Mortensen, P. B. The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection. Gut 43, 478–483 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Drucker, D. J., Erlich, P., Asa, S. L. & Brubaker, P. L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl Acad. Sci. USA 93, 7911–7916 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brubaker, P. L. Glucagon-like peptide 2 and the regulation of intestinal growth and function. Compr. Physiol. 8, 1185–1210 (2018).

    PubMed  Google Scholar 

  71. Au, A., Gupta, A., Schembri, P. & Cheeseman, C. I. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2. Biochem. J. 367, 247–254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheeseman, C. I. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am. J. Physiol. 273, R1965–R1971 (1997).

    CAS  PubMed  Google Scholar 

  73. Camastra, S., Palumbo, M. & Santini, F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat. Weight Disord. 27, 449–461 (2022).

    PubMed  Google Scholar 

  74. Larraufie, P. et al. Important role of the GLP-1 axis for glucose homeostasis after bariatric surgery. Cell Rep. 26, e1396 (2019).

    Google Scholar 

  75. Saeidi, N. et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 341, 406–410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Troy, S. et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 8, 201–211 (2008).

    CAS  PubMed  Google Scholar 

  77. McCauley, H. A. et al. Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nat. Commun. 11, 4791 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Albaugh, V. L. et al. Regulation of body weight: lessons learned from bariatric surgery. Mol. Metab. https://doi.org/10.1016/j.molmet.2022.101517 (2022).

  79. Ahmad, N. N., Pfalzer, A. & Kaplan, L. M. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int. J. Obes. 37, 1553–1559 (2013).

  80. Albaugh, V. L. et al. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J. Clin. Endocrinol. Metab. 100, E1225–E1233 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Calderon, G. et al. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EbioMedicine 55, 102759 (2020).

    PubMed  PubMed Central  Google Scholar 

  82. Li, K. et al. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol. Metab. 37, 100980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McGavigan, A. K. et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 66, 226–234 (2017).

    CAS  PubMed  Google Scholar 

  84. Hatoum, I. J. et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J. Clin. Endocrinol. Metab. 97, E1023–E1031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Faramia, J. et al. IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Rep. Med. 2, 100248 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, W., Rowitz, B. M. & Dailey, M. J. Insulin/IGF-1 enhances intestinal epithelial crypt proliferation through PI3K/Akt, and not ERK signaling in obese humans. Exp. Biol. Med. 243, 911–916 (2018).

    CAS  Google Scholar 

  87. Hao, Z. et al. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Int J. Obes. 39, 798–805 (2015).

    CAS  Google Scholar 

  88. Mokadem, M., Zechner, J. F., Uchida, A. & Aguirre, V. Leptin is required for glucose homeostasis after Roux-en-Y gastric bypass in mice. PLoS ONE 10, e0139960 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Sukhotnik, I. et al. Leptin affects intestinal epithelial cell turnover in correlation with leptin receptor expression along the villus–crypt axis after massive small bowel resection in a rat. Pediatr. Res 66, 648–653 (2009).

    CAS  PubMed  Google Scholar 

  90. Leigh, S. C., Nguyen-Phuc, B. Q. & German, D. P. The effects of protein and fiber content on gut structure and function in zebrafish (Danio rerio). J. Comp. Physiol. B 188, 237–253 (2018).

    CAS  PubMed  Google Scholar 

  91. McCullogh, J. S., Ratcliffe, B., Mandir, N., Carr, K. E. & Goodlad, R. A. Dietary fibre and intestinal microflora: effects on intestinal morphometry and crypt branching. Gut 42, 799–806 (1998).

    CAS  PubMed  Google Scholar 

  92. Dalby, M. J., Ross, A. W., Walker, A. W. & Morgan, P. J. Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep. 21, 1521–1533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hunt, J. E., Hartmann, B., Schoonjans, K., Holst, J. J. & Kissow, H. Dietary fiber is essential to maintain intestinal size, L cell secretion, and intestinal integrity in mice. Front Endocrinol. 12, 640602 (2021).

    Google Scholar 

  94. Mihaylova, M. M. et al. Fasting activates fatty acid oxidation to inhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769–778 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rock, S. A. et al. Neurotensin regulates proliferation and stem cell function in the small intestine in a nutrient-dependent manner. Cell Mol. Gastroenterol. Hepatol. 13, 501–516 (2022).

    CAS  PubMed  Google Scholar 

  97. Stine, R. R. et al. PRDM16 maintains homeostasis of the intestinal epithelium by controlling region-specific metabolism. Cell Stem Cell 25, 830–845 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Goncalves, M. D. et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363, 1345–1349 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Scoaris, C. R. et al. Effects of cafeteria diet on the jejunum in sedentary and physically trained rats. Nutrition 26, 312–320 (2010).

    PubMed  Google Scholar 

  101. Petit, V. et al. Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J. Lipid Res. 48, 278–287 (2007).

    CAS  PubMed  Google Scholar 

  102. Xie, Y. et al. Impact of a high-fat diet on intestinal stem cells and epithelial barrier function in middle-aged female mice. Mol. Med. Rep. 21, 1133–1144 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng, C. W. et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178, 1115–1131 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stadler, J. et al. Effect of high fat consumption on cell proliferation activity of colorectal mucosa and on soluble faecal bile acids. Gut 29, 1326–1331 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mah, A. T., Van Landeghem, L., Gavin, H. E., Magness, S. T. & Lund, P. K. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155, 3302–3314 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Takase, S. & Goda, T. Effects of medium-chain triglycerides on brush border membrane-bound enzyme activity in rat small intestine. J. Nutr. 120, 969–976 (1990).

    CAS  PubMed  Google Scholar 

  107. Chwen, L. T., Foo, H. L., Thanh, N. T. & Choe, D. W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas. J. Anim. Sci. 26, 700–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, B. et al. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 22, 206–220 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aliluev, A. et al. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat. Metab. 3, 1202–1216 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Taylor, S. R. et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature https://doi.org/10.1038/s41586-021-03827-2 (2021).

  111. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Redhai, S. et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature 580, 263–268 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Obata, F. et al. Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. Dev. Cell 44, 741–751 (2018).

    CAS  PubMed  Google Scholar 

  114. Kim, B. et al. Response of the microbiome–gut–brain axis in Drosophila to amino acid deficit. Nature 593, 570–574 (2021).

    CAS  PubMed  Google Scholar 

  115. Tan, B. L. & Norhaizan, M. E. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients https://doi.org/10.3390/nu11112579 (2019).

  116. Zhou, D., Shao, L. & Spitz, D. R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res 122, 1–67 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gulhane, M. et al. Hig-fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci. Rep. 6, 28990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hamilton, M. K., Boudry, G., Lemay, D. G. & Raybould, H. E. Changes in intestinal barrier function and gut microbiota in high-fat-diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G840–G851 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A. & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv. Nutr. 11, 77–91 (2020).

    PubMed  Google Scholar 

  120. Flanagan, D. J., Austin, C. R., Vincan, E. & Phesse, T. J. Wnt signalling in gastrointestinal epithelial stem cells. Genes https://doi.org/10.3390/genes9040178 (2018).

  121. Mah, A. T., Yan, K. S. & Kuo, C. J. Wnt pathway regulation of intestinal stem cells. J. Physiol. 594, 4837–4847 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G. & Basler, K. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 558, 449–453 (2018).

    CAS  PubMed  Google Scholar 

  123. Maimets, M. et al. Mesenchymal–epithelial cross-talk shapes intestinal regionalisation via Wnt and Shh signalling. Nat. Commun. 13, 715 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Goga, A. et al. miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nat. Commun. 12, 3339 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mattila, J., Kokki, K., Hietakangas, V. & Boutros, M. Stem cell intrinsic hexosamine metabolism regulates intestinal adaptation to nutrient content. Dev. Cell 47, 112–121 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Crosnier, C. et al. Delta–Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132, 1093–1104 (2005).

    CAS  PubMed  Google Scholar 

  128. Obniski, R., Sieber, M. & Spradling, A. C. Dietary lipids modulate Notch signaling and influence adult intestinal development and metabolism in Drosophila. Dev. Cell 47, 98–111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mana, M. D. et al. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 35, 109212 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hinrichsen, F. et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 33, 2355–2366 (2021).

    CAS  PubMed  Google Scholar 

  131. Frank, D. N. et al. Perilipin-2 modulates lipid absorption and microbiome responses in the mouse intestine. PLoS ONE 10, e0131944 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cheng, R., Ding, L., He, X., Takahashi, Y. & Ma, J. X. Interaction of PPARα with the canonic Wnt pathway in the regulation of renal fibrosis. Diabetes 65, 3730–3743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    PubMed  Google Scholar 

  135. Tan, H. E. et al. The gut–brain axis mediates sugar preference. Nature 580, 511–516 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, W. W. & Bohorquez, D. V. The neural basis of sugar preference. Nat. Rev. Neurosci. 23, 584–595 (2022).

  138. Zhang, T., Perkins, M. H., Chang, H., Han, W. & de Araujo, I. E. An interorgan neural circuit for appetite suppression. Cell 185, 2478–2494 (2022).

    CAS  PubMed  Google Scholar 

  139. Mithieux, G. The new functions of the gut in the control of glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 8, 445–449 (2005).

    CAS  PubMed  Google Scholar 

  140. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut–brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    CAS  PubMed  Google Scholar 

  141. Vily-Petit, J. et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 69, 2193–2202 (2020).

    CAS  PubMed  Google Scholar 

  142. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  143. Park, S. Y. et al. Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite. Cell 185, 513–529 (2022).

    CAS  PubMed  Google Scholar 

  144. Azais-Braesco, V., Sluik, D., Maillot, M., Kok, F. & Moreno, L. A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 16, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Jang, C. et al. The small intestine shields the liver from fructose-induced steatosis. Nat. Metab. 2, 586–593 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, Z. et al. Adipocyte iron levels impinge on a fat-gut cross-talk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab. 33, 1624–1639 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–442 (2017).

    CAS  PubMed  Google Scholar 

  148. Lee, Y. S. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833–846 (2018).

    CAS  PubMed  Google Scholar 

  149. Hudry, B. et al. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 178, 901–918 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Austin, K., Markovic, M. A. & Brubaker, P. L. Current and potential therapeutic targets of glucagon-like peptide 2. Curr. Opin. Pharmacol. 31, 13–18 (2016).

    CAS  PubMed  Google Scholar 

  151. Speakman, J. R. & O’Rahilly, S. Fat: an evolving issue. Dis. Model Mech. 5, 569–573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. O’Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314 (2009).

    PubMed  Google Scholar 

  153. Purandare, A., Phalgune, D. & Shah, S. Variability of length of small intestine in Indian population and its correlation with type 2 diabetes mellitus and obesity. Obes. Surg. 29, 3149–3153 (2019).

    PubMed  Google Scholar 

  154. Rohm, T. V. et al. Obesity in humans is characterized by gut inflammation as shown by pro-inflammatory intestinal macrophage accumulation. Front. Immunol. 12, 668654 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Monteiro-Sepulveda, M. et al. Jejunal T cell Inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    CAS  PubMed  Google Scholar 

  156. Khan, S., Luck, H., Winer, S. & Winer, D. A. Emerging concepts in intestinal immune control of obesity-related metabolic disease. Nat. Commun. 12, 2598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science https://doi.org/10.1126/science.aba8310 (2021).

  158. Sukhotnik, I. et al. Dietary palmitic acid modulates intestinal re-growth after massive small bowel resection in a rat. Pediatr. Surg. Int. 24, 1313–1321 (2008).

    PubMed  Google Scholar 

  159. Booth, I. W. Enteral nutrition as primary therapy in short-bowel syndrome. Gut 35, S69–S72 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Vanderhoof, J. A., Euler, A. R., Park, J. H. Y. & Grandjean, C. J. Augmentation of mucosal adaptation following massive small-bowel resection by 16,16-dimethyl-prostaglandin-E2 in the rat. Digestion 36, 213–219 (1987).

    CAS  PubMed  Google Scholar 

  161. Leonard, M. M. et al. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS ONE 14, e0215132 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jeppesen, P. B. et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 54, 1224–1231 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bremholm, L., Hornum, M., Henriksen, B. M., Larsen, S. & Holst, J. J. Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand. J. Gastroenterol. 44, 314–319 (2009).

    CAS  PubMed  Google Scholar 

  164. Bruens, L., Ellenbroek, S. I. J., van Rheenen, J. & Snippert, H. J. In vivo imaging reveals existence of crypt fission and fusion in adult mouse intestine. Gastroenterology 153, 674–677 (2017).

    PubMed  Google Scholar 

  165. Wang, D., Odle, J. & Liu, Y. Metabolic regulation of intestinal stem cell homeostasis. Trends Cell Biol. 31, 325–327 (2021).

    CAS  PubMed  Google Scholar 

  166. Kieser, S., Zdobnov, E. M. & Trajkovski, M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput. Biol. 18, e1009947 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  168. Abrams, G. D., Bauer, H. & Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364 (1963).

    CAS  PubMed  Google Scholar 

  169. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    CAS  PubMed  Google Scholar 

  170. Perry, R. J. et al. Acetate mediates a microbiome–brain–beta cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Trajkovski, M. & Wollheim, C. B. Physiology: microbial signals to the brain control weight. Nature 534, 185–187 (2016).

    CAS  PubMed  Google Scholar 

  172. McIntyre, N., Holdsworth, C. D. & Turner, D. S. New interpretation of oral glucose tolerance. Lancet 2, 20–21 (1964).

    CAS  PubMed  Google Scholar 

  173. Kreuch, D. et al. Gut mechanisms linking intestinal sweet sensing to glycemic control. Front. Endocrinol. 9, 741 (2018).

    Google Scholar 

  174. Miguel-Aliaga, I. Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin. Cell Dev. Biol. 23, 614–620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA 104, 15075–15080 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sclafani, A., Koepsell, H. & Ackroff, K. SGLT1 sugar transporter/sensor is required for post-oral glucose appetition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R631–R639 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. Groneberg, D. A., Doring, F., Eynott, P. R., Fischer, A. & Daniel, H. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G697–G704 (2001).

    CAS  PubMed  Google Scholar 

  178. Dranse, H. J. et al. Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing. Nat. Commun. 9, 1118 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Diakogiannaki, E. et al. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56, 2688–2696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sivaprakasam, S. et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 5, e238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    CAS  PubMed  Google Scholar 

  182. Zhao, L. et al. CD36 senses dietary lipids and regulates lipids homeostasis in the intestine. Front. Physiol. 12, 669279 (2021).

    PubMed  PubMed Central  Google Scholar 

  183. Li, M. et al. Gut–brain circuits for fat preference. Nature 610, 722–730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).

    CAS  PubMed  Google Scholar 

  185. Breau, K. A. et al. Efficient transgenesis and homology-directed gene targeting in monolayers of primary human small intestinal and colonic epithelial stem cells. Stem Cell Rep. 17, 1493–1506 (2022).

    CAS  Google Scholar 

  186. Zietek, T. et al. Organoids to study intestinal nutrient transport, drug uptake and metabolism—update to the human model and expansion of applications. Front. Bioeng. Biotechnol. 8, 577656 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Zietek, T., Rath, E., Haller, D. & Daniel, H. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci. Rep. 5, 16831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Puschhof, J. et al. Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649 (2021).

    CAS  PubMed  Google Scholar 

  189. Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host–pathogen interactions. Cell Rep. 26, 2509–2520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Co, J. Y., Margalef-Catala, M., Monack, D. M. & Amieva, M. R. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat. Protoc. 16, 5171–5192 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    PubMed  Google Scholar 

  192. Goldspink, D. A. et al. Labeling and characterization of human GLP-1-secreting L cells in primary ileal organoid culture. Cell Rep. 31, 107833 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Aguilar, C. et al. Organoids as host models for infection biology—a review of methods. Exp. Mol. Med 53, 1471–1482 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Min, S., Kim, S. & Cho, S. W. Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp. Mol. Med. 52, 227–237 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, ERC advanced grant (787470, IntraGutSex), Biotechnology and Biological Sciences Research Council (BB000528/1), and MRC intramural funding to I.M.-A.; and from an ERC consolidator grant (815962, Healthybiota), the Swiss National Science Foundation (grant 310030_205042) and the Clayton Foundation for Biomedical Research to M.T.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized, discussed and wrote the paper. O.S. prepared the figures. M.T. initiated the project.

Corresponding authors

Correspondence to Irene Miguel-Aliaga or Mirko Trajkovski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Anika Boettcher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, O., Miguel-Aliaga, I. & Trajkovski, M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 4, 1444–1458 (2022). https://doi.org/10.1038/s42255-022-00679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00679-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing