Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tango of B cells with T cells in the making of secretory antibodies to gut bacteria

Abstract

Polymeric IgA and IgM are transported across the epithelial barrier from plasma cells in the lamina propria to exert a function in the gut lumen as secretory antibodies. Many secretory antibodies are reactive with the gut bacteria, and mounting evidence suggests that these antibodies are important for the host to control gut bacterial communities. However, we have incomplete knowledge of how bacteria-reactive secretory antibodies are formed. Antibodies from gut plasma cells often show bacterial cross-species reactivity, putting the degree of specificity behind anti-bacterial antibody responses into question. Such cross-species reactive antibodies frequently recognize non-genome-encoded membrane glycan structures. On the other hand, the T cell epitopes are peptides encoded in the bacterial genomes, thereby allowing a higher degree of predictable specificity on the T cell side of anti-bacterial immune responses. In this Perspective, we argue that the production of bacteria-reactive secretory antibodies is mainly controlled by the antigen specificity of T cells, which provide help to B cells. To be able to harness this system (for instance, for manipulation with vaccines), we need to obtain insight into the bacterial epitopes recognized by T cells in addition to characterizing the reactivity of the antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface structures of bacteria.
Fig. 2: Inductive and effector immune sites in the gut.
Fig. 3: T cell-dependent activation of bacteria-reactive B cells.

Similar content being viewed by others

References

  1. Suzuki, K. & Fagarasan, S. How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol. 29, 523–531 (2008).

    Article  CAS  Google Scholar 

  2. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  Google Scholar 

  3. Brandtzaeg, P. Mucosal immunity: induction, dissemination, and effector functions. Scand. J. Immunol. 70, 505–515 (2009).

    Article  CAS  Google Scholar 

  4. Brandtzaeg, P. et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97, 1562–1584 (1989).

    Article  CAS  Google Scholar 

  5. Brandtzaeg, P. Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J. Immunol. 112, 1553–1559 (1974).

    Article  CAS  Google Scholar 

  6. Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  Google Scholar 

  7. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  Google Scholar 

  8. Boullier, S. et al. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J. Immunol. 183, 5879–5885 (2009).

    Article  CAS  Google Scholar 

  9. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    Article  Google Scholar 

  10. Levinson, K. J., De Jesus, M. & Mantis, N. J. Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on Vibrio cholerae agglutination, motility, and surface morphology. Infect. Immun. 83, 1674–1683 (2015).

    Article  CAS  Google Scholar 

  11. Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215, 2019–2034 (2018).

    Article  CAS  Google Scholar 

  12. Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    Article  CAS  Google Scholar 

  13. Rollenske, T. et al. Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature 598, 657–661 (2021).

    Article  CAS  Google Scholar 

  14. Pabst, O. & Izcue, A. Secretory IgA: controlling the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 19, 149–150 (2021).

    Article  Google Scholar 

  15. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    Article  CAS  Google Scholar 

  16. Peterson, D. A. et al. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol. Chem. 290, 12630–12649 (2015).

    Article  CAS  Google Scholar 

  17. Parker, D. C. T cell-dependent B cell activation. Annu. Rev. Immunol. 11, 331–360 (1993).

    Article  CAS  Google Scholar 

  18. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).

    Article  CAS  Google Scholar 

  19. Mond, J. J., Lees, A. & Snapper, C. M. T cell-independent antigens type 2. Annu. Rev. Immunol. 13, 655–692 (1995).

    Article  CAS  Google Scholar 

  20. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  Google Scholar 

  21. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  Google Scholar 

  22. Bergqvist, P., Gardby, E., Stensson, A., Bemark, M. & Lycke, N. Y. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 177, 7772–7783 (2006).

    Article  CAS  Google Scholar 

  23. Souwer, Y. et al. B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. J. Immunol. 182, 7473–7481 (2009).

    Article  CAS  Google Scholar 

  24. van der Waaij, L. A., Mesander, G., Limburg, P. C. & van der Waaij, D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry 16, 270–279 (1994).

    Article  Google Scholar 

  25. van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996).

    Article  Google Scholar 

  26. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  Google Scholar 

  27. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  Google Scholar 

  28. Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274–278 (2020).

    Article  CAS  Google Scholar 

  29. Campanero-Rhodes, M. A., Palma, A. S., Menendez, M. & Solis, D. Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins. Front. Microbiol. 10, 2909 (2019).

    Article  Google Scholar 

  30. Rollenske, T. et al. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat. Immunol. 19, 617–624 (2018).

    Article  CAS  Google Scholar 

  31. Rollenske, T. & Macpherson, A. J. Anti-commensal Ig-from enormous diversity to clear function. Mucosal Immunol. 13, 1–2 (2020).

    Article  CAS  Google Scholar 

  32. Sterlin, D. et al. Human IgA binds a diverse array of commensal bacteria. J. Exp. Med. 217, e20181635 (2020).

    Article  Google Scholar 

  33. DeFranco, A. L. The complexity of signaling pathways activated by the BCR. Curr. Opin. Immunol. 9, 296–308 (1997).

    Article  CAS  Google Scholar 

  34. Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).

    Article  Google Scholar 

  35. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    Article  CAS  Google Scholar 

  36. Royle, L. et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278, 20140–20153 (2003).

    Article  CAS  Google Scholar 

  37. Mathias, A. & Corthesy, B. N-Glycans on secretory component: mediators of the interaction between secretory IgA and gram-positive commensals sustaining intestinal homeostasis. Gut Microbes 2, 287–293 (2011).

    Article  Google Scholar 

  38. Chen, H. et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature 582, 421–425 (2020).

    Article  CAS  Google Scholar 

  39. Diard, M. et al. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6, 830–841 (2021).

    Article  CAS  Google Scholar 

  40. Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    Article  CAS  Google Scholar 

  41. Di Niro, R. et al. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J. Immunol. 185, 5377–5383 (2010).

    Article  Google Scholar 

  42. Di Niro, R. et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat. Med. 18, 441–445 (2012).

    Article  Google Scholar 

  43. Steinsbo, Ø. et al. Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat. Commun. 5, 4041 (2014).

    Article  Google Scholar 

  44. Spencer, J. & Sollid, L. M. The human intestinal B-cell response. Mucosal Immunol. 9, 1113–1124 (2016).

    Article  CAS  Google Scholar 

  45. Fenton, T. M. et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. Immunity 52, 557–570.e6 (2020).

    Article  CAS  Google Scholar 

  46. Morbe, U. M. et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 14, 793–802 (2021).

    Article  CAS  Google Scholar 

  47. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016).

    Article  CAS  Google Scholar 

  48. Craig, S. W. & Cebra, J. J. Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134, 188–200 (1971).

    Article  CAS  Google Scholar 

  49. Lindner, C. et al. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J. Exp. Med. 209, 365–377 (2012).

    Article  CAS  Google Scholar 

  50. Dunn-Walters, D. K., Boursier, L. & Spencer, J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur. J. Immunol. 27, 2959–2964 (1997).

    Article  CAS  Google Scholar 

  51. Di Niro, R. et al. Responsive population dynamics and wide seeding into the duodenal lamina propria of transglutaminase-2-specific plasma cells in celiac disease. Mucosal Immunol. 9, 254–264 (2016).

    Article  Google Scholar 

  52. Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer’s patches. Eur. J. Immunol. 27, 463–467 (1997).

    Article  CAS  Google Scholar 

  53. Ohno, H. Intestinal M cells. J. Biochem. 159, 151–160 (2016).

    Article  CAS  Google Scholar 

  54. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article  Google Scholar 

  55. Komban, R. J. et al. Activated Peyer’s patch B cells sample antigen directly from M cells in the subepithelial dome. Nat. Commun. 10, 2423 (2019).

    Article  Google Scholar 

  56. Chang, J. E., Buechler, M. B., Gressier, E., Turley, S. J. & Carroll, M. C. Mechanosensing by Peyer’s patch stroma regulates lymphocyte migration and mucosal antibody responses. Nat. Immunol. 20, 1506–1516 (2019).

    Article  CAS  Google Scholar 

  57. Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).

    Article  CAS  Google Scholar 

  58. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  Google Scholar 

  59. de Vinuesa, C. G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).

    Article  Google Scholar 

  60. Toellner, K. M. et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med. 195, 383–389 (2002).

    Article  CAS  Google Scholar 

  61. Biram, A. & Shulman, Z. T cell help to B cells: cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol. Rev. 296, 36–47 (2020).

    Article  CAS  Google Scholar 

  62. Biram, A. et al. B cell diversification is uncoupled from SAP-mediated selection forces in chronic germinal centers within Peyer’s patches. Cell Rep. 30, 1910–1922.e5 (2020).

    Article  CAS  Google Scholar 

  63. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  Google Scholar 

  64. Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44, 116–130 (2016).

    Article  CAS  Google Scholar 

  65. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  CAS  Google Scholar 

  66. Cunningham, A. F. et al. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J. Immunol. 178, 6200–6207 (2007).

    Article  CAS  Google Scholar 

  67. Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43, 120–131 (2015).

    Article  Google Scholar 

  68. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  Google Scholar 

  69. Roco, J. A. et al. Class-switch recombination occurs infrequently in germinal centers. Immunity 51, 337–350.e7 (2019).

    Article  CAS  Google Scholar 

  70. Reboldi, A. & Cyster, J. G. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271, 230–245 (2016).

    Article  CAS  Google Scholar 

  71. Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020).

    Article  CAS  Google Scholar 

  72. Weisel, N. M. et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136, 2774–2785 (2020).

    Article  CAS  Google Scholar 

  73. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  Google Scholar 

  74. Wei, M. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol. 12, 264–270 (2011).

    Article  CAS  Google Scholar 

  75. Batista, F. D. & Neuberger, M. S. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 19, 513–520 (2000).

    Article  CAS  Google Scholar 

  76. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  Google Scholar 

  77. Guy-Grand, D., Griscelli, C. & Vassalli, P. Peyer’s patches, gut IgA plasma cells and thymic function: study in nude mice bearing thymic grafts. J. Immunol. 115, 361–364 (1975).

    Article  CAS  Google Scholar 

  78. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  79. Yoshida, T. et al. Memory B and memory plasma cells. Immunol. Rev. 237, 117–139 (2010).

    Article  CAS  Google Scholar 

  80. Cassotta, A. et al. Broadly reactive human CD4+ T cells against Enterobacteriaceae are found in the naive repertoire and are clonally expanded in the memory repertoire. Eur. J. Immunol. 51, 648–661 (2021).

    Article  CAS  Google Scholar 

  81. Bartolome-Casado, R. et al. CD4+ T cells persist for years in the human small intestine and display a TH1 cytokine profile. Mucosal Immunol. 14, 402–410 (2021).

    Article  CAS  Google Scholar 

  82. Landsverk, O. J. et al. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214, 309–317 (2017).

    Article  CAS  Google Scholar 

  83. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  CAS  Google Scholar 

  84. Lindner, C. et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880–888 (2015).

    Article  CAS  Google Scholar 

  85. Cong, Y. et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J. Exp. Med. 187, 855–864 (1998).

    Article  CAS  Google Scholar 

  86. Muschaweck, M. et al. Cognate recognition of microbial antigens defines constricted CD4+ T cell receptor repertoires in the inflamed colon. Immunity 54, 2565–2577.e6 (2021).

    Article  CAS  Google Scholar 

  87. Mei, H. E. et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 113, 2461–2469 (2009).

    Article  CAS  Google Scholar 

  88. Bergqvist, P. et al. Re-utilization of germinal centers in multiple Peyer’s patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol. 6, 122–135 (2013).

    Article  CAS  Google Scholar 

  89. Bemark, M. et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat. Commun. 7, 12698 (2016).

    Article  CAS  Google Scholar 

  90. Mesin, L. et al. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180, 92–106.e11 (2020).

    Article  CAS  Google Scholar 

  91. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    Article  CAS  Google Scholar 

  92. Zuccarino-Catania, G. V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  Google Scholar 

  93. Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118, 2150–2158 (2011).

    Article  CAS  Google Scholar 

  94. Berkowska, M. A. et al. Circulating human CD27-IgA+ memory B cells recognize bacteria with polyreactive Igs. J. Immunol. 195, 1417–1426 (2015).

    Article  CAS  Google Scholar 

  95. Grimsholm, O. et al. The interplay between CD27(dull) and CD27(bright) B cells ensures the flexibility, stability, and resilience of human B cell memory. Cell Rep. 30, 2963–2977.e6 (2020).

    Article  CAS  Google Scholar 

  96. Olsen, I. et al. Isolation of Mycobacterium avium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn’s disease patients. PLoS ONE 4, e5641 (2009).

    Article  Google Scholar 

  97. Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337.e16 (2017).

    Article  CAS  Google Scholar 

  98. Alexander, K. L. et al. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 161, 522–535.e6 (2021).

    Article  CAS  Google Scholar 

  99. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  Google Scholar 

  100. Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012).

    Article  CAS  Google Scholar 

  101. Roy, B. et al. High-throughput single-cell analysis of B cell receptor usage among autoantigen-specific plasma cells in celiac disease. J. Immunol. 199, 782–791 (2017).

    Article  CAS  Google Scholar 

  102. Lindeman, I. et al. Longevity, clonal relationship, and transcriptional program of celiac disease-specific plasma cells. J. Exp. Med 218, e20200852 (2021).

    Article  CAS  Google Scholar 

  103. Iversen, R. et al. Strong clonal relatedness between serum and gut IgA despite different plasma cell origins. Cell Rep. 20, 2357–2367 (2017).

    Article  CAS  Google Scholar 

  104. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  Google Scholar 

  105. Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).

    Article  CAS  Google Scholar 

  106. Baklien, K. & Brandtzaeg, P. Comparative mapping of the local distribution of immunoglobulin-containing cells in ulcerative colitis and Crohn’s disease of the colon. Clin. Exp. Immunol. 22, 197–209 (1975).

    CAS  Google Scholar 

  107. Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38, 365–375 (1996).

    Article  CAS  Google Scholar 

  108. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    Article  CAS  Google Scholar 

  109. Asano, K. et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 41, 1325–1329 (2009).

    Article  CAS  Google Scholar 

  110. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  Google Scholar 

  111. Pinto, D. et al. A functional BCR in human IgA and IgM plasma cells. Blood 121, 4110–4114 (2013).

    Article  CAS  Google Scholar 

  112. Sollid, L. M. Gut tissue-resident memory T cells in coeliac disease. Scand. J. Immunol. 95, e13120 (2022).

    Article  CAS  Google Scholar 

  113. Bergseng, E. et al. Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires. Immunogenetics 67, 73–84 (2015).

    Article  CAS  Google Scholar 

  114. Garde, C. et al. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data. Immunogenetics 71, 445–454 (2019).

    Article  Google Scholar 

  115. Jensen, K. K. et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154, 394–406 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is funded by grants from Stiftelsen KG Jebsen (project SKGJ-MED-017), the University of Oslo World-leading research program on human immunology (WL-IMMUNOLOGY) and the South-Eastern Norway Regional Health Authority (projects 2016113, 2020027 and 2022071).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ludvig M. Sollid or Rasmus Iversen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Reviews Gastroenterology & Hepatology thanks Andrea Cerutti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sollid, L.M., Iversen, R. Tango of B cells with T cells in the making of secretory antibodies to gut bacteria. Nat Rev Gastroenterol Hepatol 20, 120–128 (2023). https://doi.org/10.1038/s41575-022-00674-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00674-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing