Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mutational signatures and processes in hepatobiliary cancers

Abstract

The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.

Key points

  • In hepatobiliary cancer genomes, mutational signatures arise from diverse exogenous and endogenous insults as well as from cell-intrinsic repair mechanisms; a substantial proportion remains of unknown origin.

  • Mutational signatures are variably active and clonal during disease initiation and exhibit aetiological associations in invasive tumours.

  • Specific signatures exhibit high intertumour and intratumoural heterogeneity in hepatobiliary cancers, suggesting that distinct mutational processes might have key roles in subclonal diversification and disease relapse.

  • Identifying exogenous exposures responsible for mutational signatures can guide the development of preventative health measures to avoid these genotoxicants.

  • Mutational signatures might have important implications for response to diverse treatments (such as chemotherapy, targeted therapy and immunotherapy) given their molecular and pathobiological correlates in patients with hepatobiliary cancers.

  • Advances in circulating tumour DNA technology might provide opportunities to longitudinally track operative mutational processes during treatment as well as to develop therapeutic strategies targeting the mediators of such processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinicopathological and molecular overview of hepatobiliary cancers.
Fig. 2: Potential applications of mutational signature and process analysis for patients with HB cancers.

Similar content being viewed by others

References

  1. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bertuccio, P. et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 71, 104–114 (2019).

    Article  PubMed  Google Scholar 

  4. Le, M. D., Henson, D., Young, H. & Albores-Saavedra, J. Is gallbladder cancer decreasing in view of increasing laparoscopic cholecystectomy? Ann. Hepatol. 10, 306–314 (2011).

    Article  PubMed  Google Scholar 

  5. Miranda-Filho, A. et al. Gallbladder and extrahepatic bile duct cancers in the Americas: incidence and mortality patterns and trends. Int. J. Cancer 147, 978–989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McNamara, M. G. et al. Landmark survival analysis and impact of anatomic site of origin in prospective clinical trials of biliary tract cancer. J. Hepatol. 73, 1109–1117 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Beaufrere, A., Calderaro, J. & Paradis, V. Combined hepatocellular-cholangiocarcinoma: an update. J. Hepatol. 74, 1212–1224 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Cheung, A. C., Walker, D. I., Juran, B. D., Miller, G. W. & Lazaridis, K. N. Studying the exposome to understand the environmental determinants of complex liver diseases. Hepatology 71, 352–362 (2020).

    Article  PubMed  Google Scholar 

  10. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). The updated catalogue of mutational signatures (49 SBSs, 11 DBSs, 4 clustered-base substitutions, 17 small insertion-and-deletions) derived from 19,184 tumour exomes and 4,645 tumour whole genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). The original catalogue of 21 mutational signatures derived from 6,535 tumour exomes and 507 tumour whole genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. EFSA Panel on Contaminants in the Food Chain (CONTAM) et al. Risk assessment of aflatoxins in food. EFSA J. 18, e06040 (2020).

    Google Scholar 

  13. McCullough, A. K. & Lloyd, R. S. Mechanisms underlying aflatoxin-associated mutagenesis — implications in carcinogenesis. DNA Repair. 77, 76–86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Z. M. et al. Hepatitis B virus infection contributes to oxidative stress in a population exposed to aflatoxin B1 and high-risk for hepatocellular carcinoma. Cancer Lett. 263, 212–222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu, Y. J. et al. Aflatoxin B1 exposure increases the risk of cirrhosis and hepatocellular carcinoma in chronic hepatitis B virus carriers. Int. J. Cancer 141, 711–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koshiol, J. et al. Association of aflatoxin and gallbladder cancer. Gastroenterology 153, 488–494.e1 (2017). A molecular epidemiology study that implicated aflatoxin exposure as a risk factor for gallbladder cancer, independent of the R249S mutation in TP53 previously linked with aflatoxin-associated HCC.

    Article  CAS  PubMed  Google Scholar 

  17. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.e23 (2017).

    Article  CAS  Google Scholar 

  18. Nepal, C. et al. Integrative molecular characterization of gallbladder cancer reveals microenvironment-associated subtypes. J. Hepatol. 74, 1132–1144 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gouas, D., Shi, H. & Hainaut, P. The aflatoxin-induced TP53 mutation at codon 249 (R249S): biomarker of exposure, early detection and target for therapy. Cancer Lett. 286, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Grosse, Y. et al. A review of human carcinogens — part A: pharmaceuticals. Lancet Oncol. 10, 13–14 (2009).

    Article  PubMed  Google Scholar 

  21. Nault, J. C. & Letouze, E. Mutational processes in hepatocellular carcinoma: the story of aristolochic acid. Semin. Liver Dis. 39, 334–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng, A. W. T. et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med. 9, eaan6446 (2017). A clinicogenomic study that implicated the aristolochic acid mutational signature with HCC worldwide, in particular in Asia.

    Article  PubMed  CAS  Google Scholar 

  24. Chan, J. Y. E. A. Whole exome sequencing identifies clinically relevant mutational signatures in resected hepatocellular carcinoma. Liver Cancer Int. 1, 25–35 (2020).

    Article  Google Scholar 

  25. Lu, Z. N. et al. The mutational features of aristolochic acid-induced mouse and human liver cancers. Hepatology 71, 929–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Nepal, C. et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology 68, 949–963 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Ganne-Carrie, N. & Nahon, P. Hepatocellular carcinoma in the setting of alcohol-related liver disease. J. Hepatol. 70, 284–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. McGee, E. E. et al. Smoking, alcohol, and biliary tract cancer risk: a pooling project of 26 prospective studies. J. Natl Cancer Inst. 111, 1263–1278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Secretan, B. et al. A review of human carcinogens–Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10, 1033–1034 (2009).

    Article  PubMed  Google Scholar 

  30. Letouze, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017). A clinicogenomic study that described the mutational profiles of HCC linked to distinct aetiologies, including alcohol, tobacco and aflatoxin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Petrick, J. L. et al. Tobacco, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The Liver Cancer Pooling Project. Br. J. Cancer 118, 1005–1012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, W. et al. Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. Proc. Natl Acad. Sci. USA 114, 6752–6757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nik-Zainal, S. et al. The genome as a record of environmental exposure. Mutagenesis 30, 763–770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Dong, L. Q. et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J. Hepatol. 69, 89–98 (2018). A genomics analysis describing inter-tumoural heterogeneity and evolutionary patterns of mutations and signatures across 69 distinct tumour foci from 6 patients with intrahepatic cholangiocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  39. Venkatesan, S. et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29, 563–572 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Nepal, C. et al. Integrative molecular characterization of gallbladder cancer presents microenvironment-associated subtypes. J. Hepatol. 74, 1132–1144 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yachida, S. et al. Genomic sequencing identifies ELF3 as a driver of ampullary carcinoma. Cancer Cell 29, 229–240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, M. et al. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 68, 1024–1033 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Marusawa, H., Takai, A. & Chiba, T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv. Immunol. 111, 109–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Sia, D. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144, 829–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Endo, Y. et al. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene 26, 5587–5595 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Komori, J. et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47, 888–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kou, T. et al. Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int. J. Cancer 120, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Chan-On, W. et al. Cholangiocarcinomas associated with long-term inflammation express the activation-induced cytidine deaminase and germinal center-associated nuclear protein involved in immunoglobulin V-region diversification. Int. J. Oncol. 35, 287–295 (2009).

    CAS  PubMed  Google Scholar 

  52. Thomas, D. C. et al. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30, 11751–11759 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Peng, X. et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 23, 255–269.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Volkova, N. V. et al. Mutational signatures are jointly shaped by DNA damage and repair. Nat. Commun. 11, 2169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Akdemir, K. C. et al. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat. Genet. 52, 1178–1188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95–103 (2020).

    Article  PubMed  Google Scholar 

  58. Svicher, V. et al. Whole exome HBV DNA integration is independent of the intrahepatic HBV reservoir in HBeAg-negative chronic hepatitis B. Gut 70, 2337–2348 (2020).

    Article  PubMed  CAS  Google Scholar 

  59. Peneau, C. et al. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 71, 616–626 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamdane, N. et al. HCV-induced epigenetic changes associated with liver cancer risk persist after sustained virologic response. Gastroenterology 156, 2313–2329.e7 (2019).

    Article  PubMed  Google Scholar 

  62. Mak, L. Y. et al. Occult hepatitis B infection and hepatocellular carcinoma: epidemiology, virology, hepatocarcinogenesis and clinical significance. J. Hepatol. 73, 952–964 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Vartanian, J. P. et al. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog. 6, e1000928 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wardell, C. P. et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 68, 959–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Znaor, A. et al. The public health challenge of liver cancer in Mongolia. Lancet Gastroenterol. Hepatol. 3, 660–662 (2018).

    Article  PubMed  Google Scholar 

  66. Candia, J. et al. The genomic landscape of Mongolian hepatocellular carcinoma. Nat. Commun. 11, 4383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pinyol, R. et al. Molecular characterization of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 865–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Muller, M., Bird, T. G. & Nault, J. C. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J. Hepatol. 72, 990–1002 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019). A clinicogenomic analysis of microdissected hepatocytes from normal and cirrhotic livers, identifying clonal and non-clonal mutations, signatures, and larger genomic alterations that appear to have implications for HCC initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, M. et al. Genomic structures of dysplastic nodule and concurrent hepatocellular carcinoma. Hum. Pathol. 81, 37–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Vilarinho, S. et al. Exome analysis of the evolutionary path of hepatocellular adenoma-carcinoma transition, vascular invasion and brain dissemination. J. Hepatol. 67, 186–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nault, J. C. et al. Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology 152, 880–894.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Temko, D., Tomlinson, I. P. M., Severini, S., Schuster-Bockler, B. & Graham, T. A. The effects of mutational processes and selection on driver mutations across cancer types. Nat. Commun. 9, 1857 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Bockler, B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Supek, F. & Lehner, B. Clustered mutation signatures reveal that Error-Prone DNA repair targets mutations to active genes. Cell 170, 534–547.e23 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Guest, R. V. et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res. 74, 1005–1010 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Nault, J. C. et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma. Hepatology 71, 164–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Andersen, J. B. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021–1031.e15 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Moeini, A. et al. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J. Hepatol. 66, 952–961 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Montal, R. et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 73, 315–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gingras, M. C. et al. Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep. 14, 907–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, Q. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577.e22 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Rubanova, Y. et al. Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. Nat. Commun. 11, 731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Craig, A. J., von Felden, J., Garcia-Lezana, T., Sarcognato, S. & Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17, 139–152 (2020).

    Article  PubMed  Google Scholar 

  89. Gao, Q. et al. Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents. Gastroenterology 152, 232–242.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Nakashima, O. & Kojiro, M. Recurrence of hepatocellular carcinoma: multicentric occurrence or intrahepatic metastasis? A viewpoint in terms of pathology. J. Hepatobil. Pancreat. Surg. 8, 404–409 (2001).

    Article  CAS  Google Scholar 

  91. Portolani, N. et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann. Surg. 243, 229–235 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Xue, R. et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology 150, 998–1008 (2016).

    Article  PubMed  Google Scholar 

  93. Furuta, M. et al. Whole genome sequencing discriminates hepatocellular carcinoma with intrahepatic metastasis from multi-centric tumors. J. Hepatol. 66, 363–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ouyang, L. et al. Whole-genome sequencing of matched primary and metastatic hepatocellular carcinomas. BMC Med. Genomics 7, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Reiter, J. G. et al. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer 19, 639–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pleasance, E. et al. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat. Cancer 1, 452–468 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Job, S. et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 72, 965–981 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Bhandari, V., Li, C. H., Bristow, R. G., Boutros, P. C. & PCAWG Consortium. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat. Commun. 11, 737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaplan, A. R. & Glazer, P. M. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 35, 61–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Caruso, S. et al. Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology 157, 760–776 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Castven, D. et al. Application of patient-derived liver cancer cells for phenotypic characterization and therapeutic target identification. Int. J. Cancer 144, 2782–2794 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC Mutagenesis. Cell 176, 1282–1294.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schauer, S. N. et al. L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis. Genome Res. 28, 639–653 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med. 217, e20200261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, W. et al. APOBEC3B promotes hepatocarcinogenesis and metastasis through novel deaminase-independent activity. Mol. Carcinog. 58, 643–653 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, D. et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut 68, 1846–1857 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, S. K. et al. A model of liver carcinogenesis originating from hepatic progenitor cells with accumulation of genetic alterations. Int. J. Cancer 134, 1067–1076 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Eso, Y. et al. MSH2 dysregulation is triggered by proinflammatory cytokine stimulation and is associated with liver cancer development. Cancer Res. 76, 4383–4393 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Hikita, H. et al. Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis. Cancer Prev. Res. 8, 693–701 (2015).

    Article  CAS  Google Scholar 

  112. Busuttil, R. A. et al. Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res. 65, 11271–11275 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen, J. et al. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in obesity and steatohepatitis. Oncotarget 9, 29495–29507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Coia, H. et al. Prevention of lipid peroxidation-derived cyclic DNA adduct and mutation in high-fat diet-induced hepatocarcinogenesis by theaphenon E. Cancer Prev. Res. 11, 665–676 (2018).

    Article  Google Scholar 

  115. Shen, J. et al. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene 35, 6271–6280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zou, X. et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat. Cancer 2, 643–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dow, M. et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E9879–E9888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Omichessan, H., Severi, G. & Perduca, V. Computational tools to detect signatures of mutational processes in DNA from tumours: a review and empirical comparison of performance. PLoS One 14, e0221235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ginsburg, O., Ashton-Prolla, P., Cantor, A., Mariosa, D. & Brennan, P. The role of genomics in global cancer prevention. Nat. Rev. Clin. Oncol. 18, 116–128 (2021).

    Article  PubMed  Google Scholar 

  121. Groopman, J. D., Kensler, T. W. & Wild, C. P. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu. Rev. Public Health 29, 187–203 (2008).

    Article  PubMed  Google Scholar 

  122. National Cancer Institute. Aristolochic Acids https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/aristolochic-acids.

  123. Asrani, S. K., Mellinger, J., Arab, J. P. & Shah, V. H. Reducing the global burden of alcohol-associated liver disease: a blueprint for action. Hepatology 73, 2039–2050 (2020).

    Article  Google Scholar 

  124. Maronpot, R. R. Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains. J. Toxicol. Pathol. 22, 11–33 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Riva, L. et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat. Genet. 52, 1189–1197 (2020). An in vivo mutagenesis screen of 20 known or suspected genotoxicants leading to liver tumour formation, linking the mutational signature associated with the water pollutant, 1,2,3-trichloropropane, with two known signatures in patients with HCC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valle, J. W., Kelley, R. K., Nervi, B., Oh, D. Y. & Zhu, A. X. Biliary tract cancer. Lancet 397, 428–444 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Vogel, A. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv238–iv255 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Valle, J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362, 1273–1281 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Shroff, R. T. et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 5, 824–830 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lamarca, A. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 22, 690–701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heeke, A. L. et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gordan, J. D. et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J. Clin. Oncol. 38, 4317–4345 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Abou-Alfa, G. K. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21, 796–807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhu, A. X. et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7, 1669–1677 (2021).

    Article  PubMed  Google Scholar 

  135. Bekaii-Saab, T. S. et al. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol. 16, 2385–2399 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Ricci, A. D. et al. PARP inhibitors in biliary tract cancer: a new kid on the block? Medicines 7, 54 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  137. Sangro, B., Sarobe, P., Hervas-Stubbs, S. & Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 18, 525–543 (2021).

    Article  PubMed  Google Scholar 

  138. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, W. et al. Genetic features of aflatoxin-associated hepatocellular carcinoma. Gastroenterology 153, 249–262.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol. 17, 99 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pich, O. et al. The mutational footprints of cancer therapies. Nat. Genet. 51, 1732–1740 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Venkatesan, S., Swanton, C., Taylor, B. S. & Costello, J. F. Treatment-induced mutagenesis and selective pressures sculpt cancer evolution. Cold Spring Harb. Perspect. Med. 7, a026617 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Driscoll, C. B. et al. APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nat. Commun. 11, 790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hyung, J. et al. Clinical benefit of maintenance therapy for advanced biliary tract cancer patients showing no progression after first-line gemcitabine plus cisplatin. Cancer Res. Treat. 51, 901–909 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Granadillo Rodriguez, M., Flath, B. & Chelico, L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open. Biol. 10, 200188 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Barzak, F. M. et al. Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2′-deoxyzebularine. Org. Biomol. Chem. 17, 9435–9441 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Cipponi, A. et al. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 368, 1127–1131 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Das, T. K., Esernio, J. & Cagan, R. L. Restraining network response to targeted cancer therapies improves efficacy and reduces cellular resistance. Cancer Res. 78, 4344–4359 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Mody, K. et al. Circulating tumor DNA profiling of advanced biliary tract cancers. JCO Precis. Oncol. 3, 1–9 (2019).

    PubMed  Google Scholar 

  154. Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Duan, M. et al. Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing. Cell Res. 28, 359–373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. von Felden, J. et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 40, 140–151 (2021).

    Article  CAS  Google Scholar 

  157. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Vandekerkhove, G. et al. Plasma ctDNA is a tumor tissue surrogate and enables clinical-genomic stratification of metastatic bladder cancer. Nat. Commun. 12, 184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, C. H. et al. Sex differences in oncogenic mutational processes. Nat. Commun. 11, 4330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Carrot-Zhang, J. et al. Comprehensive analysis of genetic ancestry and its molecular correlates in cancer. Cancer Cell 37, 639–654.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Afsari, B. et al. Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. eLife 10, e61082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yi, S. W., Choi, J. S., Yi, J. J., Lee, Y. H. & Han, K. J. Risk factors for hepatocellular carcinoma by age, sex, and liver disorder status: A prospective cohort study in Korea. Cancer 124, 2748–2757 (2018).

    Article  PubMed  Google Scholar 

  165. Shaib, Y. H., El-Serag, H. B., Davila, J. A., Morgan, R. & McGlynn, K. A. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 128, 620–626 (2005).

    Article  PubMed  Google Scholar 

  166. Antwi, S. O., Mousa, O. Y. & Patel, T. Racial, ethnic, and age disparities in incidence and survival of intrahepatic cholangiocarcinoma in the United States; 1995-2014. Ann. Hepatol. 17, 274–285 (2018).

    Article  CAS  Google Scholar 

  167. Jackson, S. S. et al. Associations between reproductive factors and biliary tract cancers in women from the Biliary Tract Cancers Pooling Project. J. Hepatol. 73, 863–872 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ramai, D. et al. Demographics, tumor characteristics, treatment, and clinical outcomes of patients with ampullary cancer: a Surveillance, Epidemiology, and End Results (SEER) cohort study. Minerva Gastroenterol. Dietol. 65, 85–90 (2019).

    PubMed  Google Scholar 

  169. Maynard, H. et al. Germline alterations in patients with biliary tract cancers: a spectrum of significant and previously underappreciated findings. Cancer 126, 1995–2002 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Liu, Y. & Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Env. Health Perspect. 118, 818–824 (2010).

    Article  CAS  Google Scholar 

  171. Rapisarda, V. et al. Hepatocellular carcinoma and the risk of occupational exposure. World J. Hepatol. 8, 573–590 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Khan, S. A., Toledano, M. B. & Taylor-Robinson, S. D. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB 10, 77–82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lee, M. H. et al. A metallomic approach to assess associations of serum metal levels with gallstones and gallbladder cancer. Hepatology 71, 917–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Polesel, J. et al. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann. Oncol. 20, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Kanwal, F. et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 155, 1828–1837.e2 (2018).

    Article  PubMed  Google Scholar 

  176. Park, J. H. et al. Association between non-alcoholic fatty liver disease and the risk of biliary tract cancers: a South Korean nationwide cohort study. Eur. J. Cancer 150, 73–82 (2021).

    Article  PubMed  Google Scholar 

  177. Jackson, S. S. et al. Anthropometric risk factors for cancers of the biliary tract in the biliary tract cancers pooling project. Cancer Res. 79, 3973–3982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. He, X. D. et al. Association of metabolic syndromes and risk factors with ampullary tumors development: a case-control study in China. World J. Gastroenterol. 20, 9541–9548 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. McGee, E. E. et al. Associations between autoimmune conditions and hepatobiliary cancer risk among elderly US adults. Int. J. Cancer 144, 707–717 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Choi, J. et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology 64, 785–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Rawla, P., Sunkara, T., Thandra, K. C. & Barsouk, A. Epidemiology of gallbladder cancer. Clin. Exp. Hepatol. 5, 93–102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Castro, F. A. et al. Increased risk of hepatobiliary cancers after hospitalization for autoimmune disease. Clin. Gastroenterol. Hepatol. 12, 1038–1045.e7 (2014).

    Article  PubMed  Google Scholar 

  183. Muraki, T. et al. Pancreatobiliary maljunction-associated gallbladder cancer is as common in the west, shows distinct clinicopathologic characteristics and offers an invaluable model for anatomy-induced reflux-associated physio-chemical carcinogenesis. Ann. Surg. https://doi.org/10.1097/SLA.0000000000004482 (2020).

    Article  PubMed  Google Scholar 

  184. Ji, J., Sundquist, K. & Sundquist, J. A population-based study of hepatitis D virus as potential risk factor for hepatocellular carcinoma. J. Natl Cancer Inst. 104, 790–792 (2012).

    Article  PubMed  Google Scholar 

  185. Sun, J. et al. Trends in hepatocellular carcinoma incidence and risk among persons with HIV in the US and Canada, 1996-2015. JAMA Netw. Open 4, e2037512 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Murphy, G. et al. Association of seropositivity to Helicobacter species and biliary tract cancer in the ATBC study. Hepatology 60, 1963–1971 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Sripa, B. et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 4, e201 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Koshiol, J. et al. Salmonella enterica serovar Typhi and gallbladder cancer: a case-control study and meta-analysis. Cancer Med. 5, 3310–3235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of J.B.A. is supported by competitive funding from the Novo Nordisk Foundation, Danish Medical Research Council (FSS) and Danish Cancer Society. C.J.O. is supported by a postdoctoral fellowship from the Marie Sklodowska-Curie action (MSCA, EpiTarget), H2020.

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Jesper B. Andersen.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Tatsuhiro Shibata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, E., O’Rourke, C.J. & Andersen, J.B. Mutational signatures and processes in hepatobiliary cancers. Nat Rev Gastroenterol Hepatol 19, 367–382 (2022). https://doi.org/10.1038/s41575-022-00587-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00587-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing