Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death in the gut epithelium and implications for chronic inflammation

Abstract

The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.

Key points

  • During active flare-ups, various programmed cell death modes are elevated in the intestine of patients with inflammatory bowel disease, compromising the gut barrier.

  • Intestinal epithelial cells undergo programmed cell death through various modes including anoikis, apoptosis, necroptosis and pyroptosis.

  • Pyroptosis and necroptosis are pro-inflammatory, leading to the spread of inflammation, whereas anoikis and apoptosis restrict the spread of inflammation.

  • GSDMD and MLKL are two host proteins that execute pyroptosis and necroptosis, respectively, via the formation of membrane pores causing the leakage of intracellular contents and cell death.

  • Depending on the mode of cell death, factors derived from dead cells can trigger compensatory proliferation to replace the cells lost during inflammation.

  • There is an urgent need to characterize the proportion of various types of cell death that occur in different cellular compartments of the gut in patients with inflammatory bowel disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common cell death programmes in the gut.
Fig. 2: Common molecular pathways of IEC death.
Fig. 3: Apoptosis and necroptosis of IECs and the related DAMPs.
Fig. 4: Intestinal cell death modes and DAMP clearance in inflammatory bowel disease.

Similar content being viewed by others

References

  1. Said, H. M. Physiology of the Gastrointestinal Tract (Elsevier, 2018).

  2. Paul, W. E. Fundamental Immunology (Lippincott Williams & Wilkins, 2015).

  3. Okumura, R. & Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 49, e338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzanne, M. & Steller, H. Shaping organisms with apoptosis. Cell Death Differ. 20, 669–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jorgensen, I. & Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265, 130–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwamoto, M., Koji, T., Makiyama, K., Kobayashi, N. & Nakane, P. K. Apoptosis of crypt epithelial cells in ulcerative colitis. J. Pathol. 180, 152–159 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, K. H. et al. Apoptosis and compensatory proliferation signaling are coupled by CrkI-containing microvesicles. Dev. Cell 41, 674–684.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, F. et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Bosurgi, L., Hughes, L. D., Rothlin, C. V. & Ghosh, S. Death begets a new beginning. Immunol. Rev. 280, 8–25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, F. K., Luz, N. F. & Moriwaki, K. Programmed necrosis in the cross talk of cell death and inflammation. Annu. Rev. Immunol. 33, 79–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, F. K. Fueling the flames: mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb. Perspect Biol. 4, a008805 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shibahara, T. et al. The fate of effete epithelial cells at the villus tips of the human small intestine. Arch. Histol. Cytol. 58, 205–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Baxt, L. A. & Xavier, R. J. Role of autophagy in the maintenance of intestinal homeostasis. Gastroenterology 149, 553–562 (2015).

    Article  PubMed  Google Scholar 

  15. Madara, J. L. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J. Membr. Biol. 116, 177–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Marchiando, A. M. et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218.e1-2 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Spit, M., Koo, B. K. & Maurice, M. M. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol. 8, 180120 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Ingram, J. P. et al. A nonpyroptotic IFN-γ-triggered cell death mechanism in nonphagocytic cells promotes salmonella clearance in vivo. J. Immunol. 200, 3626–3634 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Talmon, G., Manasek, T., Miller, R., Muirhead, D. & Lazenby, A. The apoptotic crypt abscess: an underappreciated histologic finding in gastrointestinal pathology. Am. J. Clin. Pathol. 148, 538–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Demers, M. J. et al. Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J. Cell Biochem. 107, 639–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Windham, T. C. et al. Src activation regulates anoikis in human colon tumor cell lines. Oncogene 21, 7797–7807 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hyoh, Y. et al. Activation of caspases in intestinal villus epithelial cells of normal and nematode infected rats. Gut 50, 71–77 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iwakiri, R. et al. Programmed cell death in rat intestine: effect of feeding and fasting. Scand. J. Gastroenterol. 36, 39–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hagiwara, C., Tanaka, M. & Kudo, H. Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J. Gastroenterol. Hepatol. 17, 758–764 (2002).

    Article  PubMed  Google Scholar 

  32. Moss, S. F., Attia, L., Scholes, J. V., Walters, J. R. & Holt, P. R. Increased small intestinal apoptosis in coeliac disease. Gut 39, 811–817 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaser, A. & Blumberg, R. S. ATG16L1 Crohn’s disease risk stresses the endoplasmic reticulum of Paneth cells. Gut 63, 1038–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka, H. et al. Intestinal deletion of claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut 64, 1529–1538 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Ye, P. et al. Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death. PLoS Genet. 14, e1007697 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang, H. S. et al. The endoplasmic reticulum stress sensor IRE1α in intestinal epithelial cells is essential for protecting against colitis. J. Biol. Chem. 290, 15327–15336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Souza, H. S. et al. Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: evidence of altered expression of FasL and perforin cytotoxic pathways. Int. J. Colorectal Dis. 20, 277–286 (2005).

    Article  PubMed  Google Scholar 

  42. Tanaka, M. & Riddell, R. H. The pathological diagnosis and differential diagnosis of Crohn’s disease. Hepatogastroenterology 37, 18–31 (1990).

    CAS  PubMed  Google Scholar 

  43. Soucy, G. et al. Clinical and pathological analysis of colonic Crohn’s disease, including a subgroup with ulcerative colitis-like features. Mod. Pathol. 25, 295–307 (2012).

    Article  PubMed  Google Scholar 

  44. Odze, R. Diagnostic problems and advances in inflammatory bowel disease. Mod. Pathol. 16, 347–358 (2003).

    Article  PubMed  Google Scholar 

  45. Farin, H. F. et al. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. J. Exp. Med. 211, 1393–1405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ginzberg, H. H. et al. Leukocyte elastase induces epithelial apoptosis: role of mitochondial permeability changes and Akt. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G286–G298 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gunther, C. et al. Caspase-8 controls the gut response to microbial challenges by Tnf-α-dependent and independent pathways. Gut 64, 601–610 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Simmons, A. N., Kajino-Sakamoto, R. & Ninomiya-Tsuji, J. TAK1 regulates Paneth cell integrity partly through blocking necroptosis. Cell Death Dis. 7, e2196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132, 1359–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gourbeyre, P. et al. Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis. Physiol. Rep. 3, e12225 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cell 32, 1083–1091 (2014).

    Article  CAS  Google Scholar 

  54. Hill, A. A. & Diehl, G. E. Identifying the patterns of pattern recognition receptors. Immunity 49, 389–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Price, A. E. et al. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49, 560–575 e566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zushi, S. et al. Role of heparin-binding EGF-related peptides in proliferation and apoptosis of activated ras-stimulated intestinal epithelial cells. Int. J. Cancer 73, 917–923 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Miguel, J. C. et al. Epidermal growth factor suppresses intestinal epithelial cell shedding through a MAPK-dependent pathway. J. Cell Sci. 130, 90–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koren, E. et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat. Commun. 9, 4582 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang, R. et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580, 386–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. D’Angelo, F. et al. Macrophages promote epithelial repair through hepatocyte growth factor secretion. Clin. Exp. Immunol. 174, 60–72 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ruemmele, F. M. et al. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Cell Death Differ. 6, 729–735 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Tessner, T. G., Muhale, F., Riehl, T. E., Anant, S. & Stenson, W. F. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J. Clin. Invest. 114, 1676–1685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–3935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moriwaki, K. et al. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41, 567–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008714 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenow, K. R., Clarke, A. R. & Jones, R. H. Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 28, 1443–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Watari, A., Hasegawa, M., Yagi, K. & Kondoh, M. Checkpoint kinase 1 activation enhances intestinal epithelial barrier function via regulation of claudin-5 expression. PLoS One 11, e0145631 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Strater, J. & Moller, P. Expression and function of death receptors and their natural ligands in the intestine. Ann. N. Y. Acad. Sci. 915, 162–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Moller, P., Walczak, H., Reidl, S., Strater, J. & Krammer, P. H. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am. J. Pathol. 149, 9–13 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Strater, J. et al. CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113, 160–167 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Grunert, M. et al. The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-κB by TRAIL. Cell Death Dis. 3, e414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henry, C. M. & Martin, S. J. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol. Cell 65, 715–729.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Lehle, A. S. et al. Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156, 275–278 (2019).

    Article  PubMed  Google Scholar 

  79. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Zarnegar, B. J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Wittkopf, N. et al. Cellular FLICE-like inhibitory protein secures intestinal epithelial cell survival and immune homeostasis by regulating caspase-8. Gastroenterology 145, 1369–1379 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Shindo, R. et al. Necroptosis of intestinal epithelial cells induces type 3 innate lymphoid cell-dependent lethal ileitis. iScience 15, 536–551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Gunther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pierdomenico, M. et al. Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am. J. Gastroenterol. 109, 279–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Garcia-Carbonell, R. et al. Elevated A20 promotes TNF-induced and RIPK1-dependent intestinal epithelial cell death. Proc. Natl Acad. Sci. USA 115, E9192–E9200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kattah, M. G. et al. A20 and ABIN-1 synergistically preserve intestinal epithelial cell survival. J. Exp. Med. 215, 1839–1852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zaidi, D., Huynh, H. Q., Carroll, M. W., Baksh, S. & Wine, E. Tumor necrosis factor α-induced protein 3 (A20) is dysregulated in pediatric Crohn disease. Clin. Exp. Gastroenterol. 11, 217–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kajino-Sakamoto, R. et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181, 1143–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Guo, X. et al. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints. Cell Death Dis. 7, e2381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh, A. et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell 148, 639–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Totzke, J. et al. Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. Cell Chem. Biol. 24, 1029–1039.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKκ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Ruder, B. et al. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol. 11, 1621–1629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, Z. et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287, 16955–16964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Van Opdenbosch, N. et al. Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep. 21, 3427–3444 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Saavedra, P. H. V. et al. Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nat. Commun. 9, 4846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Demon, D. et al. Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis. Mucosal Immunol. 7, 1480–1491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mandal, P. et al. Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity 49, 42–55.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hefele, M. et al. Intestinal epithelial caspase-8 signaling is essential to prevent necroptosis during Salmonella typhimurium induced enteritis. Mucosal Immunol. 11, 1191–1202 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Progatzky, F. et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat. Commun. 5, 5864 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Kang, S. et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Liu, L. et al. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. J. Crohns Colitis 11, 737–750 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Perera, A. P. et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci. Rep. 8, 8618 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03681067?term=GSK1070806&recrs=a&draw=2&rank=1 (2009).

  127. Trump, B. F., Berezesky, I. K., Chang, S. H. & Phelps, P. C. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol. Pathol. 25, 82–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. de Vasconcelos, N. M., Van Opdenbosch, N., Van Gorp, H., Parthoens, E. & Lamkanfi, M. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ. 26, 146–161 (2019).

    Article  PubMed  CAS  Google Scholar 

  129. Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kerr, J. F. Shrinkage necrosis: a distinct mode of cellular death. J. Pathol. 105, 13–20 (1971).

    Article  CAS  PubMed  Google Scholar 

  131. Bortner, C. D. & Cidlowski, J. A. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56, 1549–1559 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Gulbins, E., Welsch, J., Lepple-Wienhuis, A., Heinle, H. & Lang, F. Inhibition of Fas-induced apoptotic cell death by osmotic cell shrinkage. Biochem. Biophys. Res. Commun. 236, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Orlov, S. N., Platonova, A. A., Hamet, P. & Grygorczyk, R. Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am. J. Physiol. Cell Physiol. 305, C361–C372 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Grauso, M., Lan, A., Andriamihaja, M., Bouillaud, F. & Blachier, F. Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Sci. Rep. 9, 11360 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Field, M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest. 111, 931–943 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lim, C. H., Bot, A. G., de Jonge, H. R. & Tilly, B. C. Osmosignaling and volume regulation in intestinal epithelial cells. Methods Enzymol. 428, 325–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. van der Wijk, T., Tomassen, S. F., de Jonge, H. R. & Tilly, B. C. Signalling mechanisms involved in volume regulation of intestinal epithelial cells. Cell Physiol. Biochem. 10, 289–296 (2000).

    Article  PubMed  Google Scholar 

  138. Lang, F. et al. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kunzelmann, K. Ion channels in regulated cell death. Cell Mol. Life Sci. 73, 2387–2403 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Schreiber, R. et al. Expression and function of epithelial anoctamins. J. Biol. Chem. 285, 7838–7845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kunzelmann, K. et al. Expression and function of epithelial anoctamins. Exp. Physiol. 97, 184–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Ousingsawat, J. et al. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nat. Commun. 6, 6245 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Bao, J. et al. Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight 3, e99767 (2018).

    Article  PubMed Central  Google Scholar 

  145. Wang, R. et al. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH. JCI Insight 2, e90632 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Olivan-Viguera, A. et al. Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes. PLoS One 13, e0190307 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Peters, A. A. et al. Oncosis and apoptosis induction by activation of an overexpressed ion channel in breast cancer cells. Oncogene 36, 6490–6500 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Hernandez, A. M. et al. Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. J. Immunol. 186, 3735–3744 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Loo, D. et al. The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenografts in vivo. Mol. Cancer Ther. 6, 856–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Sun, Y. et al. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed. Pharmacother. 102, 699–710 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Schroeder, M. E. et al. Pro-inflammatory Ca++-activated K+ channels are inhibited by hydroxychloroquine. Sci. Rep. 7, 1892 (2017).

    Article  CAS  Google Scholar 

  152. Di, L. et al. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc. Natl Acad. Sci. USA 107, 1541–1546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Martin, S. J. & Henry, C. M. Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities. Methods 61, 87–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, Y., Chen, X., Gueydan, C. & Han, J. Plasma membrane changes during programmed cell deaths. Cell Res. 28, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Xia, B. et al. MLKL forms cation channels. Cell Res. 26, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wulff, H., Christophersen, P., Colussi, P., Chandy, K. G. & Yarov-Yarovoy, V. Antibodies and venom peptides: new modalities for ion channels. Nat. Rev. Drug. Discov. 18, 339–357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun, G. et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J. Cell Biol. 216, 3355–3368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tang, H. L., Tang, H. M., Fung, M. C. & Hardwick, J. M. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci. Rep. 5, 9015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tang, H. L., Tang, H. M., Hardwick, J. M. & Fung, M. C. Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis. J. Vis. Exp. 96, e51964 (2015).

    Google Scholar 

  160. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tang, H. M., Fung, M. C. & Tang, H. L. Detecting anastasis In vivo by caspasetracker biosensor. J. Vis. Exp. 132, e54107 (2018).

    Google Scholar 

  162. Tang, H. M., Talbot, C. C. Jr, Fung, M. C. & Tang, H. L. Molecular signature of anastasis for reversal of apoptosis. F1000Res 6, 43 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Tang, H. M. & Tang, H. L. Correction to: ‘Anastasis: recovery from the brink of cell death’. R. Soc. Open. Sci. 5, 181629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Galluzzi, L., Kepp, O. & Kroemer, G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res. 24, 139–140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lucas, M., Stuart, L. M., Savill, J. & Lacy-Hulbert, A. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J. Immunol. 171, 2610–2615 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Bullen, T. F. et al. Characterization of epithelial cell shedding from human small intestine. Lab. Invest. 86, 1052–1063 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Mitsuhashi, S. et al. Luminal extracellular vesicles (EVs) in inflammatory bowel disease (IBD) exhibit proinflammatory effects on epithelial cells and macrophages. Inflamm. Bowel Dis. 22, 1587–1595 (2016).

    Article  PubMed  Google Scholar 

  173. Bounous, G. Acute necrosis of the intestinal mucosa. Gastroenterology 82, 1457–1467 (1982).

    Article  CAS  PubMed  Google Scholar 

  174. Bounous, G., Echave, V., Vobecky, S. J., Navert, H. & Wollin, A. Acute necrosis of the intestinal mucosa with high serum levels of diamine oxidase. Dig. Dis. Sci. 29, 872–874 (1984).

    Article  CAS  PubMed  Google Scholar 

  175. Song, H. L., Lv, S. & Liu, P. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure. BMC Gastroenterol. 9, 70 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Sangiuliano, B., Perez, N. M., Moreira, D. F. & Belizario, J. E. Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators Inflamm. 2014, 821043 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Pentecost, M., Otto, G., Theriot, J. A. & Amieva, M. R. Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog. 2, e3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Lee, K. Z. et al. Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack. Cell Host Microbe 20, 716–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Loetscher, Y. et al. Salmonella transiently reside in luminal neutrophils in the inflamed gut. PLoS One 7, e34812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Brazil, J. C. & Parkos, C. A. Pathobiology of neutrophil-epithelial interactions. Immunol. Rev. 273, 94–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lee, C. S. et al. Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44, 807–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hunter, M. M. et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 138, 1395–1405 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Weisser, S. B. et al. SHIP-deficient, alternatively activated macrophages protect mice during DSS-induced colitis. J. Leukoc. Biol. 90, 483–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Yang, Z. et al. C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis. Proc. Natl Acad. Sci. USA 115, 11054–11059 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Botto, M. & Walport, M. J. C1q, autoimmunity and apoptosis. Immunobiology 205, 395–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sachet, M., Liang, Y. Y. & Oehler, R. The immune response to secondary necrotic cells. Apoptosis 22, 1189–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Silva, M. T. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584, 4491–4499 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Krysko, D. V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32, 157–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Boyapati, R. K. et al. Mitochondrial DNA is a pro-inflammatory damage-associated molecular pattern released during active IBD. Inflamm. Bowel Dis. 24, 2113–2122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Bertheloot, D. & Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol. 14, 43–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Scarpa, M. et al. The epithelial danger signal IL-1α is a potent activator of fibroblasts and reactivator of intestinal inflammation. Am. J. Pathol. 185, 1624–1637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug. Discov. 11, 633–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hugle, B., Speth, F. & Haas, J. P. Inflammatory bowel disease following anti-interleukin-1-treatment in systemic juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 15, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Mahapatro, M. et al. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep. 15, 1743–1756 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Pastorelli, L. et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl Acad. Sci. USA 107, 8017–8022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lopetuso, L. R. et al. IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair. Proc. Natl Acad. Sci. USA 115, E9362–E9370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Reed, K. R. et al. Secreted HMGB1 from Wnt activated intestinal cells is required to maintain a crypt progenitor phenotype. Oncotarget 7, 51665–51673 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zhao, X. L. et al. High-mobility group Box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J. Pathol. 243, 376–389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Khoury, M. K., Gupta, K., Franco, S. R. & Liu, B. Necroptosis in the pathophysiology of disease. Am. J. Pathol. 190, 272–285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Parker, A. et al. Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis. 10, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kim, J. M. et al. Apoptosis of human intestinal epithelial cells after bacterial invasion. J. Clin. Invest. 102, 1815–1823 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zargarian, S. et al. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biol. 15, e2002711 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Perez-Lopez, A. M., Soria-Gila, M. L., Marsden, E. R., Lilienkampf, A. & Bradley, M. Fluorogenic substrates for in situ monitoring of caspase-3 activity in live cells. PLoS One 11, e0153209 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Bast, A. et al. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 10, e1003986 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work received funding from the DFG projects TRR241 (A03), SFB1181 (C05) and FOR2438 (TP05) and individual grant BE3686/9, as well as the Interdisciplinary Center for Clinical Research (IZKF; J68, A76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Becker.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks J. Blander, A. Watson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Single Cell Portal: https://portals.broadinstitute.org/single_cell

Glossary

Inflammasome

An oligomeric protein complex that is formed after various pattern recognition receptors are engaged and then binds to an adapter protein and pro-caspase 1, leading the maturation and activation of caspase 1 and pyroptotic cell death.

Caspase

A conserved family of cysteine-dependent aspartate-directed proteases that initiate and execute different molecular cell death pathways.

Apoptosome

A multimolecular protein complex with critical functions in apoptotic cell death; it is triggered by the release of cytochrome c from the mitochondria and consists of cytochrome c, apoptotic protease activating factor 1 and initiator caspases such as caspase 9.

Ripoptosome

A multiprotein complex that has a crucial role in the necroptotic form of cell death; it consists of receptor-interacting serine/threonine-protein kinases RIPK1 and RIPK3 and forms when the TNF receptor is activated and the activity of the initiator caspase, caspase 8, is reduced or lacking.

Necrosis

A term that was used to describe non-programmed cell death due to chemical or mechanical damage; it is now restricted to describing cell death where all identifiable modes of programmed cell death have been ruled out or cannot be investigated and therefore the exact mode of cell death is unclear.

Oncosis

Also referred to as ischaemic cell death, oncosis is a process of cell death following cellular swelling involving disruption and swelling of intracellular organelles including the nucleus.

Anastasis

A mode of cellular ‘resurrection’ in which cells survive even after well-established molecular milestones of cell death have been reached, such as cytochrome c release and effector caspase activation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patankar, J.V., Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 17, 543–556 (2020). https://doi.org/10.1038/s41575-020-0326-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0326-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing