Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to cell death pathways

Abstract

Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrinsic and extrinsic apoptosis.
Fig. 2: Necroptosis mediated by DD-containing receptors and pattern-recognition receptors.
Fig. 3: Pyroptosis induction and mature pro-inflammatory cytokine (IL-1β) release.
Fig. 4: Cell death mediated by disruption of lysosomal function.
Fig. 5: Lipid peroxidation and ferroptosis.
Fig. 6: Necrosis and excitotoxicity induced by disruption of homeostatic ionic balance.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lockshin, R. A. & Williams, C. M. Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J. Insect Physiol. 11, 123–133 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Lockshin, R. A. Programmed cell death 50 (and beyond). Cell Death Differ. 23, 10–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Green, D. R. The mitochondrial pathway of apoptosis part II: the BCL-2 protein family. Cold Spring Harb. Perspect. Biol. 14, a041046 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K. & Korsmeyer, S. J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 14, 23–27 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, S. et al. The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 19, 1084–1096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y. et al. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc. Natl Acad. Sci. USA 114, 1542–1547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Julien, O. & Wells, J. A. Caspases and their substrates. Cell Death Differ. 24, 1380–1389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindsten, T. & Thompson, C. B. Cell death in the absence of Bax and Bak. Cell Death Differ. 13, 1272–1276 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Krammer, P. H. CD95’s deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Martin, D. A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl Acad. Sci. USA 96, 4552–4557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Draber, P. et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258–2272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Daniel, S. et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 104, 2376–2384 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. He, K. L. & Ting, A. T. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol. Cell Biol. 22, 6034–6045 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell Biol. 21, 5299–5305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kataoka, T. The caspase-8 modulator c-FLIP. Crit. Rev. Immunol. 25, 31–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, X. et al. Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nat. Commun. 10, 4158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005). Refs 48 and 57 provided the first evidence for the existence of necroptosis and the role of RIPK1 in mediating necroptosis by isolating Nec1, which was the first small-molecule RIPK1 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  58. Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Degterev, A., Maki, J. L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Peltzer, N., Darding, M. & Walczak, H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26, 445–461 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Li, X. et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat. Commun. 11, 6364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dziedzic, S. A. et al. ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC. Nat. Cell Biol. 20, 58–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meng, H. et al. Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc. Natl Acad. Sci. USA 115, E2001–E2009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, X. et al. The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Proc. Natl Acad. Sci. USA 118, e2022933118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247–16261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012). Refs 59, 60, 61 and 76 provided evidence for the roles of RIPK3 and MLKL in mediating necroptosis.

    Article  CAS  PubMed  Google Scholar 

  77. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blanchett, S., Dondelinger, Y., Barbarulo, A., Bertrand, M. J. M. & Seddon, B. Phosphorylation of RIPK1 serine 25 mediates IKK dependent control of extrinsic cell death in T cells. Front. Immunol. 13, 1067164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dondelinger, Y. et al. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat. Commun. 10, 1729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zelic, M. et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Invest. 128, 2064–2075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang, T. et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 380, 1372–1380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, W. et al. Small molecule activators of TAK1 promotes its activity-dependent ubiquitination and TRAIL-mediated tumor cell death. Proc. Natl Acad. Sci. USA 120, e2308079120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang, K., Park, C. & Chan, F. K. Necroptosis at a glance. J. Cell Sci. 135, jcs260091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Balachandran, S. & Mocarski, E. S. Viral Z-RNA triggers ZBP1-dependent cell death. Curr. Opin. Virol. 51, 134–140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riebeling, T., Kunzendorf, U. & Krautwald, S. The role of RHIM in necroptosis. Biochem. Soc. Trans. 50, 1197–1205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ingram, J. P. et al. ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the absence of RIPK1. J. Immunol. 203, 1348–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, T. et al. Prolonged hypoxia alleviates prolyl hydroxylation-mediated suppression of RIPK1 to promote necroptosis and inflammation. Nat. Cell Biol. 25, 950–962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Naito, M. G. et al. Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc. Natl Acad. Sci. USA 117, 4959–4970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Linkermann, A. et al. Necroptosis in immunity and ischemia-reperfusion injury. Am. J. Transpl. 13, 2797–2804 (2013).

    Article  CAS  Google Scholar 

  98. Jouan-Lanhouet, S. et al. Necroptosis, in vivo detection in experimental disease models. Semin. Cell Dev. Biol. 35, 2–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Yuan, J., Najafov, A. & Py, B. F. Roles of caspases in necrotic cell death. Cell 167, 1693–1704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Newton, K., Dixit, V. M. & Kayagaki, N. Dying cells fan the flames of inflammation. Science 374, 1076–1080 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol. 20, 527–533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. de Zoete, M. R., Palm, N. W., Zhu, S. & Flavell, R. A. Inflammasomes. Cold Spring Harb. Perspect. Biol. 6, a016287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016). Refs 107, 108, 109 and 110 demonstrated the role of caspase-1 and caspase-11 in the cleavage of GSDMD to promote necroptosis and the structural basis of GSDMD-NT pore formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moonen, S. et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol. 145, 175–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sangiuliano, B., Perez, N. M., Moreira, D. F. & Belizario, J. E. Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators Inflamm. 2014, 821043 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. deCathelineau, A. M. & Henson, P. M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem. 39, 105–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Nagata, S. & Segawa, K. Sensing and clearance of apoptotic cells. Curr. Opin. Immunol. 68, 1–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013). Refs 121 and 122 described the mechanism by which caspase mediates the cleavage of phospholipid flippase to promote phosphatidylserine exposure on apoptotic cells in efferocytosis.

    Article  CAS  PubMed  Google Scholar 

  123. Lu, J. et al. Efficient engulfment of necroptotic and pyroptotic cells by nonprofessional and professional phagocytes. Cell Discov. 5, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zargarian, S. et al. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biol. 15, e2002711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023). Refs 125 and 126 report on the role of NINJ1 in mediating membrane disrupture after cell death and the structure of NINJ1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Le, H. et al. Disruption of ninjurin1 leads to repetitive and anxiety-like behaviors in mice. Mol. Neurobiol. 54, 7353–7368 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, K., Wang, Y. & Li, H. The role of ninjurin1 and its impact beyond the nervous system. Dev. Neurosci. 42, 159–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Tomita, Y. et al. Ninjurin 1 mediates peripheral nerve regeneration through Schwann cell maturation of NG2-positive cells. Biochem. Biophys. Res. Commun. 519, 462–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Ifergan, I. et al. Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann. Neurol. 70, 751–763 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, H. J., Ahn, B. J., Shin, M. W., Choi, J. H. & Kim, K. W. Ninjurin1: a potential adhesion molecule and its role in inflammation and tissue remodeling. Mol. Cell 29, 223–227 (2010).

    Article  CAS  Google Scholar 

  133. Lee, H. K., Lee, H., Luo, L. & Lee, J. K. Induction of nerve injury-induced protein 1 (ninjurin 1) in myeloid cells in rat brain after transient focal cerebral ischemia. Exp. Neurobiol. 25, 64–74 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ahn, B. J. et al. Ninjurin1 enhances the basal motility and transendothelial migration of immune cells by inducing protrusive membrane dynamics. J. Biol. Chem. 289, 21926–21936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M. J. M. & Vandenabeele, P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol. 26, 721–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, Y., Li, X., Zhou, X., Wang, J. & Ao, X. FADD as a key molecular player in cancer progression. Mol. Med. 28, 132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Najafov, A., Chen, H. & Yuan, J. Necroptosis and cancer. Trends Cancer 3, 294–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Najafov, A. et al. BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biol. 16, e2005756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).

    Article  CAS  PubMed  Google Scholar 

  146. Anding, A. L. & Baehrecke, E. H. Autophagy in cell life and cell death. Curr. Top. Dev. Biol. 114, 67–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. White, E. Autophagic cell death unraveled: pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4, 399–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Fleming, A. et al. The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Menzies, F. M. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015–1034 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. de Duve, C. et al. Commentary. Lysosomotropic agents. Biochem. Pharmacol. 23, 2495–2531 (1974).

    Article  PubMed  Google Scholar 

  153. Xie, Z. et al. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis. 14, 255 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat. Med. 20, 204–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, S. et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis. 9, 476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pan, C. et al. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc. Natl Acad. Sci. USA 118, e2100122118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ryckman, A. E., Brockhausen, I. & Walia, J. S. Metabolism of glycosphingolipids and their role in the pathophysiology of lysosomal storage disorders. Int. J. Mol. Sci. 21, 6881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yanez, M. J. et al. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: opportunities for shared therapeutic interventions. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165875 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. White, E. Entosis: it’s a cell-eat-cell world. Cell 131, 840–842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zeng, C., Zeng, B., Dong, C., Liu, J. & Xing, F. Rho-ROCK signaling mediates entotic cell death in tumor. Cell Death Discov. 6, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rich, K. A., Burkett, C. & Webster, P. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol. 5, 455–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Hamann, J. C. et al. Entosis is induced by glucose starvation. Cell Rep. 20, 201–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bozkurt, E. et al. TRAIL signaling promotes entosis in colorectal cancer. J. Cell Biol. 220, e202010030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Trachootham, D., Lu, W., Ogasawara, M. A., Nilsa, R. D. & Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal. 10, 1343–1374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sato, M. et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep. 8, 968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, H., Morgan, T. E. & Forman, H. J. Age-related alteration in HNE elimination enzymes. Arch. Biochem. Biophys. 699, 108749 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Vazdar, K., Skulj, S., Bakaric, D., Margetic, D. & Vazdar, M. Chemistry and reactivity of 4-hydroxy-2-nonenal (HNE) in model biological systems. Mini Rev. Med. Chem. 21, 1394–1405 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Gentile, F. et al. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet. 4, 103–137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ayala, A., Munoz, M. F. & Arguelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zheng, H., Jiang, L., Tsuduki, T., Conrad, M. & Toyokuni, S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol. 48, 102175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Coyle, J. T. & Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695 (1993).

    Article  CAS  PubMed  Google Scholar 

  177. Dmitriev, L. F. & Titov, V. N. Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res. Rev. 9, 200–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Luczaj, W., Gegotek, A. & Skrzydlewska, E. Antioxidants and HNE in redox homeostasis. Free Radic. Biol. Med. 111, 87–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Lynch, D. R. & Johnson, J. Omaveloxolone: potential new agent for Friedreich ataxia. Neurodegener. Dis. Manag. 11, 91–98 (2021).

    Article  PubMed  Google Scholar 

  180. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764.e22 (2023). Refs 6, 181, 182 and 183 describe the roles of xCT, GPX4, FSP1 and sex hormone-mediated control of cellular lipid peroxidation and illustrate how inactivation of cellular defence mechanisms against lipid peroxidation can lead to ferroptosis.

    Article  CAS  PubMed  Google Scholar 

  184. Matak, P. et al. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc. Natl Acad. Sci. USA 113, 3428–3435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cozzi, A. et al. Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol. Dis. 37, 77–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Ryan, S. K. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 26, 12–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345, 410–416 (1990).

    Article  CAS  PubMed  Google Scholar 

  188. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  189. Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337–1344 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Hernandez, D. E. et al. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J. Cell Sci. 131, jcs214684 (2018).

    Article  PubMed  Google Scholar 

  193. D’Orsi, B. et al. Bax regulates neuronal Ca2+ homeostasis. J. Neurosci. 35, 1706–1722 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mahmoud, S., Gharagozloo, M., Simard, C. & Gris, D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8, 184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dawson, T. M. & Dawson, V. L. Nitric oxide signaling in neurodegeneration and cell death. Adv. Pharmacol. 82, 57–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Wang, Y. & Golledge, J. Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr. Neurovasc. Res. 10, 81–89 (2013).

    Article  PubMed  Google Scholar 

  197. Steinert, J. R., Chernova, T. & Forsythe, I. D. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16, 435–452 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Ghatak, S., Nakamura, T. & Lipton, S. A. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: mechanistic insights and potential therapies. Front. Neural Circuits 17, 1099467 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Castedo, M. et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23, 4362–4370 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Brinkmann, K., Ng, A. P., de Graaf, C. A. & Strasser, A. What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ. 29, 1079–1093 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Smith, W. M. & Reed, D. R. Targeting apoptosis in ALL. Curr. Hematol. Malig. Rep. 17, 53–60 (2022).

    Article  PubMed  Google Scholar 

  204. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ofengeim, D. et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E8788–E8797 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zelic, M. et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 35, 109112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li, W. et al. Nuclear RIPK1 promotes chromatin remodeling to mediate inflammatory response. Cell Res. 32, 621–637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, W. & Yuan, J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front. Immunol. 14, 1159743 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rathinam, V. A. & Fitzgerald, K. A. Inflammasome complexes: emerging mechanisms and effector functions. Cell 165, 792–800 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhan, X., Li, Q., Xu, G., Xiao, X. & Bai, Z. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front. Immunol. 13, 1109938 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Sweeney, P. et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl. Neurodegener. 6, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Xu, D. et al. Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature 587, 133–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Markesbery, W. R., Kryscio, R. J., Lovell, M. A. & Morrow, J. D. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann. Neurol. 58, 730–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q. & Lee, V. M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yuan, J. & Horvitz, H. R. A first insight into the molecular mechanisms of apoptosis. Cell 116, S53–S56 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  218. Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  219. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  220. Horvitz, H. R., Shaham, S. & Hengartner, M. O. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 59, 377–385 (1994).

    Article  CAS  PubMed  Google Scholar 

  221. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  222. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  223. Cory, S., Roberts, A. W., Colman, P. M. & Adams, J. M. Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer 2, 443–460 (2016).

    Article  PubMed  Google Scholar 

  224. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ryan, S. K. et al. Therapeutic inhibition of ferroptosis in neurodegenerative disease. Trends Pharmacol. Sci. 44, 674–688 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Tonnus, W. et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat. Commun. 12, 4402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Singh, J., Habean, M. L. & Panicker, N. Inflammasome assembly in neurodegenerative diseases. Trends Neurosci. 65, 885–904 (2023).

    Google Scholar 

  228. Fetter, T., de Graaf, D. M., Claus, I. & Wenzel, J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front. Immunol. 14, 1190388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Vontell, R. T. et al. Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer’s disease. Brain Pathol. 33, e13142 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Parmar, D. V. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral NLRP3 inflammasome inhibitor ZYIL1: first-in-human phase 1 studies (single ascending dose and multiple ascending dose). Clin. Pharmacol. Drug Dev. 12, 202–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  231. Ambrus-Aikelin, G. et al. JT002, a small molecule inhibitor of the NLRP3 inflammasome for the treatment of autoinflammatory disorders. Sci. Rep. 13, 13524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Chen, L. et al. Advances in RIPK1 kinase inhibitors. Front. Pharmacol. 13, 976435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Feng, X. et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62, 592–601 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Yan, J., Wan, P., Choksi, S. & Liu, Z. G. Necroptosis and tumor progression. Trends Cancer 8, 21–27 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of J.Y. is supported, in part, by the China National Natural Science Foundation (82188101, 21837004, 91849204 and 92049303), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39030200), the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX02), and the Shanghai Key Laboratory of Aging Studies (19DZ2260400).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and revised by J.Y. with input from D.O.

Corresponding authors

Correspondence to Junying Yuan or Dimitry Ofengeim.

Ethics declarations

Competing interests

D.O. is an employee of Sanofi.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Andreas Linkermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

AMPK

AMPK is a highly conserved sensor of intracellular adenosine nucleotide levels and is activated when the AMP-to-ATP ratio is elevated under energy-stress conditions. AMPK activation promotes catabolic pathways to generate more ATP and inhibits anabolic pathways.

Amyloid-β plaques

An important pathological hallmark in the brain of patients with Alzheimer disease. Amyloid-β plaques contain fibrillar polymers of the amyloid-β cleavage products of APP protein as well as other components. Amyloid-β plaques can propagate and spread via prion-like self-assembly to drive neurodegeneration.

Apoptosome

A heptameric APAF1 protein complex shaped as a wheel-shaped structure with sevenfold symmetry that can drive the activation of caspase-9, which in turn cleaves and activates pro-caspase-3, in intrinsic apoptosis.

Autoimmune lymphoproliferative syndrome

A lymphoproliferative disease characterized by defects in the control of lymphocyte numbers that lead to enlargement of the lymph nodes (lymphadenopathy), the liver (hepatomegaly) and the spleen (splenomegaly).

Blood–brain barrier

A property of the blood vessels in the central nervous system that enables them to regulate the movement of molecules and cells between the blood and the brain, preventing many macromolecules from entering the brain through diffusion.

Centromere

A centromere is the point of attachment of the kinetochore, which is a structure that anchors the mitotic spindle during mitosis.

Damage-associated molecular patterns

Intracellular molecules with pro-inflammatory and immunogenic activity that are discharged to extracellular space as the result of damage to the cell membrane from necrotic cell death.

Efferocytosis

Process that mediates the removal of apoptotic cells by phagocytic cells and non-professional phagocytic cells.

Flippases

ABC transporter or P4-type ATPase families of transmembrane lipid transporter proteins to facilitate the movement of phospholipid molecules between the two leaflets of the cell plasma membrane.

Freidrich ataxia

A rare genetic disorder that leads to progressive movement disability.

Glutathione

Glutathione is a linear tripeptide of l-glutamine, l-cysteine and glycine with strong antioxidant activity.

Granzyme A

A serine protease present in cytotoxic T cells.

Integrin

Heterodimeric transmembrane receptors that mediate cell–cell and cell–extracellular matrix adhesion.

NF-κB

Nuclear factor-κ light chain enhancer of activated B cells is a family of highly conserved transcription factors that regulate many important cellular responses, including inflammation, proliferation, cellular growth and apoptosis.

NOD family

Nucleotide oligomerization domain (NOD) proteins NOD1 and NOD2, which can enable detection of intracellular bacteria and promote their clearance through initiation of the pro-inflammatory transcriptional programme and other host defence responses such as autophagy.

Normoxic condition

Having a normal oxygen concentration; typically 20–21% in the atmosphere or in tissue culture flasks.

Protomers

Structural units of an oligomeric protein.

Signal peptide

A peptide segment of 20–30 amino acids that acts as the N-terminal sorting signal that targets the linked protein to the secretory pathway in eukaryotes and prokaryotes.

Ub acceptor site

Ubiquitin is a 76-amino acid polypeptide that can be attached to proteins through the formation of an isopeptide bond between its carboxyl terminus and the Ub acceptor site, which can be the ɛ-amino group of lysin side chains on target proteins for K63, K48 and K11 ubiquitination or the N-terminal methionine as in M1-linked ubiquitination.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Ofengeim, D. A guide to cell death pathways. Nat Rev Mol Cell Biol 25, 379–395 (2024). https://doi.org/10.1038/s41580-023-00689-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00689-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing