Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and emerging therapies for coeliac disease

Abstract

Coeliac disease is a common enteropathy that occurs in genetically susceptible individuals in response to the ingestion of gluten proteins present in wheat, rye and barley. Currently, the only available treatment for the condition is a strict, life-long gluten-free diet that, despite being safe and often effective, is associated with several challenges. Due to the high cost, particularly restrictive nature and perception of decreased quality of life associated with the diet, some patients are continuously exposed to gluten, which prevents an adequate disease control. Moreover, a subgroup of patients does not respond to the diet adequately, and healing of the small-bowel mucosa can be incomplete. Thus, there is a need for alternative treatment forms. The increasingly understood pathogenetic process of coeliac disease has enabled the identification of various targets for future therapies. Multiple investigational therapies ranging from tolerogenic to immunological approaches are in the pipeline, and several drug candidates have entered phase II/III clinical trials. This Review gives a broad overview of the different investigative treatment modalities for coeliac disease and summarizes the latest advances in this field.

Key points

  • At present, a gluten-free diet is the only effective treatment for coeliac disease but is associated with several possible challenges, including a high economic and societal burden, inferior quality of life and sometimes inadequate response.

  • An increased understanding of the pathogenetic process in coeliac disease has revealed various therapeutic targets for future drugs that could complement or replace a gluten-free diet.

  • Novel therapeutic strategies include approaches to detoxify gluten already in the gastrointestinal tract by sequestrants or peptidases.

  • Other investigational approaches comprise blocking intestinal epithelial permeability or the enzymatic activity of transglutaminase 2.

  • Restoring immune tolerance to gluten or targeting the gluten-induced immune activation has also been investigated as possible therapeutic options.

  • The most advanced drug candidates have now entered phase III clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathogenesis of coeliac disease and investigational approaches that have been tested as future treatments.
Fig. 2: Proposed mechanisms for gluten tolerization strategies.

Similar content being viewed by others

References

  1. Singh, P. et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 823–836.e2 (2018).

    PubMed  Google Scholar 

  2. Ludvigsson, J. F. et al. The Oslo definitions for coeliac disease and related terms. Gut 62, 43–52 (2013).

    PubMed  Google Scholar 

  3. Tye-Din, J. A., Galipeau, H. J. & Agardh, D. Celiac disease: a review of current concepts in pathogenesis, prevention, and novel therapies. Front. Pediatr. 6, 350 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Al-Toma, A. et al. European society for the study of coeliac disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol. J. 7, 583–613 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Husby, S., Murray, J. A. & Katzka, D. A. AGA clinical practice update on diagnosis and monitoring of celiac disease - changing utility of serology and histologic measures: expert review. Gastroenterology 156, 885–889 (2019).

    PubMed  Google Scholar 

  6. Baggus, E. M. R. et al. How to manage adult coeliac disease: perspective from the NHS England rare diseases collaborative network for non-responsive and refractory coeliac disease. Frontline Gastroenterol. 11, 235–242 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Hall, N. J., Rubin, G. & Charnock, A. Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment. Pharmacol. Ther. 30, 315–330 (2009).

    CAS  PubMed  Google Scholar 

  8. Weisbrod, V. M. et al. A quantitative assessment of gluten cross-contact in the school environment for children with celiac disease. J. Pediatr. Gastroenterol. Nutr. 70, 289–294 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Lee, A., Wolf, R., Lebwohl, B., Ciaccio, E. & Green, P. Persistent economic burden of the gluten free diet. Nutrients 11, 399 (2019).

    PubMed Central  Google Scholar 

  10. Shah, S. et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am. J. Gastroenterol. 109, 1304–1311 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Daveson, A. J. M. et al. Baseline quantitative histology in therapeutics trials reveals villus atrophy in most patients with coeliac disease who appear well controlled on gluten-free diet. GastroHep 2, 22–30 (2020).

    Google Scholar 

  12. Lebwohl, B. et al. Mucosal healing and risk for lymphoproliferative malignancy in celiac disease: a population-based cohort study. Ann. Intern. Med. 159, 169–175 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. Science 297, 2275–2279 (2002).

    CAS  PubMed  Google Scholar 

  14. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    CAS  PubMed  Google Scholar 

  15. Cardoso-Silva, D. et al. Intestinal barrier function in gluten-related disorders. Nutrients 11, 2325 (2019).

    CAS  PubMed Central  Google Scholar 

  16. Moreno, M. et al. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 66, 250–257 (2017).

    CAS  PubMed  Google Scholar 

  17. Iversen, R. et al. Evidence that pathogenic transglutaminase 2 in celiac disease derives from enterocytes. Gastroenterology https://doi.org/10.1053/j.gastro.2020.04.018 (2020).

    Article  PubMed  Google Scholar 

  18. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    CAS  PubMed  Google Scholar 

  19. Kuja-Halkola, R. et al. Heritability of non-HLA genetics in coeliac disease: a population-based study in 107 000 twins. Gut 65, 1793–1798 (2016).

    PubMed  Google Scholar 

  20. Sollid, L. M. et al. Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics 72, 85–88 (2020).

    PubMed  Google Scholar 

  21. Hardy, M. Y. et al. Characterisation of clinical and immune reactivity to barley and rye ingestion in children with coeliac disease. Gut 69, 830–840 (2020).

    CAS  PubMed  Google Scholar 

  22. Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl Med. 2, 41ra51 (2010).

    PubMed  Google Scholar 

  23. du Pré, M. F. et al. B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. J. Exp. Med. 217, e20190860 (2020).

    PubMed  Google Scholar 

  24. Di Sabatino, A. et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 55, 469–477 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Abadie, V. et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature 578, 600–604 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Caminero, A. et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10, 1198 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Kemppainen, K. M. et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol. 15, 694–702.e5 (2017).

    PubMed  Google Scholar 

  29. Lindfors, K. et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut 69, 1416–1422 (2019).

    PubMed  Google Scholar 

  30. Kahrs, C. R. et al. Enterovirus as trigger of coeliac disease: nested case-control study within prospective birth cohort. BMJ 364, l231 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Caminero, A., Meisel, M., Jabri, B. & Verdu, E. F. Mechanisms by which gut microorganisms influence food sensitivities. Nat. Rev. Gastroenterol. Hepatol. 16, 7–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kasarda, D. D. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J. Agric. Food Chem. 61, 1155–1159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. García-Molina, M., Giménez, M., Sánchez-León, S. & Barro, F. Gluten free wheat: are we there? Nutrients 11, 487 (2019).

    PubMed Central  Google Scholar 

  34. Hujoel, I. A. & Murray, J. A. Refractory celiac disease. Curr. Gastroenterol. Rep. 22, 18 (2020).

    PubMed  Google Scholar 

  35. Silvester, J. A. et al. Most patients with celiac disease on gluten-free diets consume measurable amounts of gluten. Gastroenterology 158, 1497–1499.e1 (2019).

    PubMed  Google Scholar 

  36. Lerner, B. A. et al. Detection of gluten in gluten-free labeled restaurant food: analysis of crowd-sourced data. Am. J. Gastroenterol. 114, 792–797 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Viitasalo, L. et al. Microbial biomarkers in patients with nonresponsive celiac disease. Dig. Dis. Sci. 63, 3434–3441 (2018).

    CAS  PubMed  Google Scholar 

  38. Garber, M. E. et al. A B-cell gene signature correlates with the extent of gluten-induced intestinal injury in celiac disease. Cell. Mol. Gastroenterol. Hepatol. 4, 1–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Catassi, C. et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am. J. Clin. Nutr. 85, 160–166 (2007).

    CAS  PubMed  Google Scholar 

  40. Lähdeaho, M.-L., Mäki, M., Laurila, K., Huhtala, H. & Kaukinen, K. Small-bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease. BMC Gastroenterol. 11, 129 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Thompson, T., Dennis, M., Higgins, L. A., Lee, A. R. & Sharrett, M. K. Gluten-free diet survey: are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J. Hum. Nutr. Diet. 18, 163–169 (2005).

    CAS  PubMed  Google Scholar 

  42. Di Nardo, G. et al. Nutritional deficiencies in children with celiac disease resulting from a gluten-free diet: a systematic review. Nutrients 11, 1588 (2019).

    PubMed Central  Google Scholar 

  43. Raehsler, S. L., Choung, R. S., Marietta, E. V. & Murray, J. A. Accumulation of heavy metals in people on a gluten-free diet. Clin. Gastroenterol. Hepatol. 16, 244–251 (2018).

    CAS  PubMed  Google Scholar 

  44. Kabbani, T. A. et al. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment. Pharmacol. Ther. 35, 723–729 (2012).

    CAS  PubMed  Google Scholar 

  45. Singh, J. & Whelan, K. Limited availability and higher cost of gluten-free foods. J. Hum. Nutr. Diet. 24, 479–486 (2011).

    CAS  PubMed  Google Scholar 

  46. Mårild, K. et al. Celiac disease and anorexia nervosa: a nationwide study. Pediatrics 139, e20164367 (2017).

    PubMed  Google Scholar 

  47. Silvester, J. A., Weiten, D., Graff, L. A., Walker, J. R. & Duerksen, D. R. Living gluten-free: adherence, knowledge, lifestyle adaptations and feelings towards a gluten-free diet. J. Hum. Nutr. Diet. 29, 374–382 (2016).

    CAS  PubMed  Google Scholar 

  48. Zingone, F. et al. Psychological morbidity of celiac disease: a review of the literature. U Eur. Gastroenterol. J. 3, 136–145 (2015).

    Google Scholar 

  49. König, J., Holster, S., Bruins, M. J. & Brummer, R. J. Randomized clinical trial: Effective gluten degradation by Aspergillus niger-derived enzyme in a complex meal setting. Sci. Rep. 7, 13100 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Daveson, A. J. et al. Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS ONE 6, e17366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mansikkka, E. et al. Gluten challenge induces skin and small-bowel relapse in long-term gluten-free diet -treated dermatitis herpetiformis. J. Invest. Dermatol. 139, 2108–2114 (2019).

    Google Scholar 

  52. Daveson, A. J. M. et al. Masked bolus gluten challenge low in FODMAPs implicates nausea and vomiting as key symptoms associated with immune activation in treated coeliac disease. Aliment. Pharmacol. Ther. 51, 244–252 (2020).

    CAS  PubMed  Google Scholar 

  53. Ludvigsson, J. F. et al. Outcome measures in coeliac disease trials: the Tampere recommendations. Gut 67, 1410–1424 (2018).

    CAS  PubMed  Google Scholar 

  54. McCambridge, J., Witton, J. & Elbourne, D. R. Systematic review of the Hawthorne effect: New concepts are needed to study research participation effects. J. Clin. Epidemiol. 67, 267–277 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Gopalakrishnan, S. et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides 35, 86–94 (2012).

    CAS  PubMed  Google Scholar 

  56. Paterson, B. M., Lammers, K. M., Arrieta, M. C., Fasano, A. & Meddings, J. B. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26, 757–766 (2007).

    CAS  PubMed  Google Scholar 

  57. Leffler, D. A. et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am. J. Gastroenterol. 107, 1554–1562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kelly, C. P. et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment. Pharmacol. Ther. 37, 252–262 (2013).

    CAS  PubMed  Google Scholar 

  59. Leffler, D. A. et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology 148, 1311–9.e6 (2015).

    CAS  PubMed  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03569007 (2019).

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00620451 (2017).

  62. Cavaletti, L. et al. E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci. Rep. 9, 13147 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Rey, M. et al. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Sci. Rep. 6, 30980 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tye-Din, J. A. et al. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin. Immunol. 134, 289–295 (2010).

    CAS  PubMed  Google Scholar 

  65. Wolf, C. et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J. Am. Chem. Soc. 137, 13106–13113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bethune, M. T. & Khosla, C. Oral enzyme therapy for celiac sprue. Methods Enzymol. 502, 241–271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitea, C. et al. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 57, 25–32 (2008).

    CAS  PubMed  Google Scholar 

  68. Tack, G. J. et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J. Gastroenterol. 19, 5837–5847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Salden, B. N. et al. Randomised clinical study: Aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment. Pharmacol. Ther. 42, 273–285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00810654 (2011).

  71. Ehren, J. et al. A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE 4, e6313 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00962182 (2018).

  73. Korponay-Szabó, I. R. et al. Food-grade gluten degrading enzymes to treat dietary transgressions in coeliac adolescents. J. Pediatr. Gastroenterol. Nutr. 50, E68 (2010).

    Google Scholar 

  74. Gass, J., Bethune, M. T., Siegel, M., Spencer, A. & Khosla, C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133, 472–480 (2007).

    CAS  PubMed  Google Scholar 

  75. Siegel, M. et al. Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig. Dis. Sci. 57, 440–450 (2012).

    CAS  PubMed  Google Scholar 

  76. Lähdeaho, M.-L. et al. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 146, 1649–1658 (2014).

    PubMed  Google Scholar 

  77. Murray, J. et al. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology 152, 787–798.e2 (2017).

    CAS  PubMed  Google Scholar 

  78. Syage, J. A., Murray, J. A., Green, P. H. R. & Khosla, C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig. Dis. Sci. 62, 2428–2432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03585478 (2019).

  80. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04243551 (2020).

  81. Lähdeaho, M.-L. et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol. Hepatol. 4, 948–959 (2019).

    PubMed  Google Scholar 

  82. Cellier, C. et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: a phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol. Hepatol. 4, 960–970 (2019).

    PubMed  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04424927 (2020).

  84. Waldmann, T. A. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J. Investig. Dermatol. Symp. Proc. 16, S28–S30 (2013).

    CAS  PubMed  Google Scholar 

  85. Ciszewski, C. et al. Identification of a γc receptor antagonist that prevents reprogramming of human tissue-resident cytotoxic t cells by IL15 and IL21. Gastroenterology 158, 625–637.e13 (2020).

    CAS  PubMed  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01893775 (2020).

  87. Yokoyama, S., Perera, P.-Y., Waldmann, T. A., Hiroi, T. & Perera, L. P. Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J. Clin. Immunol. 33, 586–594 (2013).

    CAS  PubMed  Google Scholar 

  88. EU Clinical Trials Register. ClinicalTrialsRegister.eu https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-001678-10 (2018).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00540657 (2008).

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04524221 (2020).

  91. Tato, M. et al. Cathepsin S inhibition combines control of systemic and peripheral pathomechanisms of autoimmune tissue injury. Sci. Rep. 7, 2775 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02679014 (2017).

  93. Abraham, M. et al. In vitro induction of regulatory T cells by anti-CD3 antibody in humans. J. Autoimmun. 30, 21–28 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Høydahl, L. S., Frick, R., Sandlie, I. & Løset, G. Å. Targeting the MHC ligandome by use of TCR-like antibodies. Antibodies 8, 32 (2019).

    PubMed Central  Google Scholar 

  95. Carballido, J. M. & Santamaria, P. Taming autoimmunity: Translating antigen-specific approaches to induce immune tolerance. J. Exp. Med. 216, 247–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Christophersen, A., Risnes, L. F., Dahal-Koirala, S. & Sollid, L. M. Therapeutic and diagnostic implications of t cell scarring in celiac disease and beyond. Trends Mol. Med. 25, 836–852 (2019).

    CAS  PubMed  Google Scholar 

  97. Risnes, L. F. et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J. Clin. Invest. 128, 2642–2650 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Goel, G. et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet. Gastroenterol. Hepatol. 2, 479–493 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Daveson, A. J. M. et al. Epitope-specific immunotherapy targeting CD4-positive T cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a Randomized, double-blind, placebo-controlled. EBioMedicine 26, 78–90 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Goel, G. et al. Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci. Adv. 5, eaaw7756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03644069 (2019).

  102. Truitt, K. E. & Anderson, R. P. Editorial: a non-dietary treatment for coeliac disease-two steps forward, one step back? Authors’ reply. Aliment. Pharmacol. Ther. 50, 956–957 (2019).

    PubMed  Google Scholar 

  103. Freitag, T. L. et al. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology 158, 1667–1681.e12 (2020).

    CAS  PubMed  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03486990 (2020).

  105. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03738475 (2020).

  106. Kelly, C. et al. CNP-101 prevents gluten challenge-induced immune activation in adults with celiac disease [abstract]. United Eur. Gastroenterol. J. 7, 1421 (2019).

    Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04530123 (2020).

  108. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    CAS  PubMed  Google Scholar 

  109. Grimm, A. J., Kontos, S., Diaceri, G., Quaglia-Thermes, X. & Hubbell, J. A. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci. Rep. 5, 15907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04248855 (2020).

  111. Elliot, D. E. & Weinstock, J. V. Where are we on worms? Curr. Opin. Gastroenterol. 28, 551–556 (2012).

    Google Scholar 

  112. Croese, J. et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J. Allergy Clin. Immunol. 135, 508–516 (2015).

    CAS  PubMed  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02754609 (2020).

  114. Sulic, A.-M., Kurppa, K., Rauhavirta, T., Kaukinen, K. & Lindfors, K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin. Ther. Targets 19, 335–348 (2015).

    CAS  PubMed  Google Scholar 

  115. Klöck, C. & Khosla, C. Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci. 21, 1781–1791 (2012).

    PubMed  PubMed Central  Google Scholar 

  116. Molberg, Ø. et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur. J. Immunol. 31, 1317–1323 (2001).

    CAS  PubMed  Google Scholar 

  117. Maiuri, L. et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology 129, 1400–1413 (2005).

    CAS  PubMed  Google Scholar 

  118. Rauhavirta, T. et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin. Exp. Immunol. 164, 127–136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lebreton, C. et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143, 698–707.e4 (2012).

    CAS  PubMed  Google Scholar 

  120. Ventura, M. A. E. et al. Su1161 - The oral transglutaminase 2 (TG2) inhibitor Zed1227 blocks TG2 activity in a mouse model of intestinal inflammation [Abstract]. Gastroenterology 154, S-490 (2018).

    Google Scholar 

  121. EU Clinical Trials Register. ClinicalTrialsRegister.eu https://www.clinicaltrialsregister.eu/ctr-search/search?query=2017-002241-30 (2017).

  122. Stamnaes, J., Pinkas, D. M., Fleckenstein, B., Khosla, C. & Sollid, L. M. Redox regulation of transglutaminase 2 activity. J. Biol. Chem. 285, 25402–25409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Palanski, B. A. & Khosla, C. Cystamine and disulfiram inhibit human transglutaminase 2 via an oxidative mechanism. Biochemistry 57, 3359–3363 (2018).

    CAS  PubMed  Google Scholar 

  124. Gujral, N., Löbenberg, R., Suresh, M. & Sunwoo, H. In-vitro and in-vivo binding activity of chicken egg yolk immunoglobulin Y (IgY) against gliadin in food matrix. J. Agric. Food Chem. 60, 3166–3172 (2012).

    CAS  PubMed  Google Scholar 

  125. Sample, D. A. et al. AGY, a novel egg yolk-derived anti-gliadin antibody, is safe for patients with celiac disease. Dig. Dis. Sci. 62, 1277–1285 (2017).

    CAS  PubMed  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03707730 (2019).

  127. Stadlmann, V. et al. Novel avian single-chain fragment variable (scFv) targets dietary gluten and related natural grain prolamins, toxic entities of celiac disease. BMC Biotechnol. 15, 109 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Liang, L., Pinier, M., Leroux, J.-C. & Subirade, M. Interaction of alpha-gliadin with poly(HEMA-co-SS): structural characterization and biological implication. Biopolymers 91, 169–178 (2009).

    CAS  PubMed  Google Scholar 

  129. McCarville, J. L. et al. BL-7010 demonstrates specific binding to gliadin and reduces gluten-associated pathology in a chronic mouse model of gliadin sensitivity. PLoS ONE 9, e109972 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01990885 (2017).

  131. Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016).

    CAS  PubMed  Google Scholar 

  132. Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10, 988 (2018).

    PubMed Central  Google Scholar 

  133. Abdel-Gadir, A. et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 25, 1164–1174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. McCarville, J. L. et al. A commensal Bifidobacterium longum strain prevents gluten-related immunopathology in mice through expression of a serine protease inhibitor. Appl. Environ. Microbiol. 83, e01323–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Papista, C. et al. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab. Invest. 92, 625–635 (2012).

    CAS  PubMed  Google Scholar 

  136. Huibregtse, I. L. et al. Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice. J. Immunol. 183, 2390–2396 (2009).

    CAS  PubMed  Google Scholar 

  137. Olivares, M., Castillejo, G., Varea, V. & Sanz, Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br. J. Nutr. 112, 30–40 (2014).

    CAS  PubMed  Google Scholar 

  138. Quagliariello, A. et al. Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients 8, 660 (2016).

    PubMed Central  Google Scholar 

  139. Klemenak, M., Dolinšek, J., Langerholc, T., Di Gioia, D. & Mičetić-Turk, D. Administration of Bifidobacterium breve Decreases the production of TNF-α in children with celiac disease. Dig. Dis. Sci. 60, 3386–3392 (2015).

    CAS  PubMed  Google Scholar 

  140. Primec, M. et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin. Nutr. 38, 1373–1381 (2019).

    CAS  PubMed  Google Scholar 

  141. Harnett, J., Myers, S. P. & Rolfe, M. Probiotics and the microbiome in celiac disease: a randomised controlled trial. Evid. Based Complement. Alternat. Med. 2016, 9048574 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Francavilla, R. et al. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. J. Clin. Gastroenterol. 53, e117–e125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Smecuol, E. et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J. Clin. Gastroenterol. 47, 139–147 (2013).

    PubMed  Google Scholar 

  144. Pinto-Sánchez, M. I. et al. Bifidobacterium infantis NLS super strain reduces the expression of α-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J. Clin. Gastroenterol. 51, 814–817 (2017).

    PubMed  Google Scholar 

  145. Vriezinga, S. L. et al. Randomized feeding intervention in infants at high risk for celiac disease. N. Engl. J. Med. 371, 1304–1315 (2014).

    CAS  PubMed  Google Scholar 

  146. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N. Engl. J. Med. 371, 1295–1303 (2014).

    PubMed  Google Scholar 

  147. Håkansson, Å. et al. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 11, 1925 (2019).

    PubMed Central  Google Scholar 

  148. Uusitalo, U. et al. Early probiotic supplementation and the risk of celiac disease in children at genetic risk. Nutrients 11, 1790 (2019).

    CAS  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03562221 (2020).

Download references

Acknowledgements

The authors thank the Academy of Finland and the Sigrid Juselius Foundation (K.L.), Emil Aaltonen foundation and the Finnish-Norwegian Medical Foundation (L.K.), the National Health and Medical Research Council of Australia (NHMRC, Investigator Grant APP1176553), and the Mathison Centenary Fellowship, University of Melbourne (J.T.-D.). A.C. holds a Paul Douglas chair in intestinal research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Katri Lindfors.

Ethics declarations

Competing interests

L.K. reports personal fees for lectures from the Finnish Coeliac Society outside the submitted work and participation in the AMG 714 trial. D.A.L. is the Medical Director for Takeda Pharmaceuticals. J.T.-D. is an inventor of patents pertaining to the use of gluten-derived T cell epitopes for use in coeliac disease therapeutics and was an investigator in the Nexvax2 phase II trial. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks P. Green, G. Makharia and D.S. Sanders for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

EU Clinical Trials register: https://www.clinicaltrialsregister.eu/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivelä, L., Caminero, A., Leffler, D.A. et al. Current and emerging therapies for coeliac disease. Nat Rev Gastroenterol Hepatol 18, 181–195 (2021). https://doi.org/10.1038/s41575-020-00378-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00378-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing