Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The global burden of coeliac disease: opportunities and challenges

Abstract

Coeliac disease is a systemic disorder characterized by immune-mediated enteropathy, which is caused by gluten ingestion in genetically susceptible individuals. The clinical presentation of coeliac disease is highly variable and ranges from malabsorption through solely extra-intestinal manifestations to asymptomatic. As a result, the majority of patients with coeliac disease remain undiagnosed, misdiagnosed or experience a substantial delay in diagnosis. Coeliac disease is diagnosed by a combination of serological findings of disease-related antibodies and histological evidence of villous abnormalities in duodenal biopsy samples. However, variability in histological grading and in the diagnostic performance of some commercially available serological tests remains unacceptably high and confirmatory assays are not readily available in many parts of the world. Currently, the only effective treatment for coeliac disease is a lifelong, strict, gluten-free diet. However, many barriers impede patients’ adherence to this diet, including lack of widespread availability, high cost, cross-contamination and its overall restrictive nature. Routine follow-up is necessary to ensure adherence to a gluten-free diet but considerable variation is evident in follow-up protocols and the optimal disease management strategy is not clear. However, these challenges in the diagnosis and management of coeliac disease suggest opportunities for future research.

Key points

  • Coeliac disease is a global disease with a worldwide prevalence of around 1%.

  • Most patients with coeliac disease are undiagnosed, misdiagnosed and/or experience a substantial delay in diagnosis, which suggests an inadequate awareness of the spectrum of its clinical manifestations.

  • Despite improvements in the diagnosis of coeliac disease, persistent challenges include high inter-assay and intra-assay variation in serological test performance and high inter-observer variability in the grading of villous abnormalities.

  • The optimal follow-up strategy for coeliac disease is unclear and studies are needed to define the timing and role of serological testing, gluten immunogenic peptide measurement and repeat biopsy.

  • Increased access to dietitians, improved tools to assess adherence to a gluten-free diet, increased availability of gluten-free foods and reduced gluten contamination of gluten-free food products are needed.

  • As maintaining strict adherence to a gluten-free diet is restrictive and challenging, the development of adjunct or alternative non-dietary therapies for coeliac disease is crucial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Worldwide prevalence of coeliac disease determined by coeliac disease seropositivity.
Fig. 2: Worldwide prevalence of biopsy-proven coeliac disease.

Similar content being viewed by others

References

  1. Fasano, A. & Catassi, C. Clinical practice. Celiac disease. N. Engl. J. Med. 367, 2419–2426 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Leonard, M. M., Sapone, A., Catassi, C. & Fasano, A. Celiac disease and nonceliac gluten sensitivity: a review. JAMA 318, 647–656 (2017).

    Article  PubMed  Google Scholar 

  3. Singh, P. et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 823–836 (2018).

    Article  PubMed  Google Scholar 

  4. [No Authors Listed.] Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch. Dis. Child. 65, 909–911 (1990).

    Article  Google Scholar 

  5. Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Husby, S. et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for diagnosing coeliac disease 2020. J. Pediatr. Gastroenterol. Nutr. 70, 141–156 (2020).

    Article  PubMed  Google Scholar 

  7. Ludvigsson, J. F. et al. Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut 63, 1210–1228 (2014).

    Article  PubMed  Google Scholar 

  8. Green, P. A. & Wollaeger, E. E. The clinical behavior of sprue in the United States. Gastroenterology 38, 399–418 (1960).

    Article  CAS  PubMed  Google Scholar 

  9. Swinson, C. M. & Levi, A. J. Is coeliac disease underdiagnosed? Br. Med. J. 281, 1258–1260 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beaumont, D. M. & Mian, M. S. Coeliac disease in old age: ‘a catch in the rye’. Age Ageing 27, 535–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Murray, J. A. et al. Trends in the identification and clinical features of celiac disease in a North American community, 1950–2001. Clin. Gastroenterol. Hepatol. 1, 19–27 (2003).

    Article  PubMed  Google Scholar 

  12. Leffler, D. A., Green, P. H. R. & Fasano, A. Extraintestinal manifestations of coeliac disease. Nat. Rev. Gastroenterol. Hepatol. 12, 561–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Caio, G. et al. Celiac disease: a comprehensive current review. BMC Med. 17, 142 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jamnik, J., Villa, C. R., Dhir, S. B., Jenkins, D. J. A. & El-Sohemy, A. Prevalence of positive coeliac disease serology and HLA risk genotypes in a multiethnic population of adults in Canada: a cross-sectional study. BMJ Open 7, e017678 (2017).

    Article  PubMed Central  Google Scholar 

  15. Comba, A., Eren, N. B. & Demir, E. Prevalence of celiac disease among school-age children in Çorum, Turkey. Turk. J. Gastroenterol. 29, 595–600 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Zanella, S. et al. Cross-sectional study of coeliac autoimmunity in a population of Vietnamese children. BMJ Open 6, e011173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, C. et al. Prevalence of coeliac disease in Northwest China: heterogeneity across Northern Silk road ethnic populations. Aliment. Pharmacol. Ther. 51, 1116–1129 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Al-Hussaini, A. et al. Mass screening for celiac disease among school-aged children: toward exploring celiac iceberg in Saudi Arabia. J. Pediatr. Gastroenterol. Nutr. 65, 646–651 (2017).

    Article  PubMed  Google Scholar 

  19. Gatti, S. et al. Increased prevalence of celiac disease in school-age children in Italy. Clin. Gastroenterol. Hepatol. 18, 596–603 (2020).

    Article  PubMed  Google Scholar 

  20. Ivarsson, A. et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 131, e687–e694 (2013).

    Article  PubMed  Google Scholar 

  21. Catassi, C. et al. Why is coeliac disease endemic in the people of the Sahara? Lancet 354, 647–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Singh, P., Arora, S., Singh, A., Strand, T. A. & Makharia, G. K. Prevalence of celiac disease in Asia: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 31, 1095–1101 (2016).

    Article  PubMed  Google Scholar 

  23. Poddighe, D., Rakhimzhanova, M., Marchenko, Y. & Catassi, C. Pediatric celiac disease in Central and East Asia: current knowledge and prevalence. Medicina 55, 11 (2019).

    Article  PubMed Central  Google Scholar 

  24. Fukunaga, M. et al. Serological screening for celiac disease in adults in Japan: Shimane CoHRE study. JGH Open 4, 558–560 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramakrishna, B. S. et al. Prevalence of adult celiac disease in India: regional variations and associations. Am. J. Gastroenterol. 111, 115–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, J. et al. Prevalence of celiac disease autoimmunity among adolescents and young adults in China. Clin. Gastroenterol. Hepatol. 15, 1572–1579 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Lionetti, E. & Catassi, C. Co-localization of gluten consumption and HLA-DQ2 and -DQ8 genotypes, a clue to the history of celiac disease. Dig. Liver Dis. 46, 1057–1063 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Catassi, C. et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 42, 530–538 (2010).

    Article  PubMed  Google Scholar 

  29. Rubio-Tapia, A. et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137, 88–93 (2009).

    Article  PubMed  Google Scholar 

  30. Rubio-Tapia, A., Ludvigsson, J. F., Brantner, T. L., Murray, J. A. & Everhart, J. E. The prevalence of celiac disease in the United States. Am. J. Gastroenterol. 107, 1538–1544 (2012).

    Article  PubMed  Google Scholar 

  31. Choung, R. S. et al. Trends and racial/ethnic disparities in gluten-sensitive problems in the United States: findings from the National Health and Nutrition Examination Surveys from 1988 to 2012. Am. J. Gastroenterol. 110, 455–461 (2015).

    Article  PubMed  Google Scholar 

  32. King, J. A. et al. Incidence of celiac disease is increasing over time: a systematic review and meta-analysis. Am. J. Gastroenterol. 115, 507–525 (2020).

    Article  PubMed  Google Scholar 

  33. Holmes, G. K. T. & Muirhead, A. Epidemiology of coeliac disease in a single centre in Southern Derbyshire 1958–2014. BMJ Open Gastroenterol. 4, e000137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ludvigsson, J. F. et al. Increasing incidence of celiac disease in a North American population. Am. J. Gastroenterol. 108, 818–824 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al-Toma, A. et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol. J. 7, 583–613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rubio-Tapia, A., Hill, I. D., Kelly, C. P., Calderwood, A. H. & Murray, J. A. ACG clinical guidelines: diagnosis and management of celiac disease. Am. J. Gastroenterol. 108, 656–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Popp, A., Kivelä, L., Fuchs, V. & Kurppa, K. Diagnosing celiac disease: towards wide-scale screening and serology-based criteria? Gastroenterol. Res. Pract. 2019, 2916024 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. van den Broeck, H. C. et al. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor. Appl. Genet. 121, 1527–1539 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Catassi, C. Where is celiac disease coming from and why? J. Pediatr. Gastroenterol. Nutr. 40, 279–282 (2005).

    Article  PubMed  Google Scholar 

  41. Unalp-Arida, A., Ruhl, C. E., Choung, R. S., Brantner, T. L. & Murray, J. A. Lower prevalence of celiac disease and gluten-related disorders in persons living in southern vs northern latitudes of the United States. Gastroenterology 152, 1922–1932 (2017).

    Article  PubMed  Google Scholar 

  42. Ivarsson, A., Hernell, O., Stenlund, H. & Persson, L. A. Breast-feeding protects against celiac disease. Am. J. Clin. Nutr. 75, 914–921 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Peters, U., Schneeweiss, S., Trautwein, E. A. & Erbersdobler, H. F. A case-control study of the effect of infant feeding on celiac disease. Ann. Nutr. Metab. 45, 135–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Pinto-Sánchez, M. I. et al. Gluten introduction to infant feeding and risk of celiac disease: systematic review and meta-analysis. J. Pediatr. 168, 132–143 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Silano, M., Agostoni, C., Sanz, Y. & Guandalini, S. Infant feeding and risk of developing celiac disease: a systematic review. BMJ Open 6, e009163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Güngör, D. et al. Infant milk-feeding practices and diagnosed celiac disease and inflammatory bowel disease in offspring: a systematic review. Am. J. Clin. Nutr. 109, 838S–851S (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meijer, C., Shamir, R., Szajewska, H. & Mearin, L. Celiac disease prevention. Front. Pediatr. 6, 368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vriezinga, S. L. et al. Randomized feeding intervention in infants at high risk for celiac disease. N. Engl. J. Med. 371, 1304–1315 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Logan, K. et al. Early gluten introduction and celiac disease in the EAT Study: a prespecified analysis of the EAT randomized clinical trial. JAMA Pediatr. 174, 1041–1047 (2020).

    Article  PubMed  Google Scholar 

  50. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N. Engl. J. Med. 371, 1295–1303 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Roberts, S. E., Williams, J. G., Meddings, D., Davidson, R. & Goldacre, M. J. Perinatal risk factors and coeliac disease in children and young adults: a record linkage study. Aliment. Pharmacol. Ther. 29, 222–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lebwohl, B., Green, P. H. R., Murray, J. A. & Ludvigsson, J. F. Season of birth in a nationwide cohort of coeliac disease patients. Arch. Dis. Child. 98, 48–51 (2013).

    Article  PubMed  Google Scholar 

  53. Tanpowpong, P. et al. Multicenter study on season of birth and celiac disease: evidence for a new theoretical model of pathogenesis. J. Pediatr. 162, 501–504 (2013).

    Article  PubMed  Google Scholar 

  54. Mårild, K., Stephansson, O., Montgomery, S., Murray, J. A. & Ludvigsson, J. F. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 142, 39–45 (2012).

    Article  PubMed  Google Scholar 

  55. Dydensborg Sander, S. et al. Mode of delivery is not associated with celiac disease. Clin. Epidemiol. 10, 323–332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lionetti, E. et al. Mode of delivery and risk of celiac disease: risk of celiac disease and age at gluten introduction cohort study. J. Pediatr. 184, 81–86 (2017).

    Article  PubMed  Google Scholar 

  57. Koletzko, S. et al. Cesarean section on the risk of celiac disease in the offspring: the Teddy study. J. Pediatr. Gastroenterol. Nutr. 66, 417–424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stroud, C. et al. Evolving patterns in the presentation of coeliac disease over the last 25 years. Frontline Gastroenterol. 11, 98–103 (2020).

    Article  PubMed  Google Scholar 

  59. Stene, L. C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am. J. Gastroenterol. 101, 2333–2340 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Tjernberg, A. R. & Ludvigsson, J. F. Children with celiac disease are more likely to have attended hospital for prior respiratory syncytial virus infection. Dig. Dis. Sci. 59, 1502–1508 (2014).

    Article  PubMed  Google Scholar 

  61. Kahrs, C. R. et al. Enterovirus as trigger of coeliac disease: nested case-control study within prospective birth cohort. BMJ 364, l231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Welander, A., Tjernberg, A. R., Montgomery, S. M., Ludvigsson, J. & Ludvigsson, J. F. Infectious disease and risk of later celiac disease in childhood. Pediatrics 125, e530–e536 (2010).

    Article  PubMed  Google Scholar 

  63. Lindfors, K. et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut 69, 1416–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Green, P. H. R. et al. Characteristics of adult celiac disease in the USA: results of a national survey. Am. J. Gastroenterol. 96, 126–131 (2001).

    Article  PubMed  Google Scholar 

  65. Zipser, R. D., Patel, S., Yahya, K. Z., Baisch, D. W. & Monarch, E. Presentations of adult celiac disease in a nationwide patient support group. Dig. Dis. Sci. 48, 761–764 (2003).

    Article  PubMed  Google Scholar 

  66. Norström, F., Lindholm, L., Sandström, O., Nordyke, K. & Ivarsson, A. Delay to celiac disease diagnosis and its implications for health-related quality of life. BMC Gastroenterol. 11, 118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cranney, A. et al. The Canadian celiac health survey. Dig. Dis. Sci. 52, 1087–1095 (2007).

    Article  PubMed  Google Scholar 

  68. Gray, A. M. & Papanicolas, I. N. Impact of symptoms on quality of life before and after diagnosis of coeliac disease: results from a UK population survey. BMC Health Serv. Res. 10, 105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ukkola, A. et al. Use of health care services and pharmaceutical agents in coeliac disease: a prospective nationwide study. BMC Gastroenterol. 12, 136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zipser, R. D., Farid, M., Baisch, D., Patel, B. & Patel, D. Physician awareness of celiac disease: a need for further education. J. Gen. Intern. Med. 20, 644–646 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smukalla, S., Lebwohl, B., Mears, J. G., Leslie, L. A. & Green, P. H. How often do hematologists consider celiac disease in iron-deficiency anemia? Results of a national survey. Clin. Adv. Hematol. Oncol. 12, 100–105 (2014).

    PubMed  Google Scholar 

  72. Biagi, F., Bianchi, P. I., Campanella, J., Zanellati, G. & Corazza, G. R. The impact of misdiagnosing celiac disease at a referral centre. Can. J. Gastroenterol. 23, 543–545 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ianiro, G. et al. Prior misdiagnosis of celiac disease is common among patients referred to a tertiary care center: a prospective cohort study. Clin. Transl. Gastroenterol. 7, e139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pinto Sánchez, M. I. et al. Very high rate of misdiagnosis of celiac disease in clinical practice. Acta Gastroenterol. Latinoam. 39, 250–253 (2009).

    PubMed  Google Scholar 

  75. Franceschini, E. et al. Misuse of serological screening tests for celiac disease in children: a prospective study in Italy. Dig. Liver Dis. 51, 1547–1550 (2019).

    Article  PubMed  Google Scholar 

  76. Singh, P. et al. Titers of anti-tissue transglutaminase antibody correlate well with severity of villous abnormalities in celiac disease. J. Clin. Gastroenterol. 49, 212–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Melini, V. & Melini, F. Gluten-free diet: gaps and needs for a healthier diet. Nutrients 11, 170 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  78. Pallav, K. et al. Clinical utility of celiac disease-associated HLA testing. Dig. Dis. Sci. 59, 2199–2206 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wolf, J. et al. Validation of antibody-based strategies for diagnosis of pediatric celiac disease without biopsy. Gastroenterology 153, 410–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Werkstetter, K. J. et al. Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology 153, 924–935 (2017).

    Article  PubMed  Google Scholar 

  81. Fuchs, V. et al. Serology-based criteria for adult coeliac disease have excellent accuracy across the range of pre-test probabilities. Aliment. Pharmacol. Ther. 49, 277–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Penny, H. A. et al. Accuracy of a no-biopsy approach for the diagnosis of coeliac disease across different adult cohorts. Gut 70, 876–883 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Husby, S., Murray, J. A. & Katzka, D. A. AGA clinical practice update on diagnosis and monitoring of celiac disease-changing utility of serology and histologic measures: expert review. Gastroenterology 156, 885–889 (2019).

    Article  PubMed  Google Scholar 

  84. Smarrazzo, A. et al. Variability of anti-human transglutaminase testing in celiac disease across Mediterranean countries. World J. Gastroenterol. 23, 4437–4443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh, P. et al. Inter- and intra-assay variation in the diagnostic performance of assays for anti-tissue transglutaminase in 2 populations. Clin. Gastroenterol. Hepatol. 18, 2628–2630 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Naiyer, A. J. et al. Comparison of commercially available serologic kits for the detection of celiac disease. J. Clin. Gastroenterol. 43, 225–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wong, R. C. W., Wilson, R. J., Steele, R. H., Radford-Smith, G. & Adelstein, S. A comparison of 13 guinea pig and human anti-tissue transglutaminase antibody ELISA kits. J. Clin. Pathol. 55, 488–494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choung, R. S. et al. Community-based study of celiac disease autoimmunity progression in adults. Gastroenterology 158, 151–159 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Tye-Din, J. Interpreting tests for coeliac disease: tips, pitfalls and updates. Aust. J. Gen. Pract. 47, 28–33 (2018).

    Article  PubMed  Google Scholar 

  90. Sugai, E. et al. Dynamics of celiac disease-specific serology after initiation of a gluten-free diet and use in the assessment of compliance with treatment. Dig. Liver Dis. 42, 352–358 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Lewis, N. R. & Scott, B. B. Meta-analysis: deamidated gliadin peptide antibody and tissue transglutaminase antibody compared as screening tests for coeliac disease. Aliment. Pharmacol. Ther. 31, 73–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Hoerter, N. A. et al. Diagnostic yield of isolated deamidated gliadin peptide antibody elevation for celiac disease. Dig. Dis. Sci. 62, 1272–1276 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Sugai, E. et al. Celiac disease serology in patients with different pretest probabilities: is biopsy avoidable? World J. Gastroenterol. 16, 3144–3152 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Oyaert, M. et al. Combining antibody tests and taking into account antibody levels improves serologic diagnosis of celiac disease. Clin. Chem. Lab. Med. 53, 1537–1546 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Abdulrahim, A. et al. Deamidated gliadin antibodies: do they add to tissue transglutaminase-IgA assay in screening for celiac disease? J. Pediatr. Gastroenterol. Nutr. 72, e112–e118 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Gould, M. J., Brill, H., Marcon, M. A., Munn, N. J. & Walsh, C. M. In screening for celiac disease, deamidated gliadin rarely predicts disease when tissue transglutaminase is normal. J. Pediatr. Gastroenterol. Nutr. 68, 20–25 (2019).

    Article  PubMed  Google Scholar 

  97. Cummins, A. & Thompson, F. Sensitivity of anti-endomysial antibody in detecting celiac disease. Gastroenterology 122, 246–247 (2002).

    Article  PubMed  Google Scholar 

  98. Chou, R. et al. Screening for celiac disease: evidence report and systematic review for the US preventive services task force. JAMA 317, 1258–1268 (2017).

    Article  PubMed  Google Scholar 

  99. Singh, P. et al. Diagnostic accuracy of point of care tests for diagnosing celiac disease: a systematic review and meta-analysis. J. Clin. Gastroenterol. 53, 535–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Marsh, M. N. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 102, 330–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Oberhuber, G., Granditsch, G. & Vogelsang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 11, 1185–1194 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Corazza, G. R. et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin. Gastroenterol. Hepatol. 5, 838–843 (2007).

    Article  PubMed  Google Scholar 

  103. Ensari, A. Gluten-sensitive enteropathy (celiac disease): controversies in diagnosis and classification. Arch. Pathol. Lab. Med. 134, 826–836 (2010).

    Article  PubMed  Google Scholar 

  104. Weile, B., Hansen, B. F., Hägerstrand, I., Hansen, J. P. & Krasilnikoff, P. A. Interobserver variation in diagnosing coeliac disease. A joint study by Danish and Swedish pathologists. APMIS 108, 380–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Lebwohl, B., Kapel, R. C., Neugut, A. I., Green, P. H. R. & Genta, R. M. Adherence to biopsy guidelines increases celiac disease diagnosis. Gastrointest. Endosc. 74, 103–109 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lebwohl, B. et al. Prior endoscopy in patients with newly diagnosed celiac disease: a missed opportunity? Dig. Dis. Sci. 58, 1293–1298 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mooney, P. D. et al. Clinical and immunologic features of ultra-short celiac disease. Gastroenterology 150, 1125–1134 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Taavela, J. et al. Validation of morphometric analyses of small-intestinal biopsy readouts in celiac disease. PLoS One 8, e76163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Latorre, M. et al. Endoscopic biopsy technique in the diagnosis of celiac disease: one bite or two? Gastrointest. Endosc. 81, 1228–1233 (2015).

    Article  PubMed  Google Scholar 

  110. Das, P. et al. Quantitative histology-based classification system for assessment of the intestinal mucosal histological changes in patients with celiac disease. Intest. Res. 17, 387–397 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cummins, A. G. et al. Morphometric evaluation of duodenal biopsies in celiac disease. Am. J. Gastroenterol. 106, 145–150 (2011).

    Article  PubMed  Google Scholar 

  112. Syed, S. et al. Assessment of machine learning detection of environmental enteropathy and celiac disease in children. JAMA Netw. Open 2, e195822 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Crenn, P. et al. Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124, 1210–1219 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Pelsers, M. M. A. L., Hermens, W. T. & Glatz, J. F. C. Fatty acid-binding proteins as plasma markers of tissue injury. Clin. Chim. Acta 352, 15–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Morón, B. et al. CYP3A4-catalyzed simvastatin metabolism as a non-invasive marker of small intestinal health in celiac disease. Am. J. Gastroenterol. 108, 1344–1351 (2013).

    Article  PubMed  CAS  Google Scholar 

  116. Singh, A. et al. Non-immunological biomarkers for assessment of villous abnormalities in patients with celiac disease. J. Gastroenterol. Hepatol. 35, 438–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Fragkos, K. C. & Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. U. Eur. Gastroenterol. J. 6, 181–191 (2018).

    Article  CAS  Google Scholar 

  118. Adriaanse, M. P. M. et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 37, 482–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Choung, R. S. et al. Synthetic neoepitopes of the transglutaminase-deamidated gliadin complex as biomarkers for diagnosing and monitoring celiac disease. Gastroenterology 156, 582–591 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Kelly, C. P., Bai, J. C., Liu, E. & Leffler, D. A. Advances in diagnosis and management of celiac disease. Gastroenterology 148, 1175–1186 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Ciccocioppo, R. et al. The spectrum of differences between childhood and adulthood celiac disease. Nutrients 7, 8733–8751 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lebwohl, B., Murray, J. A., Rubio-Tapia, A., Green, P. H. R. & Ludvigsson, J. F. Predictors of persistent villous atrophy in coeliac disease: a population-based study. Aliment. Pharmacol. Ther. 39, 488–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rubio-Tapia, A. et al. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am. J. Gastroenterol. 105, 1412–1420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ghazzawi, Y., Rubio-Tapia, A., Murray, J. A. & Absah, I. Mucosal healing in children with treated celiac disease. J. Pediatr. Gastroenterol. Nutr. 59, 229–231 (2014).

    Article  PubMed  Google Scholar 

  125. Lanzini, A. et al. Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Aliment. Pharmacol. Ther. 29, 1299–1308 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Daveson, A. J. M. et al. Baseline quantitative histology in therapeutics trials reveals villus atrophy in most patients with coeliac disease who appear well controlled on gluten-free diet. GastroHep 2, 22–30 (2020).

    Article  Google Scholar 

  127. Adelman, D. C. et al. Measuring change in small intestinal histology in patients with celiac disease. Am. J. Gastroenterol. 113, 339–347 (2018).

    Article  PubMed  Google Scholar 

  128. Lebwohl, B. et al. Mucosal healing and risk for lymphoproliferative malignancy in celiac disease: a population-based cohort study. Ann. Intern. Med. 159, 169–175 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lebwohl, B., Michaëlsson, K., Green, P. H. R. & Ludvigsson, J. F. Persistent mucosal damage and risk of fracture in celiac disease. J. Clin. Endocrinol. Metab. 99, 609–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lebwohl, B. et al. Psychiatric disorders in patients with a diagnosis of celiac disease during childhood from 1973 to 2016. Clin. Gastroenterol. Hepatol. 19, 2093–2101 (2021).

    Article  PubMed  Google Scholar 

  131. Cadenhead, J. W. et al. Diminished quality of life among adolescents with coeliac disease using maladaptive eating behaviours to manage a gluten-free diet: a cross-sectional, mixed-methods study. J. Hum. Nutr. Diet. 32, 311–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bai, J. C. & Ciacci, C. World Gastroenterology Organisation global guidelines: celiac disease February 2017. J. Clin. Gastroenterol. 51, 755–768 (2017).

    Article  PubMed  Google Scholar 

  133. Leffler, D. A. et al. A simple validated gluten-free diet adherence survey for adults with celiac disease. Clin. Gastroenterol. Hepatol. 7, 530–536 (2009).

    Article  PubMed  Google Scholar 

  134. Herman, M. L. et al. Patients with celiac disease are not followed up adequately. Clin. Gastroenterol. Hepatol. 10, 893–899 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Silvester, J. A. et al. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology 153, 689–701 (2017).

    Article  PubMed  Google Scholar 

  136. Midhagen, G. et al. Antibody levels in adult patients with coeliac disease during gluten-free diet: a rapid initial decrease of clinical importance. J. Intern. Med. 256, 519–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Stefanolo, J. P. et al. Real-world gluten exposure in patients with celiac disease on gluten-free diets, determined from gliadin immunogenic peptides in urine and fecal samples. Clin. Gastroenterol. Hepatol. 19, 484–491 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Comino, I. et al. Fecal gluten peptides reveal limitations of serological tests and food questionnaires for monitoring gluten-free diet in celiac disease patients. Am. J. Gastroenterol. 111, 1456–1465 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Leonard, M. M. et al. Evaluating responses to gluten challenge: a randomized, double-blind, 2-dose gluten challenge trial. Gastroenterology 160, 720–733 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Moreno, M., de, L., Rodríguez-Herrera, A., Sousa, C. & Comino, I. Biomarkers to monitor gluten-free diet compliance in celiac patients. Nutrients 9, 46 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  141. Ruiz-Carnicer, Á. et al. Negative predictive value of the repeated absence of gluten immunogenic peptides in the urine of treated celiac patients in predicting mucosal healing: new proposals for follow-up in celiac disease. Am. J. Clin. Nutr. 112, 1240–1251 (2020).

    Article  PubMed  Google Scholar 

  142. Moreno, M. et al. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 66, 250–257 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Zammit, C. S., McAlindon, M. E., Sanders, D. S. & Sidhu, R. Assessment of disease severity on capsule endoscopy in patients with small bowel villous atrophy. J. Gastroenterol. Hepatol. 36, 1015–1021 (2021).

    Article  Google Scholar 

  144. Perez-Cuadrado-Robles, E. et al. Role of capsule endoscopy in alarm features and non-responsive celiac disease: a European multicenter study. Dig. Endosc. 30, 461–466 (2018).

    Article  PubMed  Google Scholar 

  145. Shah, S. et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am. J. Gastroenterol. 109, 1304–1311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mearns, E. S. et al. Systematic literature review of the economic burden of celiac disease. Pharmacoeconomics 37, 45–61 (2019).

    Article  PubMed  Google Scholar 

  147. White, L. E., Bannerman, E. & Gillett, P. M. Coeliac disease and the gluten-free diet: a review of the burdens; factors associated with adherence and impact on health-related quality of life, with specific focus on adolescence. J. Hum. Nutr. Diet. 29, 593–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Collin, P., Thorell, L., Kaukinen, K. & Mäki, M. The safe threshold for gluten contamination in gluten-free products. Can trace amounts be accepted in the treatment of coeliac disease? Aliment. Pharmacol. Ther. 19, 1277–1283 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Catassi, C. et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am. J. Clin. Nutr. 85, 160–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Akobeng, A. K. & Thomas, A. G. Systematic review: tolerable amount of gluten for people with coeliac disease. Aliment. Pharmacol. Ther. 27, 1044–1052 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Costa, A. F. et al. Gluten immunogenic peptide excretion detects dietary transgressions in treated celiac disease patients. World J. Gastroenterol. 25, 1409–1420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. FAO. Food and Agriculture Organization Standard for foods for special dietary use for persons intolerant to gluten CXS 118-1979. FAO https://www.fao.org/fao-who-codexalimentarius (1979).

  153. European Union. Commission Regulation (EC) No 41/2009 of 20 January 2009 concerning the composition and labelling of foodstuffs suitable for people intolerant to gluten (Text with EEA relevance). EU http://data.europa.eu/eli/reg/2009/41/oj (2009).

  154. FDA. Food Labeling; Gluten-Free Labeling of Foods. FDA https://www.federalregister.gov/documents/2013/08/05/2013-18813/food-labeling-gluten-free-labeling-of-foods (2013).

  155. García-Molina, M. D., Giménez, M. J., Sánchez-León, S. & Barro, F. Gluten free wheat: are we there? Nutrients 11, 487 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  156. Scherf, K. A. et al. Recent progress and recommendations on celiac disease from the working group on prolamin analysis and toxicity. Front. Nutr. 7, 29 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Scherf, K. A. et al. Statement of the prolamin working group on the determination of gluten in fermented foods containing partially hydrolyzed gluten. Front. Nutr. 7, 626712 (2020).

    Article  PubMed  Google Scholar 

  158. Lee, A. R., Wolf, R. L., Lebwohl, B., Ciaccio, E. J. & Green, P. H. R. Persistent economic burden of the gluten free diet. Nutrients 11, 399 (2019).

    Article  PubMed Central  Google Scholar 

  159. Falcomer, A. L. et al. Worldwide public policies for celiac disease: are patients well assisted? Int. J. Public Health 65, 937–945 (2020).

    Article  PubMed  Google Scholar 

  160. Rostami, K., Bold, J., Parr, A. & Johnson, M. W. Gluten-free diet indications, safety, quality, labels, and challenges. Nutrients 9, 846 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  161. Rodrigues, M., Yonamine, G. H. & Fernandes Satiro, C. A. Rate and determinants of non-adherence to a gluten-free diet and nutritional status assessment in children and adolescents with celiac disease in a tertiary Brazilian referral center: a cross-sectional and retrospective study. BMC Gastroenterol. 18, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lerner, B. A. et al. Detection of gluten in gluten-free labeled restaurant food: analysis of crowd-sourced data. Am. J. Gastroenterol. 114, 792–797 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bustamante, M. Á. et al. Evolution of gluten content in cereal-based gluten-free products: an overview from 1998 to 2016. Nutrients 9, 21 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  164. Lee, H. J., Anderson, Z. & Ryu, D. Gluten contamination in foods labeled as ‘gluten free’ in the United States. J. Food Prot. 77, 1830–1833 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Farage, P. et al. Gluten contamination in gluten-free bakery products: a risk for coeliac disease patients. Public Health Nutr. 20, 413–416 (2017).

    Article  PubMed  Google Scholar 

  166. Thompson, T., Lee, A. R. & Grace, T. Gluten contamination of grains, seeds, and flours in the United States: a pilot study. J. Am. Diet. Assoc. 110, 937–940 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Halmos, E. P., Clarke, D., Pizzey, C. & Tye-Din, J. A. Gluten in ‘gluten-free’ manufactured foods in Australia: a cross-sectional study. Med. J. Aust. 209, 448–449 (2018).

    Article  PubMed  Google Scholar 

  168. Verma, A. K. et al. Gluten contamination in naturally or labeled gluten-free products marketed in Italy. Nutrients 9, 115 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  169. Pinto-Sanchez, M. I. et al. Tax-deductible provisions for gluten-free diet in Canada compared with systems for gluten-free diet coverage available in various countries. Can. J. Gastroenterol. Hepatol. 29, 104–110 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mårild, K. et al. Costs and use of health care in patients with celiac disease: a population-based longitudinal study. Am. J. Gastroenterol. 115, 1253–1263 (2020).

    Article  PubMed  Google Scholar 

  171. Cappell, K. et al. Healthcare resource utilization and costs in celiac disease: a US claims analysis. Am. J. Gastroenterol. 115, 1821–1829 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Guandalini, S. et al. Direct costs in patients with celiac disease in the USA: a retrospective claims analysis. Dig. Dis. Sci. 61, 2823–2830 (2016).

    Article  PubMed  Google Scholar 

  173. van Wanrooij, R. L. J. et al. Outcome of referrals for non-responsive celiac disease in a tertiary center: low incidence of refractory celiac disease in the Netherlands. Clin. Transl. Gastroenterol. 8, e218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Leffler, D. A. et al. Etiologies and predictors of diagnosis in nonresponsive celiac disease. Clin. Gastroenterol. Hepatol. 5, 445–450 (2007).

    Article  PubMed  Google Scholar 

  175. Kelly, C. P. et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. Gastroenterology 161, 66–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Syage, J. A. et al. Latiglutenase treatment for celiac disease: symptom and quality of life improvement for seropositive patients on a gluten-free diet. GastroHep 1, 293–301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pultz, I. S. et al. Gluten degradation, pharmacokinetics, safety, and tolerability of TAK-062, an engineered enzyme to treat celiac disease. Gastroenterology 161, 81–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Schuppan, D. et al. A randomized trial of a transglutaminase 2 inhibitor for celiac disease. N. Engl. J. Med. 385, 35–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Seiler, C. L. et al. Probiotics for celiac disease: a systematic review and meta-analysis of randomized controlled trials. Am. J. Gastroenterol. 115, 1584–1595 (2020).

    Article  PubMed  Google Scholar 

  180. Kivelä, L. et al. Current and emerging therapies for coeliac disease. Nat. Rev. Gastroenterol. Hepatol. 18, 181–195 (2021).

    Article  PubMed  Google Scholar 

  181. Ludvigsson, J. F. et al. The Oslo definitions for coeliac disease and related terms. Gut 62, 43–52 (2013).

    Article  PubMed  Google Scholar 

  182. Nachman, F. et al. Serological tests for celiac disease as indicators of long-term compliance with the gluten-free diet. Eur. J. Gastroenterol. Hepatol. 23, 473–480 (2011).

    PubMed  Google Scholar 

  183. Leffler, D. A. & Schuppan, D. Update on serologic testing in celiac disease. Am. J. Gastroenterol. 105, 2520–2524 (2010).

    Article  PubMed  Google Scholar 

  184. Nachman, F. et al. Quality of life in celiac disease patients: prospective analysis on the importance of clinical severity at diagnosis and the impact of treatment. Dig. Liver Dis. 41, 15–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Nachman, F. et al. Long-term deterioration of quality of life in adult patients with celiac disease is associated with treatment noncompliance. Dig. Liver Dis. 42, 685–691 (2010).

    Article  PubMed  Google Scholar 

  186. Corazza, G. R., Stefano, M. D., Mauriño, E. & Bai, J. C. Bones in coeliac disease: diagnosis and treatment. Best Pract. Res. Clin. Gastroenterol. 19, 453–465 (2005).

    Article  PubMed  Google Scholar 

  187. Zanchetta, M. B. et al. Improved bone microarchitecture in patients with celiac disease after 3 years on a gluten-free diet. Clin. Gastroenterol. Hepatol. 16, 774–775 (2018).

    Article  PubMed  Google Scholar 

  188. Zanchetta, M. B., Longobardi, V. & Bai, J. C. Bone and celiac disease. Curr. Osteoporos. Rep. 14, 43–48 (2016).

    Article  PubMed  Google Scholar 

  189. Sánchez, M. I. P. et al. Risk of fracture in celiac disease: gender, dietary compliance, or both? World J. Gastroenterol. 17, 3035–3042 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hadjivassiliou, M. et al. Neurological dysfunction in coeliac disease and non-coeliac gluten sensitivity. Am. J. Gastroenterol. 111, 561–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Croall, I. D., Sanders, D. S., Hadjivassiliou, M. & Hoggard, N. Cognitive deficit and white matter changes in persons with celiac disease: a population-based study. Gastroenterology 158, 2112–2122 (2020).

    Article  PubMed  Google Scholar 

  192. Rubio-Tapia, A. et al. Creation of a model to predict survival in patients with refractory coeliac disease using a multinational registry. Aliment. Pharmacol. Ther. 44, 704–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ludvigsson, J. F. Mortality and malignancy in celiac disease. Gastrointest. Endosc. Clin. N. Am. 22, 705–722 (2012).

    Article  PubMed  Google Scholar 

  194. Cellier, C. et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet 356, 203–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Holmes, G. K. T. & Muirhead, A. Mortality in coeliac disease: a population-based cohort study from a single centre in Southern Derbyshire, UK. BMJ Open Gastroenterol. 5, e000201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Rubio-Tapia, A. & Murray, J. A. The liver and celiac disease. Clin. Liver Dis. 23, 167–176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and to writing, reviewing and/or editing the manuscript before submission. In addition, G.K.M., P.S., C.C., D.S.S., D.L. and J.C.B. contributed substantially to discussions of its content.

Corresponding author

Correspondence to Govind K. Makharia.

Ethics declarations

Competing interests

C.C. declares that he has acted as a scientific consultant for Dr Schär Food (a gluten-free diet manufacturer), Nóos and Takeda. D.S.S. declares that he has received consultancy fees and an educational grant from Dr Schär Food. D.L. declares that he has received salary support from Takeda. J.C.B. declares that he has acted as a scientific consultant for Innovate, Proventionbio and Takeda. G.K.M., P.S. and R.A.R.A. declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks J. Ludviasson, P. Green and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

United Nations Food and Agriculture Organization: http://faostat.fao.org

Glossary

Gluten

The storage proteins of wheat (gliadins and glutenins), rye (secalins), barley (hordeins) and oats (avenins), which are composed of prolamin and glutelin moieties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makharia, G.K., Singh, P., Catassi, C. et al. The global burden of coeliac disease: opportunities and challenges. Nat Rev Gastroenterol Hepatol 19, 313–327 (2022). https://doi.org/10.1038/s41575-021-00552-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00552-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing