Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.

Key points

  • Cholangiocytes are epithelial cells lining the intrahepatic and extrahepatic bile ducts; they are heterogeneous in size and function and contribute to bile composition and flow by solute transport processes.

  • Cholangiocytes contribute to liver regeneration, especially when hepatocyte regeneration is compromised, as is often the case in human chronic liver diseases.

  • Cholangiocytes can become activated and participate in inflammation by secreting chemokines and cytokines and can also directly modulate the biology of myofibroblasts, the cell type responsible for collagen deposition within the liver.

  • Cholangiocytes can become senescent and participate in the senescence-associated secretory phenotype, a cell fate also characterized by cytokine generation and release.

  • Cholangiocytes participate in hepatic immunobiology, particularly by expressing Toll-like receptors (TLRs), contributing to immunoglobulin A (IgA) biology, and by cellular crosstalk with the innate and adaptive immune system.

  • Cholangiocytes are damaged in a variety of human liver diseases termed the cholangiopathies, which are in need of optimized therapies and represent a current unmet need in clinical medicine.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Masyuk, A. I., M. T. & LaRusso, N. F. in Physiology of the Gastrointestinal Tract (ed. Ghishan, F. K.) 1003–1023 (Elsevier Inc., 2018).

  2. 2.

    Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

  3. 3.

    Gaudio, E. et al. Cholangiocytes and blood supply. World J. Gastroenterol. 12, 3546–3552 (2006).

  4. 4.

    Morell, C. M., Fabris, L. & Strazzabosco, M. Vascular biology of the biliary epithelium. J. Gastroenterol. Hepatol. 28 (Suppl. 1), 26–32 (2013).

  5. 5.

    Alvaro, D. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 132, 415–431 (2007).

  6. 6.

    Lazaridis, K. N., Strazzabosco, M. & Larusso, N. F. The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127, 1565–1577 (2004).

  7. 7.

    Lazaridis, K. N. & LaRusso, N. F. Primary sclerosing cholangitis. N. Engl. J. Med. 375, 1161–1170 (2016).

  8. 8.

    Lemaigre, F. P. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137, 62–79 (2009).

  9. 9.

    Raynaud, P., Carpentier, R., Antoniou, A. & Lemaigre, F. P. Biliary differentiation and bile duct morphogenesis in development and disease. Int. J. Biochem. Cell Biol. 43, 245–256 (2011).

  10. 10.

    Strazzabosco, M. & Fabris, L. Functional anatomy of normal bile ducts. Anat. Rec. 291, 653–660 (2008).

  11. 11.

    Banales, J. M., Prieto, J. & Medina, J. F. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J. Gastroenterol. 12, 3496–3511 (2006).

  12. 12.

    Tabibian, J. H., Masyuk, A. I., Masyuk, T. V., O’Hara, S. P. & LaRusso, N. F. Physiology of cholangiocytes. Compr. Physiol. 3, 541–565 (2013).

  13. 13.

    Han, Y. et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp. Biol. Med. 238, 549–565 (2013).

  14. 14.

    Alpini, G. et al. Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal bile secretion. Am. J. Physiol. 272, G1064–G1074 (1997).

  15. 15.

    Alpini, G. et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 110, 1636–1643 (1996).

  16. 16.

    Ishii, M., Vroman, B. & LaRusso, N. F. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 97, 1236–1247 (1989).

  17. 17.

    Kanno, N., LeSage, G., Glaser, S., Alvaro, D. & Alpini, G. Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 31, 555–561 (2000).

  18. 18.

    Ludwig, J., Ritman, E. L., LaRusso, N. F., Sheedy, P. F. & Zumpe, G. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging techniques. Hepatology 27, 893–899 (1998).

  19. 19.

    Vroman, B. & LaRusso, N. F. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab. Invest. 74, 303–313 (1996).

  20. 20.

    Huang, B. Q. et al. Isolation and characterization of cholangiocyte primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G500–G509 (2006).

  21. 21.

    De La Iglesia, F. A. & Porta, E. A. Ciliated biliary epithelial cells in the livers of non-human primates. Experientia 23, 49–51 (1967).

  22. 22.

    Boyer, J. L. in Physiology of Membrane Disorders (eds Andreoli, T. E., Hoffman, J. F., Fanestil, D. D. & Schultz, S.) 609–636 (Springer US, 1986).

  23. 23.

    Banales, J. M. et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology 43, 266–275 (2006).

  24. 24.

    Lenzen, R., Alpini, G. & Tavoloni, N. Secretin stimulates bile ductular secretory activity through the cAMP system. Am. J. Physiol. 263, G527–G532 (1992).

  25. 25.

    Alvaro, D., Mennone, A. & Boyer, J. L. Role of kinases and phosphatases in the regulation of fluid secretion and Cl/HCO3- exchange in cholangiocytes. Am. J. Physiol. 273, G303–G313 (1997).

  26. 26.

    Tietz, P. S. et al. Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J. Biol. Chem. 278, 20413–20419 (2003).

  27. 27.

    Hohenester, S. et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

  28. 28.

    Tietz, P. S., Alpini, G., Pham, L. D. & Larusso, N. F. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am. J. Physiol. 269, G110–G118 (1995).

  29. 29.

    Kaminski, D. L. & Deshpande, Y. G. Effect of somatostatin and bombesin on secretin-stimulated ductular bile flow in dogs. Gastroenterology 85, 1239–1247 (1983).

  30. 30.

    Glaser, S. S. et al. Gastrin inhibits secretin-induced ductal secretion by interaction with specific receptors on rat cholangiocytes. Am. J. Physiol. 273, G1061–G1070 (1997).

  31. 31.

    Caligiuri, A. et al. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am. J. Physiol. 275, G835–G846 (1998).

  32. 32.

    Medina, J. F., Martinez, A., Vazquez, J. J. & Prieto, J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 25, 12–17 (1997).

  33. 33.

    Melero, S. et al. Defective regulation of cholangiocyte Cl/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35, 1513–1521 (2002).

  34. 34.

    Prieto, J. et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 117, 167–172 (1999).

  35. 35.

    Banales, J. M. et al. Up-regulation of microRNA 506 leads to decreased Cl/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 56, 687–697 (2012).

  36. 36.

    Erice, O. et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 67, 1420–1440 (2018).

  37. 37.

    Salas, J. T. et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134, 1482–1493 (2008).

  38. 38.

    Concepcion, A. R. et al. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses. Eur. J. Immunol. 44, 1341–1351 (2014).

  39. 39.

    Concepcion, A. R. et al. CD8+T cells undergo activation and programmed death-1 repression in the liver of aged Ae2a, b−/− mice favoring autoimmune cholangitis. Oncotarget 6, 28588–28606 (2015).

  40. 40.

    Colombo, C., Battezzati, P. M., Strazzabosco, M. & Podda, M. Liver and biliary problems in cystic fibrosis. Semin. Liver Dis. 18, 227–235 (1998).

  41. 41.

    Nyberg, B., Einarsson, K. & Sonnenfeld, T. Evidence that vasoactive intestinal peptide induces ductular secretion of bile in humans. Gastroenterology 96, 920–924 (1989).

  42. 42.

    Hirata, K. & Nathanson, M. H. Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroenterology 121, 396–406 (2001).

  43. 43.

    LeSage, G. D. et al. Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)- and PKC-dependent stimulation of cAMP. Hepatology 40, 1116–1127 (2004).

  44. 44.

    Glaser, S. et al. Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-gamma expression and decrease of PKA activity. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G683–G694 (2003).

  45. 45.

    Kanno, N. et al. Stimulation of alpha2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology 35, 1329–1340 (2002).

  46. 46.

    Francis, H. et al. The alpha2-adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am. J. Physiol. Cell Physiol. 293, C1252–C1262 (2007).

  47. 47.

    Dutta, A. K. et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl− channel activated by extracellular nucleotides, in biliary epithelium. J. Biol. Chem. 286, 766–776 (2011).

  48. 48.

    Roman, R. M., Feranchak, A. P., Salter, K. D., Wang, Y. & Fitz, J. G. Endogenous ATP release regulates Cl secretion in cultured human and rat biliary epithelial cells. Am. J. Physiol. 276, G1391–G1400 (1999).

  49. 49.

    Concepcion, A. R., Lopez, M., Ardura-Fabregat, A. & Medina, J. F. Role of AE2 for pHi regulation in biliary epithelial cells. Front. Physiol. 4, 413 (2013).

  50. 50.

    Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

  51. 51.

    Lamri, Y., Erlinger, S., Dumont, M., Roda, A. & Feldmann, G. Immunoperoxidase localization of ursodeoxycholic acid in rat biliary epithelial cells. Evidence for a cholehepatic circulation. Liver 12, 351–354 (1992).

  52. 52.

    Lazaridis, K. N. et al. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J. Clin. Invest. 100, 2714–2721 (1997).

  53. 53.

    Lazaridis, K. N. et al. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc. Natl Acad. Sci. USA 97, 11092–11097 (2000).

  54. 54.

    Kool, M. et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl Acad. Sci. USA 96, 6914–6919 (1999).

  55. 55.

    Soroka, C. J., Lee, J. M., Azzaroli, F. & Boyer, J. L. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33, 783–791 (2001).

  56. 56.

    Ballatori, N. et al. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42, 1270–1279 (2005).

  57. 57.

    Ballatori, N. et al. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front. Biosci. 14, 2829–2844 (2009).

  58. 58.

    Benedetti, A. et al. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Am. J. Physiol. 272, G1416–G1424 (1997).

  59. 59.

    Hirohashi, T., Suzuki, H., Takikawa, H. & Sugiyama, Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem. 275, 2905–2910 (2000).

  60. 60.

    Lazaridis, K. N., Pham, L., Vroman, B., de Groen, P. C. & LaRusso, N. F. Kinetic and molecular identification of sodium-dependent glucose transporter in normal rat cholangiocytes. Am. J. Physiol. 272, G1168–G1174 (1997).

  61. 61.

    Ballatori, N., Jacob, R. & Boyer, J. L. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 261, 7860–7865 (1986).

  62. 62.

    Ballatori, N., Jacob, R., Barrett, C. & Boyer, J. L. Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am. J. Physiol. 254, G1–G7 (1988).

  63. 63.

    Masyuk, A. I., Masyuk, T. V. & LaRusso, N. F. Cholangiocyte primary cilia in liver health and disease. Dev. Dyn. 237, 2007–2012 (2008).

  64. 64.

    Masyuk, A. I. et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131, 911–920 (2006).

  65. 65.

    Masyuk, A. I. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G725–G734 (2008).

  66. 66.

    Masyuk, A. I. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1013–G1024 (2013).

  67. 67.

    Gradilone, S. A. et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc. Natl Acad. Sci. USA 104, 19138–19143 (2007).

  68. 68.

    Masyuk, A. I. et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990–G999 (2010).

  69. 69.

    Ober, E. A. & Lemaigre, F. P. Development of the liver: Insights into organ and tissue morphogenesis. J. Hepatol. 68, 1049–1062 (2018).

  70. 70.

    Michalopoulos, G. K. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 65, 1384–1392 (2017).

  71. 71.

    Strazzabosco, M. & Fabris, L. Development of the bile ducts: essentials for the clinical hepatologist. J. Hepatol. 56, 1159–1170 (2012).

  72. 72.

    Lemaigre, F. P. Molecular mechanisms of biliary development. Prog. Mol. Biol. Transl Sci. 97, 103–126 (2010).

  73. 73.

    Tchorz, J. S. et al. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50, 871–879 (2009).

  74. 74.

    Decaens, T. et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47, 247–258 (2008).

  75. 75.

    Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 19, 1849–1854 (2005).

  76. 76.

    Yanai, M. et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev. Dyn. 237, 1268–1283 (2008).

  77. 77.

    Kamiya, A. & Gonzalez, F. J. TNF-alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology 40, 527–536 (2004).

  78. 78.

    Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

  79. 79.

    Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. Development 142, 2094–2108 (2015).

  80. 80.

    Shin, D. & Monga, S. P. Cellular and molecular basis of liver development. Compr. Physiol. 3, 799–815 (2013).

  81. 81.

    Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251 (1997).

  82. 82.

    Zong, Y. & Stanger, B. Z. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip. Rev. Dev. Biol. 1, 643–655 (2012).

  83. 83.

    Merino-Azpitarte, M. et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J. Hepatol. 67, 72–83 (2017).

  84. 84.

    Itoh, T. Stem/progenitor cells in liver regeneration. Hepatology 64, 663–668 (2016).

  85. 85.

    Duncan, A. W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466–481 (2009).

  86. 86.

    Stanger, B. Z. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 77, 179–200 (2015).

  87. 87.

    Preziosi, M. E. & Monga, S. P. Update on the mechanisms of liver regeneration. Semin. Liver Dis. 37, 141–151 (2017).

  88. 88.

    Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

  89. 89.

    Itoh, T. & Miyajima, A. Liver regeneration by stem/progenitor cells. Hepatology 59, 1617–1626 (2014).

  90. 90.

    Lanzoni, G., Cardinale, V. & Carpino, G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology 64, 277–286 (2016).

  91. 91.

    Sato, K. et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69, 420–430 (2018).

  92. 92.

    Alvaro, D., Gigliozzi, A. & Attili, A. F. Regulation and deregulation of cholangiocyte proliferation. J. Hepatol. 33, 333–340 (2000).

  93. 93.

    Svegliati-Baroni, G. et al. Estrogens maintain bile duct mass and reduce apoptosis after biliodigestive anastomosis in bile duct ligated rats. J. Hepatol. 44, 1158–1166 (2006).

  94. 94.

    Alvaro, D. et al. Estrogens and the pathophysiology of the biliary tree. World J. Gastroenterol. 12, 3537–3545 (2006).

  95. 95.

    Glaser, S. et al. Progesterone stimulates the proliferation of female and male cholangiocytes via autocrine/paracrine mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G124–G136 (2008).

  96. 96.

    Yang, F. et al. Castration inhibits biliary proliferation induced by bile duct obstruction: novel role for the autocrine trophic effect of testosterone. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G981–G991 (2011).

  97. 97.

    Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

  98. 98.

    Espanol-Suner, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143, 1564–1575 (2012).

  99. 99.

    Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

  100. 100.

    Huch, M. et al. In vitro expansion of single Lgr5+liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

  101. 101.

    Kamimoto, K. et al. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 5, e15034 (2016).

  102. 102.

    Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

  103. 103.

    Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).

  104. 104.

    Rodrigo-Torres, D. et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60, 1367–1377 (2014).

  105. 105.

    Sackett, S. D. et al. Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49, 920–929 (2009).

  106. 106.

    Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

  107. 107.

    Tarlow, B. D., Finegold, M. J. & Grompe, M. Clonal tracing of Sox9+liver progenitors in mouse oval cell injury. Hepatology 60, 278–289 (2014).

  108. 108.

    Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

  109. 109.

    Overi, D. et al. Contribution of resident stem cells to liver and biliary tree regeneration in human diseases. Int. J. Mol. Sci. 19, 2917 (2018).

  110. 110.

    Michalopoulos, G. K. & Khan, Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149, 876–882 (2015).

  111. 111.

    Choi, T. Y., Ninov, N., Stainier, D. Y. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 (2014).

  112. 112.

    He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800 (2014).

  113. 113.

    Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

  114. 114.

    Schaub, J. R. et al. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

  115. 115.

    Lemaigre, F. P. Determining the fate of hepatic cells by lineage tracing: facts and pitfalls. Hepatology 61, 2100–2103 (2015).

  116. 116.

    Kopp, J. L., Grompe, M. & Sander, M. Stem cells versus plasticity in liver and pancreas regeneration. Nat. Cell Biol. 18, 238–245 (2016).

  117. 117.

    O’Hara, S. P., Karlsen, T. H. & LaRusso, N. F. Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut 66, 1873–1877 (2017).

  118. 118.

    O’Hara, S. P., Tabibian, J. H., Splinter, P. L. & LaRusso, N. F. The dynamic biliary epithelia: molecules, pathways, and disease. J. Hepatol. 58, 575–582 (2013).

  119. 119.

    Pinto, C., Giordano, D. M., Maroni, L. & Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Biophys. Acta 1864, 1270–1278 (2018).

  120. 120.

    Strazzabosco, M. et al. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim. Biophys. Acta 1864, 1374–1379 (2018).

  121. 121.

    Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

  122. 122.

    Blechacz, B. & Gores, G. J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 48, 308–321 (2008).

  123. 123.

    Adams, D. H. Biliary epithelial cells: innocent victims or active participants in immune-mediated liver disease? J. Lab. Clin. Med. 128, 528–530 (1996).

  124. 124.

    Zhu, C., Fuchs, C. D., Halilbasic, E. & Trauner, M. Bile acids in regulation of inflammation and immunity: friend or foe? Clin. Exp. Rheumatol 34, 25–31 (2016).

  125. 125.

    Fabris, L., Spirli, C., Cadamuro, M., Fiorotto, R. & Strazzabosco, M. Emerging concepts in biliary repair and fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G102–G116 (2017).

  126. 126.

    Kaffe, E. et al. beta-Catenin and interleukin-1beta-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67, 1903–1919 (2018).

  127. 127.

    Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

  128. 128.

    Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

  129. 129.

    Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

  130. 130.

    Fabris, L. et al. Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations. Am. J. Pathol. 156, 1599–1612 (2000).

  131. 131.

    Fabris, L. & Strazzabosco, M. Epithelial-mesenchymal interactions in biliary diseases. Semin. Liver Dis. 31, 11–32 (2011).

  132. 132.

    Fabris, L., Brivio, S., Cadamuro, M. & Strazzabosco, M. Revisiting epithelial-to-mesenchymal transition in liver fibrosis: clues for a better understanding of the “reactive” biliary epithelial phenotype. Stem Cells Int. 2016, 2953727 (2016).

  133. 133.

    Milani, S., Herbst, H., Schuppan, D., Stein, H. & Surrenti, C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am. J. Pathol. 139, 1221–1229 (1991).

  134. 134.

    Kinnman, N. et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab. Invest. 83, 163–173 (2003).

  135. 135.

    Kruglov, E. A., Nathanson, R. A., Nguyen, T. & Dranoff, J. A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G765–G771 (2006).

  136. 136.

    Roskams, T. A., Libbrecht, L. & Desmet, V. J. Progenitor cells in diseased human liver. Semin. Liver Dis. 23, 385–396 (2003).

  137. 137.

    Roskams, T. A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39, 1739–1745 (2004).

  138. 138.

    Franchitto, A. et al. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Ann. Transl Med. 1, 27 (2013).

  139. 139.

    Francis, H. et al. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J. Hepatol. 41, 528–537 (2004).

  140. 140.

    Fabris, L. et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am. J. Pathol. 171, 641–653 (2007).

  141. 141.

    Demetris, A. J., Seaberg, E. C., Wennerberg, A., Ionellie, J. & Michalopoulos, G. Ductular reaction after submassive necrosis in humans. Special emphasis on analysis of ductular hepatocytes. Am. J. Pathol. 149, 439–448 (1996).

  142. 142.

    Desmet, V. J. Histopathology of cholestasis. Verh. Dtsch. Ges. Pathol. 79, 233–240 (1995).

  143. 143.

    Brivio, S., Cadamuro, M., Fabris, L. & Strazzabosco, M. Epithelial-to-mesenchymal transition and cancer invasiveness: what can we learn from cholangiocarcinoma? J. Clin. Med. 4, 2028–2041 (2015).

  144. 144.

    Sasaki, M. et al. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. Am. J. Clin. Pathol. 133, 212–223 (2010).

  145. 145.

    He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

  146. 146.

    Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(−/−)) mice. Hepatology 67, 247–259 (2018).

  147. 147.

    Morell, C. M. et al. Notch signaling and progenitor/ductular reaction in steatohepatitis. PLOS ONE 12, e0187384 (2017).

  148. 148.

    Fiorotto, R. et al. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J. Hepatol. 59, 124–130 (2013).

  149. 149.

    Geisler, F. & Strazzabosco, M. Emerging roles of Notch signaling in liver disease. Hepatology 61, 382–392 (2015).

  150. 150.

    Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

  151. 151.

    Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

  152. 152.

    Harada, K. et al. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40, 925–932 (2004).

  153. 153.

    Saito, K. & Nakanuma, Y. Lactoferrin and lysozyme in the intrahepatic bile duct of normal livers and hepatolithiasis. An immunohistochemical study. J. Hepatol. 15, 147–153 (1992).

  154. 154.

    Nagura, H., Smith, P. D., Nakane, P. K. & Brown, W. R. IGA in human bile and liver. J. Immunol. 126, 587–595 (1981).

  155. 155.

    D’Aldebert, E. et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136, 1435–1443 (2009).

  156. 156.

    Sternlieb, I. Special article: functional implications of human portal and bile ductular ultrastructure. Gastroenterology 63, 321–327 (1972).

  157. 157.

    Brown, W. R. & Kloppel, T. M. The liver and IgA: immunological, cell biological and clinical implications. Hepatology 9, 763–784 (1989).

  158. 158.

    Farina, A. et al. A step further in the analysis of human bile proteome. J. Proteome Res. 10, 2047–2063 (2011).

  159. 159.

    Brandtzaeg, P. et al. Production and secretion of immunoglobulins in the gastrointestinal tract. Ann. Allergy 59, 21–39 (1987).

  160. 160.

    Naldi, M., Baldassarre, M., Domenicali, M., Bartolini, M. & Caraceni, P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J. Pharm. Biomed. Anal. 144, 138–153 (2017).

  161. 161.

    Aagaard, B. D., Heyworth, M. F., Oesterle, A. L., Jones, A. L. & Way, L. W. Intestinal immunisation with Escherichia coli protects rats against Escherichia coli induced cholangitis. Gut 39, 136–140 (1996).

  162. 162.

    Harmatz, P. R., Kleinman, R. E., Bunnell, B. W., Bloch, K. J. & Walker, W. A. Hepatobiliary clearance of IgA immune complexes formed in the circulation. Hepatology 2, 328–333 (1982).

  163. 163.

    van de Wiel, A., Delacroix, D. L., van Hattum, J., Schuurman, H. J. & Kater, L. Characteristics of serum IgA and liver IgA deposits in alcoholic liver disease. Hepatology 7, 95–99 (1987).

  164. 164.

    Chen, X. M. et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J. Immunol. 175, 7447–7456 (2005).

  165. 165.

    Harada, K. et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab. Invest. 83, 1657–1667 (2003).

  166. 166.

    Ninlawan, K. et al. Opisthorchis viverrini excretory/secretory products induce toll-like receptor 4 upregulation and production of interleukin 6 and 8 in cholangiocyte. Parasitol. Int. 59, 616–621 (2010).

  167. 167.

    Ikeda, H. et al. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture. Lab. Invest. 87, 559–571 (2007).

  168. 168.

    Oya, S. et al. Inhibition of Toll-like receptor 4 suppresses liver injury induced by biliary obstruction and subsequent intraportal lipopolysaccharide injection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G244–G252 (2014).

  169. 169.

    Fiorotto, R. et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-kappaB-mediated inflammatory response in mice. Gastroenterology 141, 1498–1508 (2011).

  170. 170.

    Harada, K. et al. Innate immune response to double-stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia. Hepatology 46, 1146–1154 (2007).

  171. 171.

    Wang, A. P. et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J. Autoimmun 25, 85–91 (2005).

  172. 172.

    Moritoki, Y. et al. AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology 45, 314–322 (2007).

  173. 173.

    Matsushita, H. et al. TLR4, TLR9, and NLRP3 in biliary epithelial cells of primary sclerosing cholangitis: relationship with clinical characteristics. J. Gastroenterol. Hepatol. 30, 600–608 (2015).

  174. 174.

    Karlsen, T. H., Folseraas, T., Thorburn, D. & Vesterhus, M. Primary sclerosing cholangitis — a comprehensive review. J. Hepatol. 67, 1298–1323 (2017).

  175. 175.

    Hov, J. R. & Karlsen, T. H. The microbiome in primary sclerosing cholangitis: current evidence and potential concepts. Semin. Liver Dis. 37, 314–331 (2017).

  176. 176.

    Karrar, A. et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132, 1504–1514 (2007).

  177. 177.

    Mueller, T. et al. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int. 31, 1574–1588 (2011).

  178. 178.

    Maroni, L. et al. Nlrp3 activation induces Il-18 synthesis and affects the epithelial barrier function in reactive cholangiocytes. Am. J. Pathol. 187, 366–376 (2017).

  179. 179.

    Tian, J. et al. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J. 30, 4202–4213 (2016).

  180. 180.

    Auth, M. K. et al. Establishment and immunological characterization of cultured human gallbladder epithelial cells. Hepatology 18, 546–555 (1993).

  181. 181.

    Ayres, R. C., Neuberger, J. M., Shaw, J., Joplin, R. & Adams, D. H. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 34, 1245–1249 (1993).

  182. 182.

    Broome, U., Scheynius, A. & Hultcrantz, R. Induced expression of heat-shock protein on biliary epithelium in patients with primary sclerosing cholangitis and primary biliary cirrhosis. Hepatology 18, 298–303 (1993).

  183. 183.

    Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

  184. 184.

    Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

  185. 185.

    Schrumpf, E. et al. The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 62, 1249–1259 (2015).

  186. 186.

    Bottcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote pro-fibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

  187. 187.

    Jiang, X. et al. The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. J. Autoimmun. 90, 64–75 (2018).

  188. 188.

    Kita, H. et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123, 1031–1043 (2002).

  189. 189.

    Schrumpf, E. et al. The role of natural killer T cells in a mouse model with spontaneous bile duct inflammation. Physiol. Rep. 5, e13117 (2017).

  190. 190.

    Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

  191. 191.

    Kamihira, T. et al. Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific diseases. Hepatology 41, 151–159 (2005).

  192. 192.

    Oo, Y. H. et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 57, 1044–1051 (2012).

  193. 193.

    Afford, S. C. et al. Vascular cell adhesion molecule 1 expression by biliary epithelium promotes persistence of inflammation by inhibiting effector T cell apoptosis. Hepatology 59, 1932–1943 (2014).

  194. 194.

    Grant, A. J., Lalor, P. F., Salmi, M., Jalkanen, S. & Adams, D. H. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359, 150–157 (2002).

  195. 195.

    Borchers, A. T., Shimoda, S., Bowlus, C., Keen, C. L. & Gershwin, M. E. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin. Immunopathol. 31, 309–322 (2009).

  196. 196.

    Adams, D. H. & Afford, S. C. The role of cholangiocytes in the development of chronic inflammatory liver disease. Front. Biosci. 7, e276–e285 (2002).

  197. 197.

    Locatelli, L. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

  198. 198.

    Alabraba, E. B. et al. Coculture of human liver macrophages and cholangiocytes leads to CD40-dependent apoptosis and cytokine secretion. Hepatology 47, 552–562 (2008).

  199. 199.

    Marra, F. et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am. J. Pathol. 152, 423–430 (1998).

  200. 200.

    Vesterhus, M. et al. Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. J. Hepatol. 66, 1214–1222 (2017).

  201. 201.

    Cameron, R. G., Blendis, L. M. & Neuman, M. G. Accumulation of macrophages in primary sclerosing cholangitis. Clin. Biochem. 34, 195–201 (2001).

  202. 202.

    Zweers, S. J. et al. Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis. Liver Int. 36, 1370–1377 (2016).

  203. 203.

    Dong, R. & Zheng, S. Interleukin-8: a critical chemokine in biliary atresia. J. Gastroenterol. Hepatol. 30, 970–976 (2015).

  204. 204.

    Isse, K., Harada, K. & Nakanuma, Y. IL-8 expression by biliary epithelial cells is associated with neutrophilic infiltration and reactive bile ductules. Liver Int. 27, 672–680 (2007).

  205. 205.

    Morland, C. M., Fear, J., Joplin, R. & Adams, D. H. Inflammatory cytokines stimulate human biliary epithelial cells to express interleukin-8 and monocyte chemotactic protein-1. Biochem. Soc. Trans. 25, 232S (1997).

  206. 206.

    Tabibian, J. H. et al. Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab. Invest. 94, 1126–1133 (2014).

  207. 207.

    Reinhard, L. et al. S100A9 is a biliary protein marker of disease activity in primary sclerosing cholangitis. PLOS ONE 7, e29821 (2012).

  208. 208.

    Johnson, C. et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest. Cancer 1, 58–70 (2012).

  209. 209.

    Isomoto, H. et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 42, 1329–1338 (2005).

  210. 210.

    Kobayashi, S., Werneburg, N. W., Bronk, S. F., Kaufmann, S. H. & Gores, G. J. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128, 2054–2065 (2005).

  211. 211.

    Andersson, E. R. et al. Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations. Gastroenterology 154, 1080–1095 (2018).

  212. 212.

    Vyas, D. et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 67, 750–761 (2017).

  213. 213.

    Li, B. et al. Adult mouse liver contains two distinct populations of cholangiocytes. Stem Cell Rep. 9, 478–489 (2017).

  214. 214.

    Sampaziotis, F. et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963 (2017).

  215. 215.

    Sampaziotis, F. et al. Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827 (2017).

  216. 216.

    Loarca, L. et al. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Lab. Invest. 97, 1385–1396 (2017).

  217. 217.

    Cervantes-Alvarez, E. et al. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 13, 1–15 (2017).

  218. 218.

    De Assuncao, T. M., Jalan-Sakrikar, N. & Huebert, R. C. Regenerative medicine and the biliary tree. Semin. Liver Dis. 37, 17–27 (2017).

  219. 219.

    Dianat, N. et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60, 700–714 (2014).

  220. 220.

    De Assuncao, T. M. et al. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab. Invest. 95, 684–696 (2015).

  221. 221.

    Ogawa, M. et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 853–861 (2015).

  222. 222.

    Takayama, K. et al. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 474, 91–96 (2016).

  223. 223.

    Johanson, C. E. Benzodiazepine self-administration in rhesus monkeys: estazolam, flurazepam and lorazepam. Pharmacol. Biochem. Behav. 26, 521–526 (1987).

  224. 224.

    Alberts, R. et al. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut 67, 1517–1524 (2018).

Download references


J.M.B. has received grant support from the Spanish Ministries of Economy and Competitiveness (FIS PI15/01132, FIS PI18/01075 and Miguel Servet Programme CON14/00129) co-financed by ‘Fondo Europeo de Desarrollo Regional’ (FEDER); ISCIII (CIBERehd), Spain; BIOEF (Basque Foundation for Innovation and Health Research); EiTB Maratoia BIO15/CA/016/BD; the Department of Health of the Basque Country (2017111010); and the Scientific Foundation of the Spanish Association Against Cancer (AECC). The authors also acknowledge the US National Institutes of Health grants DK63947 (G.J.G.); DK057993, DK084567 and DK24031 (N.F.L.); and DK100575 and DK113339 (R.C.H.). G.J.G., N.F.L. and R.C.H. further acknowledge support from the Carlos Family Foundation and the Mayo Clinic. M.S. has recieved support from the US National Institutes of Health Grants DK079005, DK096096 and DK34989, the Silvio O. Conte Digestive Diseases Research Core Centers and PSC Partners Seeking a Cure.

Author information


  1. Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute — Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain

    • Jesus M. Banales
  2. Division of Gastroenterology and Hepatology, Mayo School of Medicine and Science, Mayo Clinic, Rochester, MN, USA

    • Robert C. Huebert
    • , Nicholas F. LaRusso
    •  & Gregory J. Gores
  3. Institute of Clinical Medicine and Division of Surgery, Inflammatory Diseases and Transplantation, University of Oslo and Oslo University Hospital, Oslo, Norway

    • Tom Karlsen
  4. Yale Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, USA

    • Mario Strazzabosco


  1. Search for Jesus M. Banales in:

  2. Search for Robert C. Huebert in:

  3. Search for Tom Karlsen in:

  4. Search for Mario Strazzabosco in:

  5. Search for Nicholas F. LaRusso in:

  6. Search for Gregory J. Gores in:


All authors contributed equally to this article.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Gregory J. Gores.

About this article

Publication history