Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNAi-based drug design: considerations and future directions

Abstract

More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of siRNA drugs.
Fig. 2: Medicinal chemistry of siRNA design.
Fig. 3: Strategies for altering pharmacokinetic profiles to improve siRNA systemic distribution and promote extrahepatic efficacy.
Fig. 4: Local delivery of siRNAs.
Fig. 5: Clinical indication and target selection for RNAi modulation.
Fig. 6: Promising future applications of siRNA drugs.

Similar content being viewed by others

References

  1. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther. 17, 872–879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug. Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tao, W. et al. Noninvasive imaging of lipid nanoparticle–mediated systemic delivery of small-interfering RNA to the liver. Mol. Ther. 18, 1657–1666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Hoy, S. M. Patisiran: first global approval. Drugs 78, 1625–1631 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014). This article reports the use of GalNAc conjugates for targeted delivery of siRNA to hepatocytes.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol. Ther. 25, 71–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garber, K. Alnylam terminates revusiran program, stock plunges. Nat. Biotechnol. 34, 1213–1214 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Maraganore, J. Reflections on Alnylam. Nat. Biotechnol. 40, 641–650 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023). This article provides a comprehensive review on the chemistry and function of approved oligonucleotide-based drugs by early 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Setten, R. L., Rossi, J. J. & Han, S.-P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019). This review provides an excellent resource for understanding the basic biology of RNAi therapeutics.

    Article  CAS  PubMed  Google Scholar 

  16. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Dowdy, S. F., Setten, R. L., Cui, X.-S. & Jadhav, S. G. Delivery of RNA therapeutics: the great endosomal escape! Nucleic Acid. Ther. 32, 361–368 (2022). References 16 and 17 discuss the fundamental challenges of cellular uptake and endosomal escape of siRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gantier, M. P. & Williams, B. R. G. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 18, 363–371 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scacheri, P. C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl Acad. Sci. USA 101, 1892–1897 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017). This review discusses chemical modifications that evolve ASO and siRNA therapeutics towards clinical application.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Smet, M. D., Meenken, C. & Van Den Horn, G. J. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198 (1999).

    Article  PubMed  Google Scholar 

  23. Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J.-H. et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc. Natl Acad. Sci. USA 102, 18902–18907 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hassler, M. R. et al. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46, 2185–2196 (2018). This article demonstrates that full chemical modification is essential for improving siRNA in vivo efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005). This paper compares the potency of fully 2′-modified siRNA with unmodified siRNA.

    Article  CAS  PubMed  Google Scholar 

  28. Manoharan, M. et al. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. 50, 2284–2288 (2011).

    Article  CAS  Google Scholar 

  29. Jahns, H. et al. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat. Commun. 6, 6317 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manoharan, M. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta Gene Struct. Expr. 1489, 117–130 (1999).

    Article  CAS  Google Scholar 

  32. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blidner, R. A., Hammer, R. P., Lopez, M. J., Robinson, S. O. & Monroe, W. T. Fully 2′-deoxy-2′-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem. Biol. Drug Des. 70, 113–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc–siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019). This article investigates the safety of 2′-F nucleotides in GalNAc–siRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schirle, N. T. & MacRae, I. J. The crystal structure of human argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, S. M. et al. Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. Mol. Ther. Nucleic Acids 29, 135–149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther. 34, 357–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665–7680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ly, S., Echeverria, D., Sousa, J. & Khvorova, A. Single-stranded phosphorothioated regions enhance cellular uptake of cholesterol-conjugated siRNA but not silencing efficacy. Mol. Ther. Nucleic Acids 21, 991–1005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Parmar, R. et al. 5′-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. ChemBioChem 17, 985–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Haraszti, R. A. et al. 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res. 45, 7581–7592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lima, W. F. et al. Single-stranded siRNAs activate RNAi in animals. Cell 150, 883–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, D. et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant Huntingtin expression. Cell 150, 895–908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prakash, T. P. et al. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res. 43, 2993–3011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019). This paper describes the effect of siRNA valency on improving tissue distribution profile and potency in the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biscans, A. et al. Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol. Ther. 29, 1382–1394 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022). This paper reports on the application of lipophilic conjugates to enhance the utility of siRNA in extrahepatic tissues.

    Article  CAS  PubMed  Google Scholar 

  52. Hariharan, V. N. et al. Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120, e2219523120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5′ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Guenther, D. C. et al. Role of a “magic” methyl: 2′-Deoxy-2′-α-F-2′-β-C-methyl pyrimidine nucleotides modulate RNA interference activity through synergy with 5′-phosphate mimics and mitigation of off-target effects. J. Am. Chem. Soc. 144, 14517–14534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koller, E. et al. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 39, 4795–4807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sano, M. et al. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res. 36, 5812–5821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, D.-H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005). This paper describes a siRNA variant that requires Dicer processing to enable RNAi activity.

    Article  CAS  PubMed  Google Scholar 

  59. Snead, N. M. et al. Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res. 41, 6209–6221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Chang, C. I. et al. Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol. Ther. 17, 725–732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jackson, A. L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Datta, D. et al. Rational optimization of siRNA to ensure strand bias in the interaction with the RNA-induced silencing complex. Chem. Commun. 59, 6347–6350 (2023).

    Article  CAS  Google Scholar 

  65. Chen, P. Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shibata, A. et al. Terminal bridging of siRNA duplex at the ribose 2′ position controls strand bias and target sequence preference. Mol. Ther. Nucleic Acids 32, 468–477 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rossi, J. J. Bridging siRNA strands for better function. Mol. Ther. Nucleic Acids 33, 209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varley, A. J. & Desaulniers, J.-P. Chemical strategies for strand selection in short-interfering RNAs. RSC Adv. 11, 2415–2426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jackson, A. L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson, E. M. et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA 14, 853–861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferguson, C. M. et al. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.13703 (2024).

  73. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schlegel, M. K. et al. Overcoming GNA/RNA base-pairing limitations using isonucleotides improves the pharmacodynamic activity of ESC+ GalNAc–siRNAs. Nucleic Acids Res. 49, 10851–10867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res. 50, 6656–6670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Egli, M., Schlegel, M. K. & Manoharan, M. Acyclic (S)-glycol nucleic acid (S -GNA) modification of siRNAs improves the safety of RNAi therapeutics while maintaining potency. RNA 29, 402–414 (2023). This article introduces GNA modification at the seed region of the guide strand, which could mitigate RNAi-mediated off-targeting effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamada, K. et al. Extended nucleic acid (exNA): a novel, biologically compatible backbone that significantly enhances oligonucleotide efficacy in vivo. Preprint at https://doi.org/10.1101/2023.05.26.542506 (2023).

  78. Krützfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).

    Article  PubMed  Google Scholar 

  79. Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Ferguson et al. A combinatorial approach for achieving CNS-selective RNAi. Nucl. Acids Res. https://doi.org/10.1093/nar/gkae100 (2024).

  81. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100, 7195–7200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwarz, D. S. et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2, e140 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Conroy, F. et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models. Nat. Commun. 13, 5802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jongejan, Y. K. et al. Small interfering RNA-mediated allele-selective silencing of von Willebrand factor in vitro and in vivo. Blood Adv. 7, 6108–6119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamada, K. et al. Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide–enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic Acids Res. 49, 12069–12088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Belgrad, J. et al. A programmable dual-targeting di-valent siRNA scaffold supports potent multi-gene modulation in the central nervous system. Preprint at https://doi.org/10.1101/2023.12.19.572404 (2023).

  87. Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Shmushkovich, T. et al. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Res. 46, 10905–10916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003). This article reveals that thermodynamic properties of siRNA can induce bias in duplex unwinding and guide strand selection.

    Article  CAS  PubMed  Google Scholar 

  90. Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. 24, 143–160 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Das Mandal, S. & Ray, P. S. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins. Genomics 113, 205–216 (2021).

    Article  PubMed  Google Scholar 

  92. Kanoria, S., Rennie, W. A., Carmack, C. S., Lu, J. & Ding, Y. N6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinform. Adv. 2, vbab046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee, M. Machine learning for small interfering RNAs: a concise review of recent developments. Front. Genet. 14, 1226336 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Monopoli, K. R., Korkin, D. & Khvorova, A. Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy. Mol. Ther. Nucleic Acids 33, 93–109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Birmingham, A. et al. A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2, 2068–2078 (2007). This protocol outlines the fundamental principles involved in designing specific and functional siRNAs.

    Article  CAS  PubMed  Google Scholar 

  96. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. La Rocca, G. et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl Acad. Sci. USA 112, 767–772 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tang, Q. et al. Multispecies-targeting siRNAs for the modulation of JAK1 in the skin. Mol. Ther. Nucleic Acids 35, 102117 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, Q. et al. RNAi-based modulation of IFN-γ signaling in skin. Mol. Ther. 30, 2709–2721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. O’Reilly, D. et al. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington’s disease. Mol. Ther. 31, 1661–1674 (2023).

    Article  PubMed  Google Scholar 

  101. Schenk, S., Schoenhals, G. J., De Souza, G. & Mann, M. A high confidence, manually validated human blood plasma protein reference set. BMC Med. Genomics 1, 41 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Godinho, B. M. D. C. et al. PK-modifying anchors significantly alter clearance kinetics, tissue distribution, and efficacy of therapeutics siRNAs. Mol. Ther. Nucleic Acids 29, 116–132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 47, 1082–1096 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010). This paper presents the initial evidence of RNAi in humans after systemic administration using nanoparticles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).

    Article  PubMed  Google Scholar 

  110. Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Rel. 357, 394–403 (2023).

    Article  CAS  Google Scholar 

  111. Polydefkis, M. et al. Comparison of efficacy outcomes with vutrisiran vs. patisiran in hATTR amyloidosis with polyneuropathy: post-hoc analysis of the HELIOS — a study (S14.003). Neurology 100 (17 Suppl. 2), S14.003 (2023).

    Google Scholar 

  112. Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Van De Water, F. M. et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug. Metab. Dispos. 34, 1393–1397 (2006).

    Article  PubMed  Google Scholar 

  114. Thielmann, M. et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation 144, 1133–1144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

    Article  PubMed  Google Scholar 

  116. Anders, H.-J., Kitching, A. R., Leung, N. & Romagnani, P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 23, 453–471 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Godinho, B. M. D. C. et al. Pharmacokinetic profiling of conjugated therapeutic oligonucleotides: a high-throughput method based upon serial blood microsampling coupled to peptide nucleic acid hybridization assay. Nucleic Acid. Ther. 27, 323–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Osborn, M. F. et al. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res. 47, 1070–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Fakih, H. H. et al. Dendritic amphiphilic siRNA: selective albumin binding, in vivo efficacy, and low toxicity. Mol. Ther. Nucleic Acids https://doi.org/10.1016/j.omtn.2023.102080 (2023).

  120. Biscans, A., Ly, S., McHugh, N., Cooper, D. A. & Khvorova, A. Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo. J. Control. Release 349, 831–843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    Article  CAS  Google Scholar 

  122. Nanna, A. R. et al. Generation and validation of structurally defined antibody–siRNA conjugates. Nucleic Acids Res. 48, 5281–5293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Malecova, B. et al. Targeted tissue delivery of RNA therapeutics using antibody–oligonucleotide conjugates (AOCs). Nucleic Acids Res. 51, 5901–5910 (2023). This paper describes the use of antibody–oligonucleotide conjugates as an effective strategy for delivering siRNA into muscle tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sugo, T. et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J. Control. Rel. 237, 1–13 (2016).

    Article  CAS  Google Scholar 

  125. Klein, D. et al. Centyrin ligands for extrahepatic delivery of siRNA. Mol. Ther. 29, 2053–2066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ämmälä, C. et al. Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci. Adv. 4, eaat3386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. McNamara, J. O. et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Chu, T. C. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhou, J., Li, H., Li, S., Zaia, J. & Rossi, J. Novel cell type-specific aptamer-siRNA delivery system for HIV-1 therapy. Nat. Preced. https://doi.org/10.1038/npre.2007.1299.1 (2007).

    Article  Google Scholar 

  130. Dassie, J. P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 27, 839–846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Neff, C. P. et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wheeler, L. A. et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J. Clin. Invest. 121, 2401–2412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wheeler, L. A. et al. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol. Ther. 21, 1378–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017). This review discusses aptamers as targeted therapeutics and siRNA delivery agents.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Y. et al. Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown. Proc. Natl Acad. Sci. USA 118, e2022830118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xie, S. et al. Aptamer-based targeted delivery of functional nucleic acids. J. Am. Chem. Soc. 145, 7677–7691 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fakhoury, J. J., McLaughlin, C. K., Edwardson, T. W., Conway, J. W. & Sleiman, H. F. Development and characterization of gene silencing DNA cages. Biomacromolecules 15, 276–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y.-J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Bujold, K. E., Fakih, H. H. & Sleiman, H. F. in RNA Interference and Cancer Therapy (ed. Dinesh Kumar, L.) 69–81. Methods in Molecular Biology vol. 1974 (Springer, 2019).

  141. Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, H. et al. Engineering DNA nanostructures for siRNA delivery in plants. Nat. Protoc. 15, 3064–3087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. No authors listed.Lipophilic siRNA conjugates yield durable silencing in extrahepatic tissues. Nat. Biotechnol. 40, 1439–1440 (2022).

    Article  Google Scholar 

  144. Cheng, S.-Y. et al. Single intravitreal administration of a tetravalent siRNA exhibits robust and efficient gene silencing in rodent and swine photoreceptors. Mol. Ther. Nucleic Acids 35, 102088 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ng, B. et al. Intratracheal administration of siRNA triggers mRNA silencing in the lung to modulate T cell immune response and lung inflammation. Mol. Ther. Nucleic Acids 16, 194–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ferguson, C. M. et al. Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep. JCI Insight 6, e152203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    Article  PubMed  Google Scholar 

  148. Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Prim. 1, 15056 (2015).

    Article  PubMed  Google Scholar 

  149. Hsu, T. & Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl Acad. Sci. USA 108, 15816–15821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zheng, D. et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl Acad. Sci. USA 109, 11975–11980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liang, X. et al. Skin delivery of siRNA using sponge spicules in combination with cationic flexible liposomes. Mol. Ther. Nucleic Acids 20, 639–648 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dharamdasani, V. et al. Topical delivery of siRNA into skin using ionic liquids. J. Control. Rel. 323, 475–482 (2020).

    Article  CAS  Google Scholar 

  153. Lee, K. et al. Study and evaluation of the potential of lipid nanocarriers for transdermal delivery of siRNA. Biotechnol. J. 15, 2000079 (2020).

    Article  CAS  Google Scholar 

  154. Mandal, A. et al. Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations. Sci. Adv. 6, eabb6049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aldawsari, M., Chougule, M. B. & Babu, R. J. Progress in topical siRNA delivery approaches for skin disorders. Curr. Pharm. Des. 21, 4594–4605 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Tang, Q. et al. Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin. Nat. Commun. 14, 7099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cui, J. et al. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat. Commun. 8, 191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Brüggenwirth, I. M. A. & Martins, P. N. RNA interference therapeutics in organ transplantation: the dawn of a new era. Am. J. Transplant. 20, 931–941 (2020).

    Article  PubMed  Google Scholar 

  159. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. No authors listed. Buying time for transplants. Nat. Biotechnol. 35, 801 (2017).

    Article  Google Scholar 

  161. Senior, M. Beating the organ clock. Nat. Biotechnol. 36, 488–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Theruvath, J. et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat. Med. 28, 333–344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gulhati, P. et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. Nat. Cancer 4, 62–80 (2022).

    PubMed  PubMed Central  Google Scholar 

  164. Richardson, P. G. et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N. Engl. J. Med. 389, 1009–1022 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Trajanoska, K. et al. From target discovery to clinical drug development with human genetics. Nature 620, 737–745 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Wu, T., Cooper, S. A. & Shah, V. H. Omics and AI advance biomarker discovery for liver disease. Nat. Med. 28, 1131–1132 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, S. et al. Multi-organ landscape of therapy-resistant melanoma. Nat. Med. 29, 1123–1134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Larsson, E., Sander, C. & Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol. 6, 433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Judge, A. D. et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Invest. 119, 661–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gonzalez-Gonzalez, E. et al. siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model. Gene Ther. 16, 963–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Omi, K., Tokunaga, K. & Hohjoh, H. Long‐lasting RNAi activity in mammalian neurons. FEBS Lett. 558, 89–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. McDonagh, M., Peterson, K., Holzhammer, B. & Fazio, S. A systematic review of PCSK9 inhibitors alirocumab and evolocumab. Manag. Care Spec. Pharm. 22, 641–653q (2016).

    Google Scholar 

  174. Flower, M. et al. MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain 142, 1876–1886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Takahashi, M., Koi, M., Balaguer, F., Boland, C. R. & Goel, A. MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J. Biol. Chem. 286, 12157–12165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Adam, R. et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am. J. Hum. Genet. 99, 337–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Iyama, T. & Wilson, D. M. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 12, 620–636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bogdanovich, S. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Kota, J. et al. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Sci. Transl. Med. 1, 6ra15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lee, S.-J. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J. Clin. Invest. 131, e148372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Van Der Worp, H. B. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Perlman, R. L. Mouse models of human disease: an evolutionary perspective. Evol. Med. Public Health 2016, 170–176 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234–238 (1983).

    Article  CAS  PubMed  Google Scholar 

  185. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  186. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Sutherland, J. E. et al. Nonclinical safety profile of revusiran, a 1st-generation GalNAc-siRNA conjugate for treatment of hereditary transthyretin-mediated amyloidosis. Nucleic Acid Ther. 30, 33–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gouda, M. A., Buschhorn, L., Schneeweiss, A., Wahida, A. & Subbiah, V. N-of-1 trials in cancer drug development. Cancer Discov. 13, 1301–1309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tran, H. et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat. Med. 28, 117–124 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Matlin, A. J., Clark, F. & Smith, C. W. J. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Prinos, P. et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 18, 673–679 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Schwerk, J. et al. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat. Immunol. 20, 1610–1620 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ray, T. A. et al. Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nat. Commun. 11, 3328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci. 24, 457–473 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Bradley, R. K. & Anczuków, O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer 23, 135–155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Marx, V. Method of the year: long-read sequencing. Nat. Methods 20, 6–11 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Shaffer, C. Mist begins to clear for lung delivery of RNA. Nat. Biotechnol. 38, 1110–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Dusheiko, G., Agarwal, K. & Maini, M. K. New approaches to chronic hepatitis B. N. Engl. J. Med. 388, 55–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Ambike, S. et al. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res. 50, 333–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Estes, J. D., Wong, S. W. & Brenchley, J. M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 18, 390–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dennis, C. The brave new world of RNA. Nature 418, 122–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug. Discov. 16, 167–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 381, 1176–1182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gaya, A. et al. Results of a phase 1/2 study of cemdisiran in healthy subjects and patients with paroxysmal nocturnal hemoglobinuria. eJHaem 4, 612–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Devalaraja-Narashimha, K. et al. Pharmacokinetics and pharmacodynamics of pozelimab alone or in combination with cemdisiran in non-human primates. PLoS ONE 17, e0269749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Griffin, M. Pozelimab/cemdisiran. Complement protein C5 inhibitor, treatment of complement-mediated diseases. Drugs Fut. 48, 93 (2023).

    Article  Google Scholar 

  212. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). This paper discovers that double-stranded RNA can induce catalytic cleavage of target mRNAs in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  213. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  214. Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001). References 213 and 214 were among the pioneering studies that demonstrated RNAi in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Hamar, P. et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 101, 14883–14888 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134, 577–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Li, B. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Woodrow, K. A. et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 8, 526–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  228. Dykxhoorn, D. M. & Lieberman, J. Knocking down disease with siRNAs. Cell 126, 231–235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. De Fougerolles, A., Vornlocher, H.-P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Sledz, C. A., Holko, M., De Veer, M. J., Silverman, R. H. & Williams, B. R. G. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  231. Frantz, S. Studies reveal potential pitfalls of RNAi. Nat. Rev. Drug Discov. 2, 763–764 (2003).

    Article  CAS  Google Scholar 

  232. Marques, J. T. & Williams, B. R. G. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol. 23, 1399–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  233. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003). This article demonstrates that siRNAs can induce off-targeting effects with limited target sequence similarity.

    Article  CAS  PubMed  Google Scholar 

  236. Karikó, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004). This paper demonstrates the role of Toll-like receptor 3 in mediating siRNA-induced immune activation.

    Article  PubMed  Google Scholar 

  237. Ledford, H. Drug giants turn their backs on RNA interference. Nature 468, 487–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Schmidt, C. RNAi momentum fizzles as pharma shifts priorities. Nat. Biotechnol. 29, 93–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Check Hayden, E. RNA interference rebooted. Nature 508, 443–443 (2014).

    Article  CAS  Google Scholar 

  240. Amrite, A., Fuentes, E., Marbury, T. C. & Zhang, S. Safety, pharmacokinetics, and exposure–response modeling of nedosiran in participants with severe chronic kidney disease. Clin. Pharmacol. Drug Dev. 12, 1164–1177 (2023).

    Article  CAS  PubMed  Google Scholar 

  241. Desai, A. S. et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. N. Engl. J. Med. 389, 228–238 (2023). This article reports on the clinical efficacy of siRNA in treating the prevalent disease hypertension.

    Article  CAS  PubMed  Google Scholar 

  242. Fernández-Ruiz, I. Promising novel siRNA for the treatment of hypertension. Nat. Rev. Cardiol. 20, 647–647 (2023).

    Article  PubMed  Google Scholar 

  243. Raal, F. J. et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med. 382, 1520–1530 (2020). This article reports on the clinical efficacy of siRNA in treating the prevalent disease hypercholesterolaemia.

    Article  CAS  PubMed  Google Scholar 

  244. Lamb, Y. N. Inclisiran: first approval. Drugs 81, 389–395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Long, D. et al. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14, 287–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  246. Małecka, E. M. & Woodson, S. A. Ribosomes clear the way for siRNA targeting. Nat. Struct. Mol. Biol. 27, 775–777 (2020). References 241 and 242 describe how mRNA secondary structure is a factor impacting siRNA/miRNA efficacy.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Vert, J.-P., Foveau, N., Lajaunie, C. & Vandenbrouck, Y. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 7, 520 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Shabalina, S. A., Spiridonov, A. N. & Ogurtsov, A. Y. Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 7, 65 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Matveeva, O. et al. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35, e63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Ichihara, M. et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res. 35, e123 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  252. Brown, K. M., Chu, C. & Rana, T. M. Target accessibility dictates the potency of human RISC. Nat. Struct. Mol. Biol. 12, 469–470 (2005). This article reports on the effect of increased target accessibility in improving RISC potency.

    Article  CAS  PubMed  Google Scholar 

  253. Heale, B. S. E. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res. 33, e30 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  255. Kim, S. et al. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 12, 5057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Davis, S. M. Guidelines for designing therapeutic siRNAs. PhD Thesis, UMass Chan Medical School (2023).

  257. Bahar Halpern, K. et al. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 13, 2653–2662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Wegener, M. & Müller-McNicoll, M. Nuclear retention of mRNAs — quality control, gene regulation and human disease. Semin. Cell Dev. Biol. 79, 131–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Didiot, M.-C. et al. Nuclear localization of Huntingtin mRNA is specific to cells of neuronal origin. Cell Rep. 24, 2553–2560.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ferguson, C. M., Echeverria, D., Hassler, M., Ly, S. & Khvorova, A. Cell type impacts accessibility of mRNA to silencing by RNA interference. Mol. Ther. Nucleic Acids 21, 384–393 (2020). This paper describes how the subcellular localization of mRNA transcripts in different cell types contributes to affecting siRNA efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Dawson, M. A. et al. Nuclear JAK2. Blood 118, 6987–6988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Narykov, O., Johnson, N. T. & Korkin, D. Predicting protein interaction network perturbation by alternative splicing with semi-supervised learning. Cell Rep. 37, 110045 (2021).

    Article  CAS  PubMed  Google Scholar 

  263. Dua, K. et al. The potential of siRNA based drug delivery in respiratory disorders: recent advances and progress. Drug. Dev. Res. 80, 714–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Donoso, L. A. et al. Autosomal dominant stargardt-like macular dystrophy. Surv. Ophthalmol. 46, 149–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  265. Ayuso, C. & Millan, J. M. Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med. 2, 34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Meng, D., Ragi, S. D. & Tsang, S. H. Therapy in rhodopsin-mediated autosomal dominant retinitis pigmentosa. Mol. Ther. 28, 2139–2149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Samson, N. & Ablasser, A. The cGAS–STING pathway and cancer. Nat. Cancer 3, 1452–1463 (2022).

    Article  CAS  PubMed  Google Scholar 

  268. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Fitzgerald, K., Frank-Kamenetsky, M. & Charisse, K. Dual targeting siRNA. US patent 9,187,746B2 (2015).

  271. Lee, S. H., Mok, H., Jo, S., Hong, C. A. & Park, T. G. Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials 32, 2359–2368 (2011).

    Article  CAS  PubMed  Google Scholar 

  272. Brown, J. M. et al. Ligand conjugated multimeric siRNAs enable enhanced uptake and multiplexed gene silencing. Nucleic Acid Ther. 29, 231–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Chareddy, Y. et al. P2.11-03 Synergistic co-targeting of MYC and KRAS in lung cancer by novel ligand-directed inverted chimeric RNAi molecules. J. Thorac. Oncol. 18, S360–S361 (2023).

    Article  Google Scholar 

  274. No authors listed. Undruggable KRAS — time to rebrand? Lancet Oncol. 22, 289 (2021).

    Article  Google Scholar 

  275. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Stojic, L. et al. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nat. Commun. 7, 10406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the nucleic acid–medicine community who contributed to the technology innovations, and whose excellent work could not be included here owing to lack of space. This work was supported by the NIH (grant nos. R35 GM131839 and R01 NS104022 to A.K.; and K99 AR082987 to Q.T.). The authors thank M. B. Dziewietin for her administrative assistance and D. Conte at RNA Therapeutics Institute for help in revising and proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Khvorova.

Ethics declarations

Competing interests

A.K. is a founder of Atalanta Therapeutics and Comanche Biopharma; serves on the Scientific Advisory Board of Aldena Therapeutics, Prime Medicine, Alltrna, Advirna and Evox Therapeutics. A.K. and Q.T. are listed as inventors of RNAi technology patents and patent applications.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Nedosiran: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215842s000lbl.pdf

Revusiran: https://www.alnylam.de/wp-content/uploads/2017/08/Revusiran-RNAi-Roundtable_FINAL2_08092017.pdf

A phase I/II study: https://www.aviditybiosciences.com/wp-content/uploads/2023/04/230330-AAN-2023-MARINA-Prelim-Data-Oral-Presentation_v6.0_FINAL.pdf

ABX1100: https://www.arobiotx.com/aro-receives-fda-orphan-drug-designation-for-abx1100

FDA Takes New Steps Aimed at Advancing Development of Individualized Medicines to Treat Genetic Diseases: https://www.fda.gov/news-events/press-announcements/fda-brief-fda-takes-new-steps-aimed-advancing-development-individualized-medicines-treat-genetic

FDA Takes Steps to Provide Clarity on Developing New Drug Products in the Age of Individualized Medicine: https://www.fda.gov/news-events/press-announcements/fda-takes-steps-provide-clarity-developing-new-drug-products-age-individualized-medicine

Regeneron and Alnylam announce a broad collaboration: https://investor.regeneron.com/news-releases/news-release-details/regeneron-and-alnylam-announce-broad-collaboration-discover

The Alnylam GEMINI platform: https://capella.alnylam.com/wp-content/uploads/2022/05/Theile_TIDES-2022.pdf

The Human Protein Atlas database: https://www.proteinatlas.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Khvorova, A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00912-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00912-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research