Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic regulation of skeletal cell fate and function

Abstract

Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.

Key points

  • Skeletal stem and progenitor cells display a high metabolic flexibility, and are likely to adapt to changing microenvironments.

  • Osteoblasts use glycolysis and fatty acid oxidation as major energy sources, whereas they use glutamine metabolism for biosynthesis and prevention of oxidative stress.

  • Bone marrow adipocytes release fatty acids upon systemic energy deficit to support osteoblast function.

  • Chondrocytes are well-adapted to their hypoxic and fatty acid-scarce microenvironment, as they rely on glycolysis for bioenergetics and glutamine metabolism for biosynthesis, redox balance and epigenetic regulation.

  • Osteoclast differentiation depends on oxidative phosphorylation, primarily supplied by glucose and fatty acid oxidation.

  • Metabolic disturbance is linked to skeletal cell dysfunction during bone pathology, and bone-metastatic and leukaemic cells hijack skeletal cell metabolism to support their tumorigenic spread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differentiation of bone-resident cell types.
Fig. 2: Metabolic features of skeletal cells.
Fig. 3: Metabolic profile of skeletal stem and progenitor cells, and their osteogenic and adipogenic descendants.
Fig. 4: Metabolic regulation of chondrocyte function.
Fig. 5: Metabolic regulation of osteoclast differentiation and activity.

Similar content being viewed by others

References

  1. Peck, W. A., Birge, S. J. Jr. & Fedak, S. A. Bone cells: biochemical and biological studies after enzymatic isolation. Science 146, 1476–1477 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Otte, P. Basic cell metabolism of articular cartilage. Manometric studies. Z. Rheumatol. 50, 304–312 (1991).

    CAS  PubMed  Google Scholar 

  3. Borle, A. B., Nichols, N. & Nichols, G. Jr. Metabolic studies of bone in vitro. I. Normal bone. J. Biol. Chem. 235, 1206–1210 (1960).

    Article  CAS  PubMed  Google Scholar 

  4. Stegen, S. & Carmeliet, G. The skeletal vascular system – breathing life into bone tissue. Bone 115, 50–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38 (2011).

    Article  PubMed  Google Scholar 

  6. Ikeda, K. & Takeshita, S. The role of osteoclast differentiation and function in skeletal homeostasis. J. Biochem. 159, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurenkova, A. D., Medvedeva, E. V., Newton, P. T. & Chagin, A. S. Niches for skeletal stem cells of mesenchymal origin. Front. Cell Dev. Biol. 8, 592 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Roberts, S. J., van Gastel, N., Carmeliet, G. & Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10–18 (2015).

    Article  PubMed  Google Scholar 

  10. Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell Dev. Biol. 7, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feng, H. et al. Skeletal stem cells: origins, definitions, and functions in bone development and disease. Life Med. 1, 276–293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robling, A. G. & Bonewald, L. F. The osteocyte: new insights. Annu. Rev. Physiol. 82, 485–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delgado-Calle, J. & Bellido, T. The osteocyte as a signaling cell. Physiol. Rev. 102, 379–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Dobnig, H. & Turner, R. T. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136, 3632–3638 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 5, a008334 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hallett, S. A., Ono, W. & Ono, N. The hypertrophic chondrocyte: to be or not to be. Histol. Histopathol. 36, 1021–1036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldring, M. B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 269–285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Z. et al. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J. Cell Mol. Med. 24, 5408–5419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the Intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  Google Scholar 

  22. Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Intlekofer, A. M. & Finley, L. W. S. Metabolic signatures of cancer cells and stem cells. Nat. Metab. 1, 177–188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Couasnay, G., Madel, M. B., Lim, J., Lee, B. & Elefteriou, F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J. Bone Miner. Res. 36, 1661–1679 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Tournaire, G. et al. Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle. Cell Rep. 40, 111105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stegen, S. & Carmeliet, G. Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr. Opin. Nephrol. Hypertens. 28, 328–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, S. Y., Abel, E. D. & Long, F. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nat. Commun. 9, 4831 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jeoung, N. H. Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab. J. 39, 188–197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heinemann-Yerushalmi, L. et al. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev. Cell 56, 1182–1194.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu, G. et al. The amino acid sensor Eif2ak4/GCN2 is required for proliferation of osteoblast progenitors in mice. J. Bone Miner. Res. 35, 2004–2014 (2020).

    Article  PubMed  Google Scholar 

  32. Devignes, C. S., Carmeliet, G. & Stegen, S. Amino acid metabolism in skeletal cells. Bone Rep. 17, 101620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stegen, S. et al. HIF-1ɑ promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell 53, 530–544.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, Y. et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29, 966–978.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Solidum, J. G. N., Jeong, Y., Heralde, F. 3rd & Park, D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front. Physiol. 14, 1137063 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loopmans, S., Stockmans, I., Carmeliet, G. & Stegen, S. Isolation and in vitro characterization of murine young-adult long bone skeletal progenitors. Front. Endocrinol. 13, 930358 (2022).

    Article  Google Scholar 

  39. Stegen, S. et al. Adequate hypoxia inducible factor 1ɑ signaling is indispensable for bone regeneration. Bone 87, 176–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Kristensen, H. B., Andersen, T. L., Marcussen, N., Rolighed, L. & Delaisse, J. M. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J. Bone Miner. Res. 28, 574–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Wei, J. et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161, 1576–1591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Z. et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology 157, 4094–4103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, W. C., Ji, X., Nissim, I. & Long, F. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 32, 108108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Broeks, M. H., van Karnebeek, C. D. M., Wanders, R. J. A., Jans, J. J. M. & Verhoeven-Duif, N. M. Inborn disorders of the malate aspartate shuttle. J. Inherit. Metab. Dis. 44, 792–808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cell 26, 960–968 (2008).

    Article  CAS  Google Scholar 

  46. Kim, S. P. et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2, e92704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bartelt, A. et al. Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. Int. J. Mol. Sci. 18, 1264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stegen, S. et al. Glutamine metabolism in osteoprogenitors is required for bone mass accrual and PTH-induced bone anabolism in male mice. J. Bone Miner. Res. 36, 604–616 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Sharma, D., Yu, Y., Shen, L., Zhang, G. F. & Karner, C. M. SLC1A5 provides glutamine and asparagine necessary for bone development in mice. Elife 10, e71595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, G. Glutathione limits RUNX2 oxidation and degradation to regulate bone formation. JCI Insight 8, e166888 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berger, J. M. et al. Mediation of the acute stress response by the skeleton. Cell Metab. 30, 890–902 e898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen, L. et al. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. Elife 11, e76963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, L., Yu, Y. & Karner, C. M. SLC38A2 provides proline and alanine to regulate postnatal bone mass accrual in mice. Front. Physiol. 13, 992679 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jeon, Y. G., Kim, Y. Y., Lee, G. & Kim, J. B. Physiological and pathological roles of lipogenesis. Nat. Metab. 5, 735–759 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Dickens, F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour. Biochem. J. 35, 1011–1023 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, Y. Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies, E. et al. Citrate bridges between mineral platelets in bone. Proc. Natl Acad. Sci. USA 111, E1354–E1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pajor, A. M. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflug. Arch. 466, 119–130 (2014).

    Article  CAS  Google Scholar 

  59. Dirckx, N. et al. A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth. Proc. Natl Acad. Sci. USA 119, e2212178119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cosman, F., Nieves, J. W. & Dempster, D. W. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J. Bone Miner. Res. 32, 198–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Jilka, R. L. et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest. 104, 439–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, S. W. et al. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Miner. Res. 27, 2075–2084 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X. et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7, 571–580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Esen, E., Lee, S. Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Miner. Res. 30, 1959–1968 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Alekos, N. S. et al. Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight 8, e165604 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maridas, D. E. et al. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J. 33, 2885–2898 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, H. et al. Increased glycolysis mediates Wnt7b-induced bone formation. FASEB J. 33, 7810–7821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karner, C. M., Esen, E., Okunade, A. L., Patterson, B. W. & Long, F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J. Clin. Invest. 125, 551–562 (2015).

    Article  PubMed  Google Scholar 

  70. Frey, J. L. et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol. Cell Biol. 35, 1979–1991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frey, J. L., Kim, S. P., Li, Z., Wolfgang, M. J. & Riddle, R. C. Beta-catenin directs long-chain fatty acid catabolism in the osteoblasts of male mice. Endocrinology 159, 272–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. van Gastel, N. & Carmeliet, G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat. Metab. 3, 11–20 (2021).

    Article  PubMed  Google Scholar 

  73. Regan, J. N. et al. Up-regulation of glycolytic metabolism is required for HIF1ɑ-driven bone formation. Proc. Natl Acad. Sci. USA 111, 8673–8678 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dirckx, N. et al. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism. J. Clin. Invest. 128, 1087–1105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Scheller, E. L., Cawthorn, W. P., Burr, A. A., Horowitz, M. C. & MacDougald, O. A. Marrow adipose tissue: trimming the fat. Trends Endocrinol. Metab. 27, 392–403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Zhong, L. et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 9, e54695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, Y. et al. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep. 22, e52481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, W. et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J. Clin. Invest 131, e140214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhong, L. et al. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. Elife 12, e82112 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tencerova, M. et al. Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Res. 7, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li, Z. et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife 11, e78946 (2022).

    Google Scholar 

  84. Suchacki, K. J. et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 11, 3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scheller, E. L. et al. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone 118, 32–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Schipani, E. et al. Hypoxia in cartilage: HIF-1ɑ is essential for chondrocyte growth arrest and survival. Genes. Dev. 15, 2865–2876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maes, C. et al. VEGF-independent cell-autonomous functions of HIF-1ɑ regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J. Bone Miner. Res. 27, 596–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Yao, Q. et al. Suppressing mitochondrial respiration is critical for hypoxia tolerance in the fetal growth plate. Dev. Cell 49, 748–763.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stegen, S. et al. HIF-1ɑ metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511–515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin, C. et al. Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration. Nat. Commun. 13, 6869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, F. et al. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature 622, 834–841 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stegen, S. et al. De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Res. 10, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stegen, S., van Gastel, N. & Carmeliet, G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70, 19–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Godman, G. C. & Porter, K. R. Chondrogenesis, studied with the electron microscope. J. Biophys. Biochem. Cytol. 8, 719–760 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pathmanapan, S. et al. Mutant IDH regulates glycogen metabolism from early cartilage development to malignant chondrosarcoma formation. Cell Rep. 42, 112578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Torzilli, P. A., Grande, D. A. & Arduino, J. M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Prendeville, H. & Lynch, L. Diet, lipids, and antitumor immunity. Cell Mol. Immunol. 19, 432–444 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kikuchi, M. et al. Crucial role of Elovl6 in chondrocyte growth and differentiation during growth plate development in mice. PLoS ONE 11, e0159375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tsushima, H. et al. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development 145, dev162396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Park-Min, K. H. et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat. Commun. 5, 5418 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Ishii, K. A. et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med. 15, 259–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Bae, S. et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRɑ. J. Clin. Invest. 127, 2555–2568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Y. et al. PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation. J. Bone Miner. Res. 33, 1114–1125 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Jin, Z., Wei, W., Yang, M., Du, Y. & Wan, Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kushwaha, P. et al. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice. Front. Physiol. 13, 997358 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kim, H. N. et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors. Sci. Rep. 10, 11933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nishikawa, K. et al. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat. Med. 21, 281–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Kurotaki, D., Yoshida, H. & Tamura, T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone 138, 115471 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Rohatgi, N. et al. BAP1 promotes osteoclast function by metabolic reprogramming. Nat. Commun. 14, 5923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, B. et al. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J. 34, 11058–11067 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Indo, Y. et al. Metabolic regulation of osteoclast differentiation and function. J. Bone Miner. Res. 28, 2392–2399 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Arnett, T. R. & Orriss, I. R. Metabolic properties of the osteoclast. Bone 115, 25–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Stegen, S., Moermans, K., Stockmans, I., Thienpont, B. & Carmeliet, G. The serine synthesis pathway drives osteoclast differentiation through epigenetic regulation of NFATc1 expression. Nat. Metab. 6, 141–152 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ozaki, K. et al. The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci. Signal 12, eaaw3921 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Go, M. et al. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp. Mol. Med. 54, 825–833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pereira, M. et al. A trans-eQTL network regulates osteoclast multinucleation and bone mass. Elife 9, e55549 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brunner, J. S. et al. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat. Commun. 11, 431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao, S. et al. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann. Rheum. Dis. 83, 72–87 (2023).

    Article  Google Scholar 

  119. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Zheng, L., Zhang, Z., Sheng, P. & Mobasheri, A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 66, 101249 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Arra, M. et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, K. et al. Impaired glucose metabolism underlies articular cartilage degeneration in osteoarthritis. FASEB J. 36, e22377 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, C. et al. Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res. 9, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi, W. S. et al. The CH25H–CYP7B1–RORɑ axis of cholesterol metabolism regulates osteoarthritis. Nature 566, 254–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Ratneswaran, A. et al. Peroxisome proliferator-activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol. 67, 454–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Choi, W. S. et al. Critical role for arginase II in osteoarthritis pathogenesis. Ann. Rheum. Dis. 78, 421–428 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Napoli, N. et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13, 208–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto, M. & Sugimoto, T. Advanced glycation end products, diabetes, and bone strength. Curr. Osteoporos. Rep. 14, 320–326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ji, X. et al. Genetic activation of glycolysis in osteoblasts preserves bone mass in type I diabetes. Cell Chem. Biol. 30, 1053–1063.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Song, F. et al. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. Elife 12, e85714 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug. Discov. 21, 141–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Makhoul, I., Montgomery, C. O., Gaddy, D. & Suva, L. J. The best of both worlds – managing the cancer, saving the bone. Nat. Rev. Endocrinol. 12, 29–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Dupuy, F. et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 22, 577–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Whitburn, J. et al. Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key mediator of growth and survival. Sci. Adv. 8, eabf9096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927–963 (2015).

    Article  PubMed  Google Scholar 

  137. Tirado, H. A., Balasundaram, N., Laaouimir, L., Erdem, A. & van Gastel, N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep. 18, 101669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. He, X. et al. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J. Clin. Invest 131, e140242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shafat, M. S. et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Vilaplana-Lopera, N. et al. Crosstalk between AML and stromal cells triggers acetate secretion through the metabolic rewiring of stromal cells. Elife 11, e75908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Galan-Diez, M. et al. Subversion of serotonin receptor signaling in osteoblasts by kynurenine drives acute myeloid leukemia. Cancer Discov. 12, 1106–1127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Gastel, N. et al. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab. 32, 391–403.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Panaroni, C. et al. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood 139, 876–888 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Fonds voor Wetenschappelijk Onderzoek-Flanders for funding: EOS-G0F8218N, G0B3418N, G0C5120, G071321N, Hercules-I013518N.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Geert Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Martina Rauner, Ryan Riddle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegen, S., Carmeliet, G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00969-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00969-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing