Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein tyrosine phosphatase 1B in metabolic diseases and drug development

Subjects

Abstract

Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.

Key points

  • Protein tyrosine phosphatase 1B (PTP1B) has a key role in the pathogenesis and development of a variety of diseases.

  • Cellular signalling of PTP1B and its implications have been studied extensively; PTP1B has a major role in the regulation of energy expenditure, insulin and leptin signalling, glucose and lipid homeostasis, immune responses, and cancer.

  • Numerous PTP1B inhibitors have been identified from natural sources or designed and synthesized in the past few decades, several of which have reached clinical trials in humans.

  • The main challenges associated with the drug discovery process and development of effective therapeutic agents against PTP1B activity have been specificity, selectivity and bioavailability.

  • Selective and potent therapeutic inhibitors of PTP1B have been reported and could offer a promising potential treatment option for several diseases, such as type 2 diabetes mellitus, obesity, cancer and Rett syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of PTP1B in different disease states and metabolic conditions.
Fig. 2: An illustration of the effects of PTP1B on insulin and leptin signalling pathways.
Fig. 3: Chemical structures of small-molecule and allosteric inhibitor examples.
Fig. 4: Chemical structures of peptide-based inhibitors.
Fig. 5: Mechanism of action of PROTACs.

Similar content being viewed by others

References

  1. Klaman, L. D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Tonks, N. K., Diltz, C. D. & Fischer, E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263, 6731–6737 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Tonks, N. K., Diltz, C. D. & Fischer, E. H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263, 6722–6730 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Tsou, R. C. & Bence, K. K. Central regulation of metabolism by protein tyrosine phosphatases. Front. Neurosci. 6, 192 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tsou, R. C. & Bence, K. K. The genetics of PTPN1 and obesity: insights from mouse models of tissue-specific PTP1B deficiency. J. Obes. 2012, 926857 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell. 2, 489–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. De Jonghe, B. C. et al. Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency. Am. J. Physiol. Endocrinol. Metab. 303, 644 (2012).

    Article  Google Scholar 

  10. Le Sommer, S. et al. Deficiency in protein tyrosine phosphatase PTP1B shortens lifespan and leads to development of acute leukemia. Cancer Res. 78, 75–87 (2018).

    Article  PubMed  Google Scholar 

  11. Dadke, S. et al. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat. Cell Biol. 9, 80–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Fan, G., Lin, G., Lucito, R. & Tonks, N. K. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J. Biol. Chem. 288, 24923–24934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiede, F. et al. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J. Clin. Invest. 121, 4758–4774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuchay, S. M., Kim, N., Grunz, E. A., Fay, W. P. & Chishti, A. H. Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol. Cell. Biol. 27, 6038–6052 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lanahan, A. A. et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 130, 902–909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin-Granados, C. et al. A key role for PTP1B in dendritic cell maturation, migration, and T cell activation. J. Mol. Cell. Biol. 7, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Thompson, D. et al. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway. Mol. Metab. 6, 845–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simoncic, P. D., McGlade, C. J. & Tremblay, M. L. PTP1B and TC-PTP: novel roles in immune-cell signaling. Can. J. Physiol. Pharmacol. 84, 667–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Stuible, M. et al. Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Chembiochem 8, 179–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Gu, F. et al. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol. Cell Biol. 23, 3753–3762 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heinonen, K. M., Bourdeau, A., Doody, K. M. & Tremblay, M. L. Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-γ signaling. Proc. Natl Acad. Sci. USA 106, 9368–9372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bourdeau, A. et al. TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-γ. Blood 109, 4220–4228 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. National Library of Medicine. PTPN1 protein tyrosine phosphatase non-receptor type 1 [Homo sapiens (human)]. NCBI https://www.ncbi.nlm.nih.gov/gene?Cmd=DetailsSearch&Term=5770 (2024).

  24. Barford, D., Flint, A. J. & Tonks, N. K. Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Pannifer, A. D., Flint, A. J., Tonks, N. K. & Barford, D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. 273, 10454–10462 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Haque, A., Andersen, J. N., Salmeen, A., Barford, D. & Tonks, N. K. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 147, 185–198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salmeen, A., Andersen, J. N., Myers, M. P., Tonks, N. K. & Barford, D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell 6, 1401–1412 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Flint, A. J., Tiganis, T., Barford, D. & Tonks, N. K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gomez, E. et al. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J. Mol. Cell Cardiol. 52, 1257–1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Vercauteren, M. et al. Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation 114, 2498–2507 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Coquerel, D. et al. Gene deletion of protein tyrosine phosphatase 1b protects against sepsis-induced cardiovascular dysfunction and mortality. Arterioscler. Thromb. Vasc. Biol. 34, 1032–1044 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Krishnan, N. et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J. Clin. Invest. 125, 3163–3177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feldhammer, M., Uetani, N., Miranda-Saavedra, D. & Tremblay, M. L. PTP1B: a simple enzyme for a complex world. Crit. Rev. Biochem. Mol. Biol. 48, 430–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Vieira, M. N., Lyra, E., Silva, N. M., Ferreira, S. T. & De Felice, F. G. Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy? Front. Aging Neurosci. 9, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saha, S. & Chernoff, J. Analysis of PTP1B sumoylation. Methods 65, 201–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Meng, T., Buckley, D. A., Galic, S., Tiganis, T. & Tonks, N. K. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J. Biol. Chem. 279, 37716–37725 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Schwertassek, U. et al. Reactivation of oxidized PTP1B and PTEN by thioredoxin 1. FEBS J. 281, 3545–3558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yip, S. C., Cotteret, S. & Chernoff, J. Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin. J. Cell. Sci. 125, 310–316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dagnell, M. et al. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling. Proc. Natl Acad. Sci. USA 110, 13398–13403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, S. R., Kwon, K. S., Kim, S. R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. van Montfort, R. L. M., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777 (2003).

    Article  PubMed  Google Scholar 

  42. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938–21942 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Frijhoff, J. et al. The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic. Biol. Med. 68, 268–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Ravichandran, L. V., Chen, H., Li, Y. & Quon, M. J. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol. Endocrinol. 15, 1768–1780 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Flint, A. J., Gebbink, M. F., Franza, B. R. J., Hill, D. E. & Tonks, N. K. Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J. 12, 1937–1946 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dadke, S., Kusari, A. & Kusari, J. Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor. Mol. Cell Biochem. 221, 147–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zeng, G. et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101, 1539–1545 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Vivero, A. et al. Zinc supplementation and strength exercise in rats with type 2 diabetes: Akt and PTP1B phosphorylation in nonalcoholic fatty liver. Biol. Trace Elem. Res. 199, 2215–2224 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Bandyopadhyay, D. et al. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J. Biol. Chem. 272, 1639–1645 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Frangioni, J. V., Oda, A., Smith, M., Salzman, E. W. & Neel, B. G. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J. 12, 4843–4856 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Azam, M. et al. Disruption of the mouse μ-calpain gene reveals an essential role in platelet function. Mol. Cell Biol. 21, 2213–2220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cortesio, C. L. et al. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180, 957–971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hay, R. T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. González‐Rodríguez, Á. et al. Essential role of protein tyrosine phosphatase 1B in obesity‐induced inflammation and peripheral insulin resistance during aging. Aging Cell 11, 284–296 (2012).

    Article  PubMed  Google Scholar 

  55. Agouni, A. et al. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically-induced endoplasmic reticulum stress. Biochem. J. 438, 369–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Agouni, A. et al. Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction. Biochem. Pharmacol. 92, 607–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Grant, L. et al. Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide induced inflammation, hyperinsulinemia and endotoxemia through an IL10 STAT3-dependent mechanism. Diabetes 63, 456–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Owen, C. et al. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS ONE 7, e32700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Delibegovic, M. et al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol. Cell Biol. 27, 7727–7734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsou, R. C., Zimmer, D. J., De Jonghe, B. C. & Bence, K. K. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology 153, 4227–4237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Balland, E. et al. Leptin signaling in the arcuate nucleus reduces insulin’s capacity to suppress hepatic glucose production in obese mice. Cell Rep. 26, 346–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Zabolotny, J. M. et al. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J. Biol. Chem. 279, 24844–24851 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Delibegovic, M. et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58, 590–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Owen, C. et al. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia 56, 2286–2296 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Agouni, A. et al. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem. J. 438, 369–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Agouni, A., Owen, C., Czopek, A., Mody, N. & Delibegovic, M. In vivo differential effects of fasting, re-feeding, insulin and insulin stimulation time course on insulin signaling pathway components in peripheral tissues. Biochem. Biophys. Res. Commun. 401, 104–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Revuelta-Cervantes, J. et al. Protein tyrosine phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am. J. Pathol. 178, 1591–1604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rubio, C. et al. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol. Metab. 35, 100954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heinonen, K. M., Dube, N., Bourdeau, A., Lapp, W. S. & Tremblay, M. L. Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc. Natl Acad. Sci. USA 103, 2776–2781 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dube, N. et al. Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res. 65, 10088–10095 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ramirez-Alejo, N. & Santos-Argumedo, L. Innate defects of the IL-12/IFN-γ axis in susceptibility to infections by mycobacteria and salmonella. J. Interferon Cytokine Res. 34, 307–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pike, K. A. et al. Protein tyrosine phosphatase 1B is a regulator of the interleukin-10-induced transcriptional program in macrophages. Sci. Signal. 7, ra43 (2014).

    Article  PubMed  Google Scholar 

  73. Pike, K. A. & Tremblay, M. L. TC-PTP and PTP1B: regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine 82, 52–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Jobe, F. et al. Deletion of Ptpn1 induces myeloproliferative neoplasm. Leukemia 31, 1229–1234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiede, F. et al. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell antitumor immunity. Cancer Discov. 12, 752–773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bento, J. L. et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53, 3007–3012 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Palmer, N. D. et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes 53, 3013–3019 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kipfer-Coudreau, S. et al. Single nucleotide polymorphisms of protein tyrosine phosphatase 1B gene are associated with obesity in morbidly obese French subjects. Diabetologia 47, 1278–1284 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Cheyssac, C. et al. Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med. Genet. 7, 44 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Di Paola, R. et al. A variation in 3′ UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am. J. Hum. Genet. 70, 806–812 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Olivier, M. et al. Single nucleotide polymorphisms in protein tyrosine phosphatase 1β (PTPN1) are associated with essential hypertension and obesity. Hum. Mol. Genet. 13, 1885–1892 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Yamakage, H. et al. Association of protein tyrosine phosphatase 1B gene polymorphism with the effects of weight reduction therapy on bodyweight and glycolipid profiles in obese patients. J. Diabetes Investig. 12, 1462–1470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Traurig, M., Hanson, R. L., Kobes, S., Bogardus, C. & Baier, L. J. Protein tyrosine phosphatase 1B is not a major susceptibility gene for type 2 diabetes mellitus or obesity among Pima Indians. Diabetologia 50, 985–989 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Lembertas, A. V. et al. Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J. Clin. Invest. 100, 1240–1247 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ghosh, S. et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc. Natl Acad. Sci. USA 96, 2198–2203 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, J. H. et al. Genome scan for human obesity and linkage to markers in 20q13. Am. J. Hum. Genet. 64, 196–209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meshkani, R. & Adeli, K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem. 42, 1331–1346 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Bauer, F. et al. PTPN1 polymorphisms are associated with total and low-density lipoprotein cholesterol. Eur. J. Cardiovasc. Prev. Rehabil. 17, 28–34 (2010).

    Article  PubMed  Google Scholar 

  89. Hoggard, N., Agouni, A., Mody, N. & Delibegovic, M. Serum levels of RBP4 and adipose tissue expression levels of PTP1B are increased in obese men resident in North East of Scotland without any changes in endoplasmic reticulum (ER) stress response genes. Int. J. Gen. Med. 2012, 403–411 (2012).

    Google Scholar 

  90. Nguyen, T. D. et al. Increased protein tyrosine phosphatase 1B (PTP 1B) activity and cardiac insulin resistance precede mitochondrial and contractile dysfunction in pressure‐overloaded hearts. J. Am. Heart Assoc. 7, e008865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Villamar-Cruz, O., Loza-Mejía, M. A., Arias-Romero, L. E. & Camacho-Arroyo, I. Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep. 41, BSR20211994 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tonks, N. K. PTP1B: from the sidelines to the front lines! FEBS Lett. 546, 140–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Verma, S. & Sharma, S. Protein tyrosine phosphatase as potential therapeutic target in various disorders. Curr. Mol. Pharmacol. 11, 191–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Bentires-Alj, M. & Neel, B. G. Protein-tyrosine phosphatase 1B is required for HER2/Neu–induced breast cancer. Cancer Res. 67, 2420–2424 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, H. et al. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 359, 218–225 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Mei, W., Wang, K., Huang, J. & Zheng, X. Cell transformation by PTP1B truncated mutants found in human colon and thyroid tumors. PLoS ONE 11, e0166538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hoekstra, E. et al. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget 7, 21922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–41446 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Balavenkatraman, K. K. et al. Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol. Cancer Res. 9, 1377–1384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Banh, R. S. et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat. Cell Biol. 18, 803–813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Julien, S. G. et al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet. 39, 338–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Baumgartner, C. K. et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 622, 850–862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, R. et al. Human protein tyrosine phosphatase 1B (PTP1B): from structure to clinical inhibitor perspectives. Int. J. Mol. Sci. 23, 7027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh, S. et al. Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders. Bioorg. Chem. 121, 105626 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Z. et al. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: update. Biomed. Pharmacother. 157, 113990 (2023).

    Article  PubMed  Google Scholar 

  106. LoRusso, P. M. et al. Abstract CT257: first-in-human phase 1 studies of PTPN2/1 inhibitors ABBV-CLS-484 and ABBV-CLS-579 in locally advanced or metastatic tumors. Cancer Res. 83, CT257 (2023).

    Article  Google Scholar 

  107. Liang, S. et al. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat. Commun. 14, 4524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishnan, N. et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558–566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnan, N., Konidaris, K. F., Gasser, G. & Tonks, N. K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem. 293, 1517–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Song, D. et al. PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. JCI Insight 7, e158199 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Burke, T. R., Kole, H. K. & Roller, P. P. Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp. Biochem. Biophys. Res. Commun. 204, 129–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Roller, P. P., Wu, L., Zhang, Z. & Burke, T. R. Potent inhibition of protein-tyrosine phosphatese-1B using the phosphotyrosyl mimetic fluoro-O-malonyl tyrosine (FOMT). Bioorg. Med. Chem. Lett. 8, 2149–2150 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Kostrzewa, T., Sahu, K. K., Gorska-Ponikowska, M., Tuszynski, J. A. & Kuban-Jankowska, A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Des. Devel. Ther. 12, 4139–4147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, X., Wu, L., Liu, X., Wang, S. & Zhang, C. BH3 mimetics derived from Bim-BH3 domain core region show PTP1B inhibitory activity. Bioorg. Med. Chem. Lett. 29, 244–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, C. et al. Discovery of novel PTP1B inhibitors with once-weekly therapeutic potential for type 2 diabetes: design, synthesis, and in vitro and in vivo investigations of BimBH3 peptide analogues. J. Med. Chem. 66, 3030–3044 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Rondinone, C. M. et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 51, 2405–2411 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Waring, J. F. et al. PTP1B antisense-treated mice show regulation of genes involved in lipogenesis in liver and fat. Mol. Cell Endocrinol. 203, 155–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kumar, G. S., Page, R. & Peti, W. The mode of action of the protein tyrosine phosphatase 1B inhibitor Ertiprotafib. PLoS ONE 15, e0240044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Erbe, D. V. et al. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharmacol. 67, 69–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Shrestha, S., Bhattarai, B. R., Cho, H., Choi, J. & Cho, H. PTP1B inhibitor Ertiprotafib is also a potent inhibitor of IκB kinase β (IKK-β). Bioorg. Med. Chem. Lett. 17, 2728–2730 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Maccari, R. & Ottanà, R. Can allostery be a key strategy for targeting PTP1B in drug discovery? A lesson from trodusquemine. Int. J. Mol. Sci. 24, 9621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rao, M. N. et al. Aminosterols from the dogfish shark Squalus acanthias. J. Nat. Prod. 63, 631–635 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Ahima, R. S. et al. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes 51, 2099–2104 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Limbocker, R. et al. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat. Prod. Rep. 39, 742–753 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Zasloff, M. et al. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. 25, 689–697 (2001).

    Article  CAS  Google Scholar 

  126. Dowarah, J. & Singh, V. P. Anti-diabetic drugs recent approaches and advancements. Bioorg. Med. Chem. 28, 115263 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. DepYmed. DepYmed presents development update for its small molecule PTP1B inhibitor program, DPM-1003, at the 2023 IRSF Rett Syndrome Scientific Meeting. DepYmed https://www.depymed.com/press-release-06152023.html (2023).

  128. Zinker, B. A. et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl Acad. Sci. USA 99, 11357–11362 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, S., Sbuh, N. & Veedu, R. N. Antisense oligonucleotides as potential therapeutics for type 2 diabetes. Nucleic Acid Ther. 31, 39–57 (2021).

    Article  PubMed  Google Scholar 

  130. Swarbrick, M. M. et al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150, 1670–1679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Digenio, A. et al. Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes. Diabetes Care 41, 807–814 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Fukuda, S. et al. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT‐551. Diabetes Obes. Metab. 12, 299–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Qian, S., Zhang, M., He, Y., Wang, W. & Liu, S. Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for type 2 diabetes. Future Med. Chem. 8, 1239–1258 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Combs, A. P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem. 53, 2333–2344 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Yang, N. J. & Hinner, M. J. in Site-Specific Protein Labeling: Methods and Protocols (eds Gautier, A. & Hinner, M. J.) 29–53 (Springer, 2015).

  136. Dissanayake, S., Denny, W. A., Gamage, S. & Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release 250, 62–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Kardani, K., Milani, A., Shabani, S. H. & Bolhassani, A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin. Drug Deliv. 16, 1227–1258 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Röckendorf, N., Nehls, C. & Gutsmann, T. Design of membrane active peptides considering multi-objective optimization for biomedical application. Membranes 12, 180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Aljabali, A. A. et al. Protein-based nanomaterials: a new tool for targeted drug delivery. Ther. Deliv. 13, 321–338 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. van der Koog, L., Gandek, T. B. & Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 11, 2100639 (2022).

    Article  Google Scholar 

  143. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  144. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Gura, T. DNA helps build molecular libraries for drug testing. Science 350, 1139–1140 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Mullard, A. DNA tags help the hunt for drugs. Nature 530, 367–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, Z. et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. Biomed. 3, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dong, J. et al. Small molecule degraders of protein tyrosine phosphatase 1B and T‐cell protein tyrosine phosphatase for cancer immunotherapy. Angew. Chem. Int. Ed. 62, e202303818 (2023).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mirela Delibegović.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Angela Valverde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delibegović, M., Dall’Angelo, S. & Dekeryte, R. Protein tyrosine phosphatase 1B in metabolic diseases and drug development. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00965-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00965-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing