Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity and the kidney: mechanistic links and therapeutic advances

Abstract

Obesity is strongly associated with the development of diabetes mellitus and chronic kidney disease (CKD), but there is evidence for a bidirectional relationship wherein the kidney also acts as a key regulator of body weight. In this Review, we highlight the mechanisms implicated in obesity-related CKD, and outline how the kidney might modulate feeding and body weight through a growth differentiation factor 15-dependent kidney–brain axis. The favourable effects of bariatric surgery on kidney function are discussed, and medical therapies designed for the treatment of diabetes mellitus that lower body weight and preserve kidney function independent of glycaemic lowering, including sodium–glucose cotransporter 2 inhibitors, incretin-based therapies and metformin, are also reviewed. In summary, we propose that kidney function and body weight are related in a bidirectional fashion, and that this interrelationship affects human health and disease.

Key points

  • Obesity alters kidney function through multiple direct and indirect mechanisms.

  • Sodium–glucose cotransporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1 receptor agonists (GLP1RAs) both promote weight loss; they also stabilize kidney function through mechanisms that are independent of their effects on weight.

  • SGLT2is induce a metabolic shift towards ketogenesis, which is likely to account for sustained weight loss.

  • The beneficial effects of GLP1RAs on the kidney are not solely explained by weight loss or improvement in glycaemic control.

  • Several GLP1R dual or polyagonist agents are under evaluation with the potential to achieve greater weight loss than GLP1RAs alone.

  • Metformin increases levels of growth differentiation factor 15 (GDF15) in the kidney and circulation to activate glial cell line-derived neurotrophic factor family receptor ɑ-like (GFRAL) in the area postrema to reduce body weight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of obesity-induced kidney disease.
Fig. 2: Proposed mechanisms contributing to the renoprotective effects of bariatric surgery.
Fig. 3: Mechanisms of weight loss associated with SGLT2 inhibitor use.
Fig. 4: Metformin lowers food intake and weight gain through a kidney–brain axis.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  PubMed Central  Google Scholar 

  2. Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. 12, 7–11 (2022).

    Article  Google Scholar 

  3. Eckel, R. H. & Cornier, M. A. Update on the NCEP ATP-III emerging cardiometabolic risk factors. BMC Med. 12, 115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ndumele, C. E. et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 148, 1606–1635 (2023).

    Article  PubMed  Google Scholar 

  5. Tchernof, A. & Després, J. P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Ye, C. et al. Causal associations of obesity with chronic kidney disease and arterial stiffness: a mendelian randomization study. J. Clin. Endocrinol. Metab. 107, e825–e835 (2022).

    Article  PubMed  Google Scholar 

  7. Chang, A. R. et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ 364, k5301 (2019). This meta-analysis demonstrates that increased BMI is an independent risk factor for GFR decline and death in the general population and those with CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 144, 21–28 (2006).

    Article  PubMed  Google Scholar 

  9. Zhang, S. Y. et al. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab. 35, 875–886.e5 (2023). This study demonstrates that metformin mediates weight loss through a kidney GDF15-dependent area postrema axis.

    Article  CAS  PubMed  Google Scholar 

  10. Weisinger, J. R., Kempson, R. L., Eldridge, F. L. & Swenson, R. S. The nephrotic syndrome: a complication of massive obesity. Ann. Intern. Med. 81, 440–447 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. D’Agati, V. D., Fogo, A. B., Bruijn, J. A. & Jennette, J. C. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    Article  PubMed  Google Scholar 

  12. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D’Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, H. M. et al. Podocyte lesions in patients with obesity-related glomerulopathy. Am. J. Kidney Dis. 48, 772–779 (2006).

    Article  PubMed  Google Scholar 

  14. Chen, H. M. et al. Obesity-related glomerulopathy in China: a case series of 90 patients. Am. J. Kidney Dis. 52, 58–65 (2008).

    Article  PubMed  Google Scholar 

  15. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    Article  PubMed  Google Scholar 

  16. Praga, M. et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol. Dial. Transpl. 16, 1790–1798 (2001).

    Article  CAS  Google Scholar 

  17. Serra, A. et al. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 73, 947–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Griffin, K. A., Kramer, H. & Bidani, A. K. Adverse renal consequences of obesity. Am. J. Physiol. Ren. Physiol. 294, F685–F696 (2008).

    Article  CAS  Google Scholar 

  19. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 116, 991–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schorr, U., Blaschke, K., Turan, S., Distler, A. & Sharma, A. M. Relationship between angiotensinogen, leptin and blood pressure levels in young normotensive men. J. Hypertens. 16, 1475–1480 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goodfriend, T. L., Ball, D. L., Egan, B. M., Campbell, W. B. & Nithipatikom, K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension 43, 358–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Jeon, J. H. et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 22, 1502–1511 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Mallamaci, F. et al. ACE inhibition is renoprotective among obese patients with proteinuria. J. Am. Soc. Nephrol. 22, 1122–1128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, S. et al. The adipose renin-angiotensin system modulates systemic markers of insulin sensitivity and activates the intrarenal renin-angiotensin system. J. Biomed. Biotechnol. 2006, 27012 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Henegar, J. R. et al. Catheter-based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am. J. Hypertens. 27, 1285–1292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, X., Huang, X., Zhang, L., Qin, Z. & Hua, F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol. 22, 218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall, J. E. et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285, 17271–17276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mansukhani, M. P., Wang, S. & Somers, V. K. Chemoreflex physiology and implications for sleep apnoea: insights from studies in humans. Exp. Physiol. 100, 130–135 (2015).

    Article  PubMed  Google Scholar 

  30. Hall, M. E. et al. Obesity, hypertension, and chronic kidney disease. Int. J. Nephrol. Renovasc Dis. 7, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eddy, A. A. & Fogo, A. B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol. 17, 2999–3012 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Benomar, Y. et al. Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes 62, 102–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Yano, Y. et al. Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J. Clin. Hypertens. 9, 775–782 (2007).

    Article  CAS  Google Scholar 

  34. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fang, F. et al. Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2+/C96Y mouse. Diabetologia 58, 1668–1678 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Ohashi, K. et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler. Thromb. Vasc. Biol. 27, 1910–1917 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Briffa, J. F., McAinch, A. J., Poronnik, P. & Hryciw, D. H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Ren. Physiol. 305, F1629–F1636 (2013).

    Article  CAS  Google Scholar 

  38. Aizawa-Abe, M. et al. Pathophysiological role of leptin in obesity-related hypertension. J. Clin. Invest. 105, 1243–1252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huby, A. C. et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation 132, 2134–2145 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Belin de Chantemèle, E. J., Mintz, J. D., Rainey, W. E. & Stepp, D. W. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension 58, 271–279 (2011).

    Article  PubMed  Google Scholar 

  41. de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).

    Article  PubMed  Google Scholar 

  42. Zhao, J. et al. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediators Inflamm. 2019, 3172647 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Shahzad, K. et al. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease. Kidney Int. 102, 766–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Hou, Y. et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem. Biophys. Res. Commun. 521, 791–798 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Qiu, Y. Y. & Tang, L. Q. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res. 114, 251–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ke, B., Shen, W., Fang, X. & Wu, Q. The NLPR3 inflammasome and obesity-related kidney disease. J. Cell Mol. Med. 22, 16–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Rampanelli, E. et al. Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Sci. Rep. 7, 2861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yamamoto, T. et al. High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. J. Am. Soc. Nephrol. 28, 1534–1551 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Bakker, P. J. et al. Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int. 85, 1112–1122 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Chiazza, F. et al. Targeting the NLRP3 inflammasome to reduce diet-induced metabolic abnormalities in mice. Mol. Med. 21, 1025–1037 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. The Diabetes Prevention Program Research Group Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 35, 731–737 (2012).

    Article  PubMed Central  Google Scholar 

  52. Seifarth, C., Schehler, B. & Schneider, H. J. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp. Clin. Endocrinol. Diabetes 121, 27–31 (2013).

    CAS  PubMed  Google Scholar 

  53. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  54. Alexander, J. W., Goodman, H. R., Hawver, L. R. & Cardi, M. A. Improvement and stabilization of chronic kidney disease after gastric bypass. Surg. Obes. Relat. Dis. 5, 237–241 (2009).

    Article  PubMed  Google Scholar 

  55. Bilha, S. C. et al. The effects of bariatric surgery on renal outcomes: a systematic review and meta-analysis. Obes. Surg. 28, 3815–3833 (2018).

    Article  PubMed  Google Scholar 

  56. Inge, T. H. et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N. Engl. J. Med. 374, 113–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Schiavon, C. A. et al. Effects of bariatric surgery in obese patients with hypertension: the GATEWAY randomized trial (Gastric Bypass to Treat Obese Patients With Steady Hypertension). Circulation 137, 1132–1142 (2018).

    Article  PubMed  Google Scholar 

  58. Scheurlen, K. M. et al. Metabolic surgery improves renal injury independent of weight loss: a meta-analysis. Surg. Obes. Relat. Dis. 15, 1006–1020 (2019).

    Article  PubMed  Google Scholar 

  59. MacLaughlin, H. L. et al. Weight loss, adipokines, and quality of life after sleeve gastrectomy in obese patients with stages 3-4 CKD: a randomized controlled pilot study. Am. J. Kidney Dis. 64, 660–663 (2014).

    Article  PubMed  Google Scholar 

  60. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moritz, E. et al. Renal sinus fat is expanded in patients with obesity and/or hypertension and reduced by bariatric surgery associated with hypertension remission. Metabolites 12, 617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ricci, M. A. et al. Morbid obesity and hypertension: the role of perirenal fat. J. Clin. Hypertens. 20, 1430–1437 (2018).

    Article  CAS  Google Scholar 

  63. Docherty, N. G. & le Roux, C. W. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nat. Rev. Nephrol. 16, 709–720 (2020).

    Article  PubMed  Google Scholar 

  64. Ghezzi, C., Loo, D. D. F. & Wright, E. M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61, 2087–2097 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shyangdan, D. S., Uthman, O. A. & Waugh, N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 6, e009417 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Herrington, W. G. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. van Bommel, E. J. M. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 97, 202–212 (2020).

    Article  PubMed  Google Scholar 

  70. Körner, A., Eklöf, A. C., Celsi, G. & Aperia, A. Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes 43, 629–633 (1994).

    Article  PubMed  Google Scholar 

  71. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferrannini, E., Mark, M. & Mayoux, E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Article  PubMed  Google Scholar 

  73. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Mayne, K. J. et al. Effects of empagliflozin on fluid overload, weight and blood pressure in chronic kidney disease. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.0000000000000271 (2023).

  75. Yau, K., Dharia, A., Alrowiyti, I. & Cherney, D. Z. I. Prescribing SGLT2 inhibitors in patients with CKD: expanding indications and practical considerations. Kidney Int. Rep. 7, 1463–1476 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thomas, M. C. & Cherney, D. Z. I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61, 2098–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Horie, I. et al. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. Diabetes Res. Clin. Pract. 135, 178–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Ferrannini, G. et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care 38, 1730–1735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rajeev, S. P. et al. No evidence of compensatory changes in energy balance, despite reductions in body weight and liver fat, during dapagliflozin treatment in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, cross-over trial (ENERGIZE). Diabetes Obes. Metab. 25, 3621–3631 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Sargeant, J. A. et al. The effects of empagliflozin, dietary energy restriction, or both on appetite-regulatory gut peptides in individuals with type 2 diabetes and overweight or obesity: the SEESAW randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 24, 1509–1521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cefalu, W. T. Paradoxical insights into whole body metabolic adaptations following SGLT2 inhibition. J. Clin. Invest. 124, 485–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ansary, T. M., Nakano, D. & Nishiyama, A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int. J. Mol. Sci. 20, 629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Yasui, A. et al. Empagliflozin induces transient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabetes. Diabetes Ther. 9, 863–871 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wild, J. et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 232, e13628 (2021).

    Article  CAS  Google Scholar 

  86. Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cherney, D. Z. I. et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 93, 231–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Xu, L. et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 32, 404–419.e6 (2020). This study demonstrates that SGLT2 inhibitors increase ketone bodies to correct mTORC1 overactivation to mediate kidney protection in DKD.

    Article  CAS  PubMed  Google Scholar 

  91. Holst, J. J., Orskov, C., Nielsen, O. V. & Schwartz, T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Cherney, D. Z. I., Udell, J. A. & Drucker, D. J. Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Med 2, 1203–1230 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Kristensen, S. L. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7, 776–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Shi, Q. et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet 399, 259–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Sisley, S. et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J. Clin. Invest. 124, 2456–2463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heiss, C. N. et al. The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep. 35, 109163 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fortin, S. M. et al. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci. Transl. Med. 12, eaay8071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nauck, M. A., Quast, D. R., Wefers, J. & Meier, J. J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol. Metab. 46, 101102 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Yau, K., Odutayo, A., Dash, S. & Cherney, D. Z. I. Biology and clinical use of glucagon-like-peptide-1 receptor agonists in vascular protection. Can. J. Cardiol. 39, 1816–1838 (2023).

    Article  PubMed  Google Scholar 

  105. Kawanami, D. & Takashi, Y. GLP-1 receptor agonists in diabetic kidney disease: from clinical outcomes to mechanisms. Front. Pharmacol. 11, 967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Górriz, J. L. et al. GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. J. Clin. Med. 9, 947 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Tonneijck, L. et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia 59, 1412–1421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rossing, P. et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol. Dial. Transpl. 38, 2041–2051 (2023).

    Article  Google Scholar 

  110. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Heerspink, H. J. L. et al. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 10, 774–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Sánchez-Garrido, M. A. et al. GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia 60, 1851–1861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity – a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Kaneko, K. et al. Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition. J. Clin. Invest. 129, 3786–3791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Killion, E. A. et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci. Transl. Med. 10, eaat3392 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, Q. et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 33, 833–844.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Adriaenssens, A. E. et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 30, 987–996.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Quiñones, M. et al. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Mol. Metab. 4, 961–970 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lu, S. C. et al. GIPR antagonist antibodies conjugated to GLP-1 peptide are bispecific molecules that decrease weight in obese mice and monkeys. Cell Rep. Med. 2, 100263 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boyle, C. N., Lutz, T. A. & Le Foll, C. Amylin – its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol. Metab. 8, 203–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Enebo, L. B. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397, 1736–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, W., Binbin, G., Lidan, S., Qiang, Z. & Jing, H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg. Chem. 140, 106808 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Hall, M. E., Jordan, J. H., Juncos, L. A., Hundley, W. G. & Hall, J. E. BOLD magnetic resonance imaging in nephrology. Int. J. Nephrol. Renovasc Dis. 11, 103–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Day, E. A. et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 1, 1202–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020). This study demonstrated that metformin increases circulating GDF15, which is necessary for its effects on energy balance and body weight.

    Article  CAS  PubMed  Google Scholar 

  127. Bootcov, M. R. et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl Acad. Sci. USA 94, 11514–11519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lawton, L. N. et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 203, 17–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Böttner, M., Suter-Crazzolara, C., Schober, A. & Unsicker, K. Expression of a novel member of the TGF-β superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res. 297, 103–110 (1999).

    Article  PubMed  Google Scholar 

  130. Patel, S. et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 29, 707–718.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, D. et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat. Rev. Endocrinol. 17, 592–607 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Hsu, J. Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    Article  PubMed  Google Scholar 

  133. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Emmerson, P. J. et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23, 1215–1219 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, D. et al. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiong, Y. et al. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci. Transl. Med. 9, eaan8732 (2017).

    Article  PubMed  Google Scholar 

  138. Sabatini, P. V. et al. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc. Natl Acad. Sci. USA 118, e2021357118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Blundell, J. et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 19, 1242–1251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Frikke-Schmidt, H. et al. GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Mol. Metab. 21, 13–21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chrysovergis, K. et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int. J. Obes. 38, 1555–1564 (2014).

    Article  CAS  Google Scholar 

  142. Gerstein, H. C. et al. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care 40, 280–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Kwon, S. et al. The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care 43, 948–955 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Han, Y. C. et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 12, 925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Christensen, M. et al. Renoprotective effects of metformin are independent of organic cation transporters 1 & 2 and AMP-activated protein kinase in the kidney. Sci. Rep. 6, 35952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mazagova, M. et al. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am. J. Physiol. Ren. Physiol. 305, F1249–F1264 (2013).

    Article  CAS  Google Scholar 

  148. Valiño-Rivas, L. et al. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int. 101, 1200–1215 (2022).

    Article  PubMed  Google Scholar 

  149. Zhou, Z. et al. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: a systematic review and dose-response meta-analysis. Eur. J. Intern. Med. 110, 77–85 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Nair, V. et al. Growth differentiation factor-15 and risk of CKD progression. J. Am. Soc. Nephrol. 28, 2233–2240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Breit, S. N., Brown, D. A. & Tsai, V. W. W. GDF15 analogs as obesity therapeutics. Cell Metab. 35, 227–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Connelly, P. W. et al. Growth differentiation factor 15 is decreased by kidney transplantation. Clin. Biochem. 73, 57–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Seyfried, F. et al. Weight loss from caloric restriction vs Roux-en-Y gastric bypass surgery differentially regulates systemic and portal vein GDF15 levels in obese Zucker fatty rats. Physiol. Behav. 240, 113534 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Dolo, P. R. et al. Effect of sleeve gastrectomy on plasma growth differentiation factor-15 (GDF15) in human. Am. J. Surg. 220, 725–730 (2020).

    Article  PubMed  Google Scholar 

  155. Salman, A. et al. Changes in plasma growth differentiation factor-15 after laparoscopic sleeve gastrectomy in morbidly obese patients: a prospective study. J. Inflamm. Res. 14, 1365–1373 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kleinert, M. et al. Effect of bariatric surgery on plasma GDF15 in humans. Am. J. Physiol. Endocrinol. Metab. 316, E615–E621 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Lu, J. F. et al. Camptothecin effectively treats obesity in mice through GDF15 induction. PLoS Biol. 20, e3001517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Benichou, O. et al. Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist. Cell Metab. 35, 274–286.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Lyu, X. et al. The antiobesity effect of GLP-1 receptor agonists alone or in combination with metformin in overweight/obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Int. J. Endocrinol. 2021, 6616693 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cheng, L. et al. Dapagliflozin, metformin, monotherapy or both in patients with metabolic syndrome. Sci. Rep. 11, 24263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sen, T. et al. Association between circulating GDF-15 and cardio-renal outcomes and effect of canagliflozin: results from the CANVAS trial. J. Am. Heart Assoc. 10, e021661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghidewon, M. et al. Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms. Diabetes Obes. Metab. 24, 1010–1020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Anesten, F. et al. Glucagon-like peptide-1-, but not growth and differentiation factor 15-, receptor activation increases the number of interleukin-6-expressing cells in the external lateral parabrachial nucleus. Neuroendocrinology 109, 310–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, Y. et al. Activity-balanced GLP-1/GDF15 dual agonist reduces body weight and metabolic disorder in mice and non-human primates. Cell Metab. 35, 287–298.e4 (2023).

    Article  PubMed  Google Scholar 

  165. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Garvey, W. T. et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 402, 613–626 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Parker, V. E. R. et al. Efficacy and safety of cotadutide, a dual glucagon-like peptide-1 and glucagon receptor agonist, in a randomized phase 2a study of patients with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 24, 1360–1369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jungnik, A. et al. Phase I studies of the safety, tolerability, pharmacokinetics and pharmacodynamics of the dual glucagon receptor/glucagon-like peptide-1 receptor agonist BI 456906. Diabetes Obes. Metab. 25, 1011–1023 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Romero-Gómez, M. et al. A phase 2a active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with nonalcoholic fatty liver disease. J. Hepatol. 79, 888–897 (2023).

    Article  PubMed  Google Scholar 

  170. Rosenstock, J. et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402, 529–544 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Urva, S. et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 400, 1869–1881 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Bossart, M. et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 34, 59–74.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.Y. is supported by the University of Toronto Department of Medicine Eliot Phillipson Clinician Scientist Training Program, Clarence Henry Trelford Clinician Scientist Award in Diabetes, and a KRESCENT Postdoctoral Fellowship. The KRESCENT program is co-sponsored by the Kidney Foundation of Canada, the Canadian Society of Nephrology, and the Canadian Institute of Health Research (CIHR). R.K. is supported by a CIHR graduate award and a Banting and Best Diabetes Centre graduate scholarship. D.Z.I.C. is supported by a Department of Medicine, University of Toronto Merit Award, and receives support from the CIHR, Diabetes Canada and the Heart and Stroke Richard Lewar Centre of Excellence. D.Z.I.C. is also the recipient of a CIHR-KFOC Teams Grant Award. T.K.T.L. is supported by CIHR grants (PJT 189957, PJT 183901, MRT-168045) and holds the Canada Research Chair (Tier 1) in Diabetes and Obesity at the Toronto General Hospital Research Institute & University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of content, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to David Z. I. Cherney or Tony K. T. Lam.

Ethics declarations

Competing interests

D.Z.I.C. has received consulting fees or speaking honoraria or both from Janssen, Bayer, Boehringer Ingelheim-Eli, Lilly, AstraZeneca, Merck & Co Inc, Prometic and Sanofi, and has received operating funds from Janssen, Boehringer Ingelheim-Eli, Lilly, Sanofi, AstraZeneca and Merck & Co Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Alex R. Chang, Neil Docherty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yau, K., Kuah, R., Cherney, D.Z.I. et al. Obesity and the kidney: mechanistic links and therapeutic advances. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00951-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00951-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing