Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence

Abstract

As the prevalence of diabetes continues to climb, the number of individuals living with diabetic complications will reach an unprecedented magnitude. The emergence of new glucose-lowering agents — sodium–glucose cotransporter 2 inhibitors and incretin therapies — has markedly changed the treatment landscape of type 2 diabetes mellitus. In addition to effectively lowering glucose, incretin drugs, which include glucagon-like peptide 1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, can also reduce blood pressure, body weight, the risk of developing or worsening chronic kidney disease and/or atherosclerotic cardiovascular events, and the risk of death. Although kidney disease events have thus far been secondary outcomes in clinical trials, an ongoing phase III trial in patients with diabetic kidney disease will test the effect of a GLP1R agonist on a primary kidney disease outcome. Experimental data have identified the modulation of innate immunity and inflammation as plausible biological mechanisms underpinning the kidney-protective effects of incretin-based agents. These drugs block the mechanisms involved in the pathogenesis of kidney damage, including the activation of resident mononuclear phagocytes, tissue infiltration by non-resident inflammatory cells, and the production of pro-inflammatory cytokines and adhesion molecules. GLP1R agonists and DPP4 inhibitors might also attenuate oxidative stress, fibrosis and cellular apoptosis in the kidney.

Key points

  • Glucagon-like peptide 1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 (DPP4) inhibitors reduce the onset and progression of albuminuria in patients with type 2 diabetes mellitus (T2DM).

  • GLP1R agonists have been shown to delay the decline of estimated glomerular filtration rate in patients with T2DM, including those with or without moderate-to-severe chronic kidney disease. DPP4 inhibitors demonstrate only modest improvement in albuminuria, with no effect on glomerular filtration rate.

  • The kidney-protective effects of GLP1R agonists might be at least partly independent of their effects on glycaemic control.

  • In addition to improved glycaemic control, GLP1R agonists demonstrate a direct effect on the reduction of both systemic and local inflammation, which is a plausible mechanism underpinning kidney protection.

  • Experimental data show that incretin-based therapies block inflammatory cell infiltration and reduce the expression of anti-fibrotic and anti-inflammatory mediators in the diabetic kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GLP1 secretion from enteroendocrine L cells and glucagon secretion from pancreatic α-cells.
Fig. 2: Proposed incretin signalling pathways in kidney cells.
Fig. 3: Incretin effects on structural kidney damage observed in diabetic kidney disease.

Similar content being viewed by others

References

  1. Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390, 1888–1917 (2017).

    Article  PubMed  Google Scholar 

  2. Saran, R. et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73 (Suppl. 1), A7–A8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. United States Renal Data System. 2019 Annual Data Report (USRDS, 2020).

  4. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article  PubMed  Google Scholar 

  5. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 60, 850–886 (2012).

    Article  Google Scholar 

  6. ADA. Standards of medical care in diabetes - 2020. Diabetes Care 43, S1–S212 (2020).

    Article  Google Scholar 

  7. Cea Soriano, L., Johansson, S., Stefansson, B. & Rodriguez, L. A. Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. Cardiovasc. Diabetol. 14, 38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scirica, B. M. et al. Cardiovascular outcomes according to urinary albumin and kidney disease in patients with type 2 diabetes at high cardiovascular risk: observations from the SAVOR-TIMI 53 trial. JAMA Cardiol. 3, 155–163 (2018).

    Article  PubMed  Google Scholar 

  9. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daratha, K. B. et al. Risks of subsequent hospitalization and death in patients with kidney disease. Clin. J. Am. Soc. Nephrol. 7, 409–416 (2012).

    Article  PubMed  Google Scholar 

  11. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990-2010. N. Engl. J. Med. 370, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. Global trends in diabetes complications: a review of current evidence. Diabetologia 62, 3–16 (2019).

    Article  PubMed  Google Scholar 

  13. Hill, N. R. et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Alegre-Diaz, J. et al. Diabetes and cause-specific mortality in Mexico City. N. Engl. J. Med. 375, 1961–1971 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Crews, D. C., Bello, A. K. & Saadi, G. World Kidney Day Steering Committee. Burden, access, and disparities in kidney disease. Kidney Int. 95, 242–248 (2019).

    Article  PubMed  Google Scholar 

  16. Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).

    Article  PubMed  Google Scholar 

  17. Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).

    Article  PubMed  Google Scholar 

  18. Buse, J. B. et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43, 487–493 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018). The participants of this trial with moderate-to-severe diabetic kidney disease who were treated with 52 weeks of dulaglutide experienced a slower decline in kidney function compared with those treated with insulin.

    Article  CAS  PubMed  Google Scholar 

  20. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017). In this CVOT, liraglutide treatment was associated with lower rates of new-onset macroalbuminuria compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  23. Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016). This CVOT demonstrated significantly lower rates of primary composite cardiovascular outcome and secondary kidney outcomes (new-onset or worsening nephropathy) after 2 years of treatment with oral semaglutide compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  26. Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bethel, M. A. et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL trial. Diabetes Care 43, 446–452 (2020).

    Article  PubMed  Google Scholar 

  28. Rosenstock, J. et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA Randomized Clinical Trial. JAMA 321, 69–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Graaf, C. et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol. Rev. 68, 954–1013 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Holt, M. K. et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes 68, 21–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Holst, J. J., Albrechtsen, N. J. W., Rosenkilde, M. M. & Deacon, C. F. Physiology of the Incretin hormones, GIP and GLP-1-regulation of release and posttranslational modifications. Compr. Physiol. 9, 1339–1381 (2019).

    Article  PubMed  Google Scholar 

  33. Zhou, B., Ji, K., Peng, A., Yang, X. & Huang, K. GLP-1(28-36) amide, a long ignored peptide revisited. Open Biochem. J. 8, 107–111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vahl, T. P., Paty, B. W., Fuller, B. D., Prigeon, R. L. & D’Alessio, D. A. Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J. Clin. Endocrinol. Metab. 88, 1772–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, G. E. & Brubaker, P. L. Glucagon-like peptide 1 secretion by the L-cell. Diabetes 55 (Suppl. 2), 70–77 (2006).

    Article  CAS  Google Scholar 

  36. Balks, H. J., Holst, J. J., von zur Muhlen, A. & Brabant, G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J. Clin. Endocrinol. Metab. 82, 786–790 (1997).

    CAS  PubMed  Google Scholar 

  37. Ellingsgaard, H. et al. GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia 63, 362–373 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Kahles, F. et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63, 3221–3229 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Drucker, D. J. Mechanisms of Action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018). This article provides historical context about the characterization of GLP1 and extensively reviews its physiological role.

    Article  CAS  PubMed  Google Scholar 

  41. Kuhre, R. E. et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G622–G630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adam, T. C. & Westerterp-Plantenga, M. S. Nutrient-stimulated GLP-1 release in normal-weight men and women. Horm. Metab. Res. 37, 111–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Reimann, F., Williams, L., da Silva Xavier, G., Rutter, G. A. & Gribble, F. M. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47, 1592–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kuhre, R. E. et al. Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: a comparison to native L-cells. J. Mol. Endocrinol. 56, 201–211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah, M. et al. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects. Eur. J. Nutr. 56, 1053–1062 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Kendall, C. W. et al. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome. Eur. J. Clin. Nutr. 68, 370–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kehlet, U. et al. Addition of rye bran and pea fiber to pork meatballs enhances subjective satiety in healthy men, but does not change glycemic or hormonal responses: a randomized crossover meal test study. J. Nutr. 147, 1700–1708 (2017).

    CAS  PubMed  Google Scholar 

  50. Yaribeygi, H., Maleki, M., Sathyapalan, T., Jamialahmadi, T. & Sahebkar, A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci. 241, 117152 (2019).

    Article  PubMed  CAS  Google Scholar 

  51. Uribarri, J. & Tuttle, K. R. Advanced glycation end products and nephrotoxicity of high-protein diets. Clin. J. Am. Soc. Nephrol. 1, 1293–1299 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Adam, T. C. & Westerterp-Plantenga, M. S. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br. J. Nutr. 93, 845–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kuhne S. G., Stengel A. Alteration of peptidergic gut-brain signaling under conditions of obesity. J. Physiol. Pharmacol. https://doi.org/10.26402/jpp.2019.5.01 (2019).

  54. Anandhakrishnan, A. & Korbonits, M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J. Diabetes 7, 572–598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neumiller, J. J. Incretin pharmacology: a review of the incretin effect and current incretin-based therapies. Cardiovasc. Hematol. Agents Med. Chem. 10, 276–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Bortolato, A. et al. Structure of class B GPCRs: new horizons for drug discovery. Br. J. Pharmacol. 171, 3132–3145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, L. et al. Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomed. Pharmacother. 120, 109555 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, H., Brun, T., Kataoka, K., Sharma, A. J. & Wollheim, C. B. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50, 348–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hall, E. et al. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med. Genet. 14, 76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wildhage, I., Trusheim, H., Goke, B. & Lankat-Buttgereit, B. Gene expression of the human glucagon-like peptide-1 receptor is regulated by Sp1 and Sp3. Endocrinology 140, 624–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Pyke, C. & Knudsen, L. B. The glucagon-like peptide-1 receptor – or not? Endocrinology 154, 4–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Michel, M. C., Wieland, T. & Tsujimoto, G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch. Pharmacol. 379, 385–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Webb, D. R., Handel, T. M., Kretz-Rommel, A. & Stevens, R. C. Opportunities for functional selectivity in GPCR antibodies. Biochem. Pharmacol. 85, 147–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Fan, Y. et al. Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes 68, 2301–2314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baggio, L. L. et al. GLP-1 receptor expression within the human heart. Endocrinology 159, 1570–1584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deacon, C. F. What do we know about the secretion and degradation of incretin hormones? Regul. Pept. 128, 117–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Moellmann, J. et al. Glucagon-like peptide 1 and its cleavage products are renoprotective in murine diabetic nephropathy. Diabetes. 67, 2410–2419 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Burgmaier, M. et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis 231, 427–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Deacon, C. F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. 10, 80 (2019).

    Article  Google Scholar 

  72. Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 185, 1–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hasan, A. A. & Hocher, B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol. 59, R1–R10 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Lambeir, A. M., Durinx, C., Scharpe, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40, 209–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Nauck, M. A. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124, S3–S18 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Ohnuma, K., Dang, N. H. & Morimoto, C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 29, 295–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Shingu, K. et al. CD26 expression determines lung metastasis in mutant F344 rats: involvement of NK cell function and soluble CD26. Cancer Immunol. Immunother. 52, 546–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Frerker, N. et al. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions. Clin. Chem. Lab. Med. 47, 275–287 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Aroor, A. et al. DPP-4 Inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med. 3, 48–56 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matteucci, E. & Giampietro, O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr. Med. Chem. 16, 2943–2951 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Trujillo, J. M. & Nuffer, W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy 34, 1174–1186 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Drucker, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Meier, J. J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 728–742 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Edwards, C. M. et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. Endocrinol. Metab. 281, E155–E161 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).

    CAS  PubMed  Google Scholar 

  89. Raun, K., von Voss, P. & Knudsen, L. B. Liraglutide, a once-daily human glucagon-like peptide-1 analog, minimizes food intake in severely obese minipigs. Obesity 15, 1710–1716 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Meier, J. J. et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53, 654–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ahmann, A. J. et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 41, 258–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Fineman, M. S. et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes. Metab. 14, 546–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Ahren, B. Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin–diabetes control and potential adverse events. Best Pract. Res. Clin. Endocrinol. Metab. 23, 487–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Deacon, C. F. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53, 2181–2189 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. DeFronzo, R. A. et al. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin. 24, 2943–2952 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, X. W. et al. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 42, 999–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Scheen, A. J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab. 12, 648–658 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Food and Drug Administration. Guidance for industry: diabetes mellitus - evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Federal Register https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic (2008).

  99. Tuttle K. R. et al. CKD Outcomes in Type 2 Diabetes and Moderate-to-Severe CKD Treated with Dulaglutide Versus Insulin Glargine: AWARD-7 [abstract TH-OR033]. ASN Kidney Week 2018 https://www.asn-online.org/education/kidneyweek/2018/program-abstract.aspx?controlId=3008561 (2018).

  100. Tuttle K. R0., et al. Clinical events in type 2 diabetes and moderate-to-severe CKD by albuminuria status: dulaglutide vs. insulin glargine [Abstract SA-OR081]. ASN Kidney Week 2019 https://www.asn-online.org/education/kidneyweek/2019/program-abstract.aspx?controlId=3224819 (2019).

  101. Zavattaro, M. et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine 50, 620–626 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Davies, M. J. et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care 39, 222–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Mann, J. F. E. et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post hoc analysis of the SUSTAIN 1-7 randomized controlled trials. Lancet Diabetes Endocrinol. 8, 880–893 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Muskiet, M. H. A. et al. Exenatide twice-daily does not affect renal function or albuminuria compared to titrated insulin glargine in patients with type 2 diabetes mellitus: A post-hoc analysis of a 52-week randomised trial. Diabetes Res. Clin. Pract. 153, 14–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Kristensen, S. L. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7, 776–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03819153?term=semaglutide+FLOW&draw=2&rank=1 (2019).

  108. White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Garlo, K. G. et al. Kidney biomarkers and decline in eGFR in patients with type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 13, 398–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Groop, P. H. et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes. Metab. 19, 1610–1619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mosenzon, O. et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 Trial. Diabetes Care 40, 69–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Cornel, J. H. et al. Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: outcomes from TECOS. Diabetes Care 39, 2304–2310 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alicic, R. Z., Johnson, E. J. & Tuttle, K. R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis. 25, 181–191 (2018).

    Article  PubMed  Google Scholar 

  116. Anderberg, R. J. et al. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab. Invest. 95, 250–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Alicic, R. Z., Neumiller, J. J., Johnson, E. J., Dieter, B. & Tuttle, K. R. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 68, 248–257 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 312, F716–F731 (2017).

    Article  CAS  Google Scholar 

  119. Tang, S. C. W. & Yiu, W. H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 16, 206–222 (2020). Extensive review of the role of dysregulated immunity and inflammation in diabetes.

    Article  CAS  PubMed  Google Scholar 

  120. Tuttle, K. R. et al. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N. Engl. J. Med. 324, 1626–1632 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Tuttle, K. R. & Bruton, J. L. Effect of insulin therapy on renal hemodynamic response to amino acids and renal hypertrophy in non-insulin-dependent diabetes. Kidney Int. 42, 167–173 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Tuttle, K. R., Puhlman, M. E., Cooney, S. K. & Short, R. A. Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes. Am. J. Physiol. Ren. Physiol. 282, F103–F112 (2002).

    Article  CAS  Google Scholar 

  123. Jha, J. C. et al. NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes 66, 2691–2703 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Hendarto, H. et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism 61, 1422–1434 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Sancar-Bas, S., Gezginci-Oktayoglu, S. & Bolkent, S. Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice. Growth Factors 33, 419–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Kodera, R. et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54, 965–978 (2011). Very early report of direct, glucose-independent anti-inflammatory effects of GLP1 agonists in the kidney.

    Article  CAS  PubMed  Google Scholar 

  127. Katagiri, D. et al. Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J. Am. Soc. Nephrol. 24, 2034–2043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang, H. et al. Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. J. Surg. Res. 185, 825–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Turner, J. E., Becker, M., Mittrucker, H. W. & Panzer, U. Tissue-resident lymphocytes in the kidney. J. Am. Soc. Nephrol. 29, 389–399 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Ferdinand, K. C. et al. Effects of the once-weekly glucagon-like peptide-1 receptor agonist dulaglutide on ambulatory blood pressure and heart rate in patients with type 2 diabetes mellitus. Hypertension 64, 731–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Bunck, M. C. et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care 33, 1734–1737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tremblay, A. J., Lamarche, B., Deacon, C. F., Weisnagel, S. J. & Couture, P. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism 63, 1141–1148 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Mazidi, M., Karimi, E., Rezaie, P. & Ferns, G. A. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Complications 31, 1237–1242 (2017).

    Article  PubMed  Google Scholar 

  134. Hadjiyanni, I., Siminovitch, K. A., Danska, J. S. & Drucker, D. J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 53, 730–740 (2010). This study provided the first experimental evidence for the anti-inflammatory and immunomodulatory properties of GLP1.

    Article  CAS  PubMed  Google Scholar 

  135. Lebherz, C. et al. Interleukin-6 predicts inflammation-induced increase of Glucagon-like peptide-1 in humans in response to cardiac surgery with association to parameters of glucose metabolism. Cardiovasc. Diabetol. 15, 21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ceriello, A. et al. Simultaneous GLP-1 and insulin administration acutely enhances their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes. Diabetes Care 37, 1938–1943 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Arakawa, M. et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. He, L. et al. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J. Diabetes Investig. 4, 382–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hogan, A. E. et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 57, 781–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Shiraishi, D., Fujiwara, Y., Komohara, Y., Mizuta, H. & Takeya, M. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem. Biophys. Res. Commun. 425, 304–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Akarte, A. S., Srinivasan, B. P., Gandhi, S. & Sole, S. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats. Eur. J. Pharm. Sci. 47, 456–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Tian, L. et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151, 3049–3060 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Moschovaki Filippidou, F. et al. Glucagon-like peptide-1 receptor agonism improves nephrotoxic serum nephritis by inhibiting T-cell proliferation. Am. J. Pathol. 190, 400–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, S. J. et al. DPP-4 inhibition enhanced renal tubular and myocardial GLP-1 receptor expression decreased in CKD with myocardial infarction. BMC Nephrol. 20, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Higashijima, Y., Tanaka, T., Yamaguchi, J., Tanaka, S. & Nangaku, M. Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. Am. J. Physiol. Ren. Physiol. 308, F878–F887 (2015).

    Article  CAS  Google Scholar 

  147. Hasan, A. A. et al. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int. 95, 1373–1388 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Ronn, J., Jensen, E. P., Wewer Albrechtsen, N. J., Holst, J. J. & Sorensen, C. M. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiol Rep. 5, e13503 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  149. Thomson, S. C., Kashkouli, A., Liu, Z. Z. & Singh, P. Renal hemodynamic effects of glucagon-like peptide-1 agonist are mediated by nitric oxide but not prostaglandin. Am. J. Physiol. Ren. Physiol. 313, F854–F858 (2017).

    Article  Google Scholar 

  150. Tang-Christensen, M. et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).

    CAS  PubMed  Google Scholar 

  151. Tonneijck, L. et al. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: An 8-week, randomised, open-label trial. Diabetes Obes. Metab. 19, 1669–1680 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Skov, J. et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J. Clin. Endocrinol. Metab. 98, E664–E671 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Carraro-Lacroix, L. R., Malnic, G. & Girardi, A. C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 297, F1647–F1655 (2009).

    Article  CAS  Google Scholar 

  155. Tonneijck, L. et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus. Am. J. Physiol. Ren. Physiol. 316, F231–F240 (2019).

    Article  Google Scholar 

  156. Crajoinas, R. O. et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am. J. Physiol. Ren. Physiol. 301, F355–F363 (2011).

    Article  CAS  Google Scholar 

  157. Rieg, T. et al. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am. J. Physiol. Ren. Physiol. 303, F963–F971 (2012).

    Article  CAS  Google Scholar 

  158. Girardi, A. C., Fukuda, L. E., Rossoni, L. V., Malnic, G. & Reboucas, N. A. Dipeptidyl peptidase IV inhibition downregulates Na+- H+ exchanger NHE3 in rat renal proximal tubule. Am. J. Physiol. Ren. Physiol. 294, F414–F422 (2008).

    Article  CAS  Google Scholar 

  159. van Baar, M. J. B. et al. The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists. Ther. Adv. Endocrinol. Metab. 10, 2042018819865398 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Farah, L. X. et al. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am. J. Physiol. Ren. Physiol. 310, F123–F127 (2016).

    Article  CAS  Google Scholar 

  161. Muskiet, M. H. A. et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 13, 605–628 (2017). Comprehensive review of the role of GLP1 in the kidney and of its treatment potential.

    Article  CAS  PubMed  Google Scholar 

  162. Tonneijck, L. et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia 59, 1412–1421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gilbert, M. P. & Pratley, R. E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front. Endocrinol. 11, 178 (2020).

    Article  Google Scholar 

  164. Moon, H. S., Kim, M. K. & Son, M. H. The development of non-peptide glucagon-like peptide-1 receptor agonist for the treatment of type 2 diabetes. Arch. Pharm. Res. 34, 1041–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Chepurny, O. G. et al. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Sci. Rep. 6, 28934 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Jensen, E. P. et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. Am. J. Physiol. Ren. Physiol. 308, F867–F877 (2015).

    Article  CAS  Google Scholar 

  170. Korner, M., Stockli, M., Waser, B. & Reubi, J. C. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J. Nucl. Med. 48, 736–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Fujita, H. et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 85, 579–589 (2014). This study reported on the antioxidative and anti-inflammatory effects of GLP1R agonists in the kidney and demonstrated improved kidney function and histology.

    Article  CAS  PubMed  Google Scholar 

  172. Sharkovska, Y. et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J. Hypertens. 32, 2211–2223 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Schlatter, P., Beglinger, C., Drewe, J. & Gutmann, H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul. Pept. 141, 120–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Jackson, E. K., Kochanek, S. J. & Gillespie, D. G. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells. Hypertension 60, 757–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Kettmann, U., Humbel, B. & Holzhausen, H. J. Ultrastructural localization of dipeptidylpeptidase IV in the glomerulum of the rat kidney. Acta Histochem. 92, 225–227 (1992).

    Article  CAS  PubMed  Google Scholar 

  176. Hartel, S., Gossrau, R., Hanski, C. & Reutter, W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 89, 151–161 (1988).

    Article  CAS  PubMed  Google Scholar 

  177. Stange, T., Kettmann, U. & Holzhausen, H. J. Immunoelectron microscopic single and double labelling of aminopeptidase N (CD 13) and dipeptidyl peptidase IV (CD 26). Acta Histochem. 98, 323–331 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang, J. et al. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci. 81, 272–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Takeda Pharmaceuticals America, Inc. Alogliptin (Nesina®) Tablets. Prescribing Information (Takeda Pharmaceuticals America, Inc., 2019).

  180. Boehringer Ingelheim Pharmaceuticals, Inc. Linagliptin (Tradjenta®) Tablets. Prescribing Information (Boehringer Ingelheim Pharmaceuticals, Inc., 2019)

  181. AstraZeneca Pharmaceuticals LP. Saxagliptin (Onglyza®) Tablets. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2019).

  182. Merck & Co., Inc. Sitagliptin (Januvia®) Tablets. Prescribing Information. (Merck & Co., Inc., 2019).

  183. Novartis Pharma. Vildagliptin (Galvus). Summary of Product Characteristics. (Novartis Pharma, 2012).

  184. AstraZeneca Pharmaceuticals LP. Exenatide (Byetta®) Injection. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2018).

  185. Sanofi-aventis U.S., LLC. Lixisenatide (Adlyxin®) Injection. Prescribing Information (Sanofi-aventis U.S., LLC, 2019).

  186. Novo Nordisk, Inc. Liraglutide (Victoza®) Injection. Prescribing Information (Novo Nordisk, Inc., 2019).

  187. Eli Lilly and Company. Dulaglutide (Trulicity®) Injection. Prescribing Information (Eli Lilly and Company, 2019).

  188. Novo Nordisk, Inc. Semaglutide (Ozempic®) Injection. Prescribing Information (Novo Nordisk, Inc., 2019).

  189. Novo Nordisk, Inc. Semaglutide (Rybelsus®) Tablets. Prescribing Information (Novo Nordisk, Inc., 2019).

  190. AstraZeneca Pharmaceuticals LP. Exenatide Extended-Release (Bydureon®) Injectable Suspension. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2019).

  191. Park, C. W. et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Ishibashi, Y., Nishino, Y., Matsui, T., Takeuchi, M. & Yamagishi, S. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism. 60, 1271–1277 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Gangadharan Komala, M., Gross, S., Zaky, A., Pollock, C. & Panchapakesan, U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology 21, 423–431 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, W. J. et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 340, 248–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Marques, C. et al. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm. 2014, 538737 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Nakashima, S., Matsui, T., Takeuchi, M. & Yamagishi, S. I. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Horm. Metab. Res. 46, 717–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Kanasaki, K. et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63, 2120–2131 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Kodera, R. et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem. Biophys. Res. Commun. 443, 828–833 (2014). Early study demonstrating that a reduction of albuminuria and amelioration of histological changes in the kidneys of diabetic rats was mediated through anti-inflammatory rather than anti-hyperglycaemic effects.

    Article  CAS  PubMed  Google Scholar 

  199. Ceriello, A. et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 36, 2346–2350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu, J. D. et al. Effect of exenatide on inflammatory and oxidative stress markers in patients with type 2 diabetes mellitus. Diabetes Technol. Ther. 13, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Buldak, L. et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol. Rep. 68, 329–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bruen, R. et al. Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators. J. Pharmacol. Exp. Ther. 370, 447–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Eissele, R. et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22, 283–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  205. Holst, J. J. & Gromada, J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Billing, L. J. et al. Co-storage and release of insulin-like peptide-5, glucagon-like peptide-1 and peptideYY from murine and human colonic enteroendocrine cells. Mol. Metab. 16, 65–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 11, 3–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Gribble, F. M. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc. Nutr. Soc. 71, 456–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Anini, Y., Hansotia, T. & Brubaker, P. L. Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology 143, 2420–2426 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Zhang, Y. et al. GLP-1 receptor in pancreatic alpha-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 68, 34–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Chen, Y. T. et al. Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl Med. 11, 270 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

K.R.T. is supported by four NIDDK/NIH grants, one NCATS/NIH grant, one NIMHD/NIH grant, and a CDC contract, all from the US government, as well as a research grant from Goldfinch Bio.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the manuscript, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Katherine R. Tuttle.

Ethics declarations

Competing interests

K.R.T. has received consulting fees for diabetes and CKD from Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca, Gilead, Goldfinch Bio, Novo Nordisk and Bayer. J.J.N. has received consulting fees from Novo Nordisk. R.Z.A. has received consulting fees from Boehringer Ingelheim. E.J.C. declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks P. Rossing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anorexigenic gut peptides

Appetite-reducing peptides.

Tachyphylaxis

Rapid loss or downregulation of a response to a drug.

Volume of distribution

The volume required to dilute a drug to its observed concentration in plasma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alicic, R.Z., Cox, E.J., Neumiller, J.J. et al. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat Rev Nephrol 17, 227–244 (2021). https://doi.org/10.1038/s41581-020-00367-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-00367-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing