Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From Wingspread to CLARITY: a personal trajectory


In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between ‘science for its own sake’ and ‘regulatory science’ and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: “Nothing is more practical than a good theory”.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A timeline of the concept of endocrine disruptors.
Fig. 2: Non-monotonic responses to BPA in the mammary gland of female 21-day-old rats.


  1. 1.

    McLachlan, J. A. Estrogens in the Environment (Elsevier, 1980).

  2. 2.

    Colborn, T. & Liroff, R. A. Toxics in the Great Lakes. EPA J. 16, 5–8 (1990).

    Google Scholar 

  3. 3.

    Soto, A. M., Justicia, H., Wray, J. W. & Sonnenschein, C. p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ. Health Perspect. 92, 167–173 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sonnenschein, C., Soto, A. M. & Michaelson, C. L. Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. J. Steroid Biochem. Mol. Biol. 59, 147–154 (1996).

    CAS  PubMed  Google Scholar 

  5. 5.

    Soto, A. M. & Sonnenschein, C. Regulation of cell proliferation: the negative control perspective. Ann. NY Acad. Sci. 628, 412–418 (1991).

    CAS  PubMed  Google Scholar 

  6. 6.

    Sonnenschein, C. & Soto, A. M. The Society of Cells: Cancer and Control of Cell Proliferation (Springer, 1999).

  7. 7.

    Soto, A. M., Longo, G., Montévil, M. & Sonnenschein, C. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Prog. Biophys. Mol. Biol. 122, 16–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Markey, C. M., Michaelson, C. L., Sonnenschein, C. & Soto, A. M. in Endocrine Disruptors - Part I (ed Metzler, M.) 129–153 (Springer, 2001).

  9. 9.

    Colborn, T. & Clement, C. Chemically Induced Alterations in Sexual and Functional Development: the Wildlife/Human Connection (Princeton Scientific, 1992).

  10. 10.

    Colborn, T., vom Saal, F. S. & Soto, A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378–384 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bern, H. A. et al. in Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection (eds Colborn, T. & Clement, C.) 1–8 (Princeton Scientific, 1992).

  12. 12.

    Herbst, A. L., Ulfelder, H. & Poskanzer, D. C. Adenocarcinoma of the vagina: association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284, 878–881 (1971).

    CAS  PubMed  Google Scholar 

  13. 13.

    Noller, K. L. et al. Increased occurrence of autoimmune disease among women exposed in utero to diethylstilbestrol. Fertil. Steril. 49, 1080–1082 (1988).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bern, H. A. in Chemically-Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. (eds Colborn, T. & Clement, C.) 9–15 (Princeton Scientific, 1992).

  15. 15.

    Fox, G. A. in Chemically Induced Alterations in Sexual and Functional Development: the Wildlife/Human Connection (eds Colborn, T. & Clement, C.) 147–158 (Princeton Scientific, 1992).

  16. 16.

    Ryan, B. C. & Vandenbergh, J. G. Intrauterine position effects. Neurosci. Biobehav. Rev. 26, 665–678 (2002).

    PubMed  Google Scholar 

  17. 17.

    vom Saal, F. S. TRIENNIAL REPRODUCTION SYMPOSIUM: Environmental programming of reproduction during fetal life: effects of intrauterine position and the endocrine disrupting chemical bisphenol A. J. Anim. Sci. 94, 2722–2736 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Vandenberg, L. N. et al. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148, 116–127 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Guzelian, P. S. Comparative toxicology of chlorodecone (kepone) in humans and experimental animals. Annu. Rev. Pharmacol. Toxicol. 22, 89–113 (1982).

    CAS  PubMed  Google Scholar 

  20. 20.

    Soto, A. M., Chung, K. L. & Sonnenschein, C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen sensitive cells. Environ. Health Perspect. 102, 380–383 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Soto, A. M. et al. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ. Health Perspect. 103, 113–122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gore, A. C. et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zoeller, R. T. et al. Endocrine-dsrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology 153, 4097–4110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Armstrong, D. T., Moon, Y. S. & Leung, P. C. K. Uterotrophic effects of testosterone and 5à-dihydrotestosterone in intact and ovariectomized immature female rats. Biol. Reprod. 15, 107–114 (1976).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zoeller, R. T., Bansal, R. & Parris, C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146, 607–612 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Fini, J. B. et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Env. Sci. Technol. 41, 5908–5914 (2007).

    CAS  Google Scholar 

  28. 28.

    Kurian, J. R. et al. Acute influences of bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female rhesus monkeys. Endocrinology 156, 2563–2570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Speroni, L. et al. New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Sci. Rep. 7, 40806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Camacho, L. et al. A two-year toxicology study of bisphenol A (BPA) in Sprague-Dawley rats: CLARITY-BPA core study results. Food Chem. Toxicol. 132, 110728 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Nadal, A. et al. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: is there toxicology beyond paracelsus? J. Steroid Biochem. Mol. Biol. 176, 16–22 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Phoenix, C. H., Goy, R. W., Gerall, A. A. & Young, W. C. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382 (1959).

    CAS  PubMed  Google Scholar 

  33. 33.

    Alonso-Magdalena, P., Garcia-Arevalo, M., Quesada, I. & Nadal, A. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156, 1659–1670 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ranciere, F. et al. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence. Env. Health 14, 46 (2015).

    Google Scholar 

  35. 35.

    Titus-Ernstoff, L. et al. Long-term cancer risk in women given diethylstilbestrol (DES) during pregnancy. Br. J. Cancer 84, 126–133 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hoover, R. N. et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N. Engl. J. Med. 365, 1304–1314 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cohn, B. A., Cirillo, P. M. & Terry, M. B. DDT and breast cancer: prospective study of induction time and susceptibility windows. J. Natl Cancer Inst. 111, 803–810 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sonnenschein, C., Wadia, P. R., Rubin, B. S. & Soto, A. M. Cancer as development gone awry: the case for bisphenol-A as a carcinogen. J. Dev. Orig. Health Dis. 2, 9–16 (2011).

    CAS  Google Scholar 

  39. 39.

    Rubin, B. S. et al. Evidence of altered brain sexual differentiation in mice exposed perinatally to low environmentally relevant levels of bisphenol A. Endocrinology 147, 3681–3691 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Amara, J. F. & Dannies, P. S. 17β-Estradiol has a biphasic effect on GH cell growth. Endocrinology 112, 1141–1143 (1983).

    CAS  PubMed  Google Scholar 

  41. 41.

    Sonnenschein, C., Olea, N., Pasanen, M. E. & Soto, A. M. Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res. 49, 3474–3481 (1989).

    CAS  PubMed  Google Scholar 

  42. 42.

    Geck, P., Maffini, M. V., Szelei, J., Sonnenschein, C. & Soto, A. M. Androgen-induced proliferative quiescence in prostate cancer: the role of AS3 as its mediator. Proc. Natl Acad. Sci. USA 97, 10185–10190 (2000).

    CAS  PubMed  Google Scholar 

  43. 43.

    Soto, A. M. et al. Variants of the human prostate LNCaP cell line as a tool to study discrete components of the androgen-mediated proliferative response. Oncol. Res. 7, 545–558 (1995).

    CAS  PubMed  Google Scholar 

  44. 44.

    Vandenberg, L. N. et al. Hormones and endocrine disrupting chemicals: low dose effects and non-monotonic dose responses. Endocr. Rev. 33, 378–455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cabaton, N. J. et al. Perinatal exposure to environmentally relevant levels of bisphenol-A decreases fertility and fecundity in CD-1 mice. Environ. Health Perspect. 119, 547–552 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Villar-Pazos, S. et al. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on Ca2+ entry in mouse pancreatic β-cells. Sci. Rep. 7, 11770 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kortenkamp, A., Faust, M., Scholze, M. & Backhaus, T. Low-level exposure to multiple chemicals: reason for human health concerns? Environ. Health Perspect. 115, 106–114 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Isling, L. K. et al. Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters. Reproduction 147, 465–476 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Pastor-Barriuso, R. et al. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase-control study in Spain. Env. Health Perspect. 124, 1575–1582 (2016).

    CAS  Google Scholar 

  50. 50.

    Stormshak, F., Leake, R., Wertz, N. & Gorski, J. Stimulatory and inhibitory effects of estrogen on uterine DNA synthesis. Endocrinology 99, 1501–1511 (1976).

    CAS  PubMed  Google Scholar 

  51. 51.

    Bruchovsky, N., Lesser, B., Van Doorn, E. & Craven, S. Hormonal effects on cell proliferation in rat prostate. Vitam. Hormones 33, 61–102 (1975).

    CAS  Google Scholar 

  52. 52.

    Maffini, M. V., Geck, P., Powell, C. E., Sonnenschein, C. & Soto, A. M. Mechanism of androgen action on cell proliferation AS3 protein as a mediator of proliferative arrest in the rat prostate. Endocrinology 143, 2708–2714 (2002).

    CAS  PubMed  Google Scholar 

  53. 53.

    Soto, A. M. & Sonnenschein, C. The two faces of Janus: sex steroids as mediators of both cell proliferation and cell death. J. Natl Cancer Inst. 93, 1673–1675 (2001).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kang, Y. H., Anderson, W. A. & DeSombre, E. R. Modulation of uterine morphology and growth by estradiol-17beta and an estrogen antagonist. J. Cell Biol. 64, 682–691 (1975).

    CAS  PubMed  Google Scholar 

  55. 55.

    Martin, L., Finn, C. A. & Trinder, G. Hypertrophy and hyperplasia in the mouse uterus after oestrogen treatment: an autoradiographic study. J. Endocrinol. 56, 133–144 (1973).

    CAS  PubMed  Google Scholar 

  56. 56.

    Schaison, G. & Couzinet, B. Steroid control of gonadtropin secretion. J. Steroid Biochem. Mol. Biol. 40, 417–420 (1991).

    CAS  PubMed  Google Scholar 

  57. 57.

    Bronson, F. H. The regulation of luteinizing hormone secretion by estrogen: relationships among negative feedback, surge potential, and male stimulation in juvenile, peripubertal, and adult female mice. Endocrinology 108, 506–516 (1981).

    CAS  PubMed  Google Scholar 

  58. 58.

    Liu, X., Porteous, R. & Herbison, A. E. Dynamics of GnRH neuron ionotropic GABA and glutamate synaptic receptors are unchanged during estrogen positive and negative feedback in female mice. eNeuro 4, 1–14 (2017).

    Google Scholar 

  59. 59.

    Huggins, C., Moon, R. C. & Morii, S. Extinction of experimental mammary cancer. I. Estradiol-17β and progesterone. Proc. Natl Acad. Sci. USA 48, 379–386 (1962).

    CAS  PubMed  Google Scholar 

  60. 60.

    Palmer, J. R. et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 15, 1509–1514 (2006).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ingle, J. N., Ahman, D. L. & Green, S. J. Randomized clinical trial of DES versus tamoxifen in post-menopausal women with advanced breast cancer. N. Engl. J. Med. 304, 16–21 (1981).

    CAS  PubMed  Google Scholar 

  62. 62.

    Goldenberg, I. S. Results of studies of the Cooperative Breast Cancer Group 1961-1963. Cancer Chemotherapy Rep. 41, 1–24 (1964).

    Google Scholar 

  63. 63.

    Khandekar, J. D., Victor, T. A. & Mukhopadhyaya, P. Endometrial carcinoma following estrogen therapy for breast cancer. Report of three cases. Arch. Intern. Med. 138, 539–541 (1978).

    CAS  PubMed  Google Scholar 

  64. 64.

    O’Grady, W. P. & McDivitt, R. W. Breast cancer in a man treated with diethylstilbestrol. Arch. Pathol. 88, 162–165 (1969).

    PubMed  Google Scholar 

  65. 65.

    Colborn, T., Dumanoski, D. & Myers, J. P. Our Stolen Future (Penguin, 1995).

  66. 66.

    Gioiosa, L., Palanza, P., Parmigiani, S. & vom Saal, F. S. Risk evaluation of endocrine-disrupting chemicals: effects of developmental exposure to low doses of bisphenol A on behavior and physiology in mice (Mus musculus). Dose Response 13, 1559325815610760 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Timms, B. G. et al. Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc. Natl Acad. Sci. USA 102, 7014–7019 (2005).

    CAS  PubMed  Google Scholar 

  68. 68.

    vom Saal, F. S. et al. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol. Ind. Health 14, 239–260 (1998).

    CAS  PubMed  Google Scholar 

  69. 69.

    Ho, S. M., Tang, W. Y., Belmonte de Frausto, J. & Prins, G. S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624–5632 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Soto, A. M. & Sonnenschein, C. Reductionism, organicism, and causality in the biomedical sciences: a critique. Perspect. Biol. Med. 61, 489–502 (2018).

    PubMed  Google Scholar 

  71. 71.

    Longo, G., Miquel, P. A., Sonnenschein, C. & Soto, A. M. Is information a proper observable for biological organization? Prog. Biophys. Mol. Biol. 109, 108–114 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Gilbert, S. F. Developmental plasticity and developmental symbiosis: the return of eco-devo. Curr. Top. Dev. Biol. 116, 415–433 (2016).

    PubMed  Google Scholar 

  73. 73.

    Nicholson, D. J. Is the cell really a machine? J. Theor. Biol. 477, 108–126 (2019).

    PubMed  Google Scholar 

  74. 74.

    Nicholson, D. J. The concept of mechanism in biology. Stud. Hist. Philos. Biol. Biomed. Sci. 43, 152–163 (2012).

    PubMed  Google Scholar 

  75. 75.

    Laland, K. et al. Does evolutionary theory need a rethink? Nature 514, 161–164 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Bateson, P. Developmental plasticity and evolutionary biology. J. Nutr. 137, 1060–1062 (2007).

    CAS  PubMed  Google Scholar 

  77. 77.

    Ankley, G. T. et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Env. Toxicol. Chem. 29, 730–741 (2010).

    CAS  Google Scholar 

  78. 78.

    Leist, M. et al. Adverse outcome pathways: opportunities, limitations and open questions. Arch. Toxicol. 91, 3477–3505 (2017).

    CAS  PubMed  Google Scholar 

  79. 79.

    Lesne, A. Multiscale analysis of biological systems. Acta Biotheoretica 61, 3–19 (2013).

    PubMed  Google Scholar 

  80. 80.

    La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disruption chemicals as a basis for hazard indentification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    PubMed  Google Scholar 

  81. 81.

    Soto, A. M., Longo, G. & Noble, D. From the century of the genome to the century of the organism: new theoretical approaches. Prog. Biophys. Mol. Biol. 122, 1–82 (2016).

    PubMed  Google Scholar 

  82. 82.

    Soto, A. M. et al. Toward a theory of organisms: three founding principles in search of a useful integration. Prog. Biophys. Mol. Biol. 122, 77–82 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Myers, J. P. et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ. Health Perspect. 117, 309–315 (2009).

    CAS  PubMed  Google Scholar 

  84. 84.

    Vandenberg, L. N. et al. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod.Toxicol. 38, 1–15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Beausoleil, C. et al. Regulatory identification of BPA as an endocrine disruptor: context and methodology. Mol. Cell Endocrinol. 475, 4–9 (2018).

    CAS  PubMed  Google Scholar 

  86. 86.

    Schug, T. T. et al. A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program. Reprod. Toxicol. 40, 35–40 (2013).

    CAS  PubMed  Google Scholar 

  87. 87.

    Heindel, J. J. et al. NIEHS/FDA CLARITY-BPA research program update. Reprod. Toxicol. 58, 33–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Prins, G. S. et al. Prostate cancer risk and DNA methylation signatures in aging rats following developmental BPA exposure: a dose-response analysis. Env. Health Perspect. 125, 077007 (2017).

    Google Scholar 

  89. 89.

    Heindel, J. J. et al. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod. Toxicol. 98, 29–60 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Tremblay-Franco, M. et al. Dynamic metabolic disruption in rats perinatally exposed to low doses of bisphenol-A. PLoS ONE 10, e0141698 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Rubin, B. S. et al. Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice. Reprod. Toxicol. 68, 130–144 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Vandenberg, L. N., Hunt, P. A. & Gore, A. C. Endocrine disruptors and the future of toxicology testing – lessons from CLARITY-BPA. Nat. Rev. Endocrinol. 15, 366–374 (2019).

    CAS  PubMed  Google Scholar 

  93. 93.

    Montévil, M. et al. A combined morphometric and statistical approach to assess nonmonotonicity in the developing mammary gland of rats in the CLARITY-BPA study. Env. Health Perspect. 128, 57001 (2020).

    Google Scholar 

  94. 94.

    Soto, A. M. & Sonnenschein, C. Endocrine disruptors – putting the mechanistic cart before the phenomenological horse. Nat. Rev. Endocrinol. 14, 317–318 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Zoeller, R. T. & Vandenberg, L. N. Assessing dose-response relationships for endocrine disrupting chemicals (EDCs): a focus on non-monotonicity. Env. Health 14, 42 (2015).

    Google Scholar 

  96. 96.

    Sonnenschein, C. & Soto, A. M. Over a century of cancer research: inconvenient truths and promising leads. PLoS Biol. 18, e3000670 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Speroni, L. et al. Hormonal regulation of epithelial organization in a 3D breast tissue culture model. Tissue Eng. C Methods 20, 42–51 (2014).

    CAS  Google Scholar 

  98. 98.

    Paulose, T., Speroni, L., Sonnenschein, C. & Soto, A. M. Estrogens in the wrong place at the wrong time: fetal BPA exposure and mammary cancer. Reprod. Toxicol. 54, 58–65 (2015).

    CAS  PubMed  Google Scholar 

  99. 99.

    Sonnenschein, C. & Soto, A. M. Carcinogenesis explained within the context of a theory of organisms. Prog. Biophys. Mol. Biol. 122, 70–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Montévil, M., Speroni, L., Sonnenschein, C. & Soto, A. M. Modeling mammary organogenesis from biological first principles: cells and their physical constraints. Prog. Biophys. Mol. Biol. 122, 58–69 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Bich, L., Mossio, M. & Soto, A. M. Glycemia regulation: from feedback loops to organizational closure. Front. Physiol. 11, 69 (2020).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Chemicals strategy for sustainability towards a toxic-free environment. (2020).

  103. 103.

    Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. & vom Saal, F. S. Exposure to bisphenol A advances puberty. Nature 401, 763–764 (1999).

    CAS  PubMed  Google Scholar 

  104. 104.

    Honma, S. et al. Low dose effects of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod. Toxicol. 16, 117–122 (2002).

    CAS  PubMed  Google Scholar 

  105. 105.

    Cunha, G. R. et al. New approaches for estimating risk from exposure to diethylstilbestrol. Environ. Health Perspect. 107, 625–630 (1999).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Rubin, B. S., Murray, M. K., Damassa, D. A., King, J. C. & Soto, A. M. Perinatal exposure to low doses of bisphenol-A affects body weight, patterns of estrous cyclicity and plasma LH levels. Environ. Health Perspect. 109, 675–680 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Hatch, E. E. et al. Age at natural menopause in women exposed to diethylstilbestrol in utero. Am. J. Epidemiol. 164, 682–688 (2006).

    PubMed  Google Scholar 

  108. 108.

    Markey, C. M., Wadia, P. R., Rubin, B. S., Sonnenschein, C. & Soto, A. M. Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biol. Reprod. 72, 1344–1351 (2005).

    CAS  PubMed  Google Scholar 

  109. 109.

    Yamamoto, M. et al. Effects of maternal exposure to diethylstilbestrol on the development of the reproductive system and thyroid function in male and female rat offspring. J. Toxicol. Sci. 28, 385–394 (2003).

    CAS  PubMed  Google Scholar 

  110. 110.

    Register, B. et al. The effect of neonatal exposure to diethylstilbestrol, coumestrol, and beta-sitosterol on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Proc. Soc. Exp. Biol. Med. 208, 72–77 (1995).

    CAS  PubMed  Google Scholar 

  111. 111.

    Vandenberg, L. N. et al. The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization? J. Steroid Biochem. Mol. Biol. 101, 263–274 (2006).

    CAS  PubMed  Google Scholar 

  112. 112.

    Wadia, P. R. et al. Perinatal bisphenol-A exposure increases estrogen sensitivity of the mammary gland in diverse mouse strains. Environ. Health Perspect. 115, 592–598 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Newbold, R. R., Jefferson, W. N., Padilla-Banks, E. & Haseman, J. Developmental exposure to diethylstilbestrol (DES) alters uterine response to estrogens in prepubescent mice: low versus high dose effects. Reprod. Toxicol. 18, 399–406 (2004).

    CAS  PubMed  Google Scholar 

  114. 114.

    Angle, B. M. et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. 42, 256–268 (2013).

    CAS  PubMed  Google Scholar 

  115. 115.

    Shimpi, P. C. et al. Hepatic lipid accumulation and Nrf2 expression following perinatal and peripubertal exposure to bisphenol A in a mouse model of nonalcoholic liver disease. Env. Health Perspect. 125, 087005 (2017).

    Google Scholar 

  116. 116.

    Cabaton, N. J. et al. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environ. Health Perspect. 121, 586–593 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Alonso-Magdalena, P., Quesada, I. & Nadal, Á. Prenatal exposure to BPA and offspring outcomes: the diabesogenic behavior of BPA. Dose Response 13, 1559325815590395 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Palanza, P., Nagel, S. C., Parmigiani, S. & vom Saal, F. S. Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Curr. Opin. Behav. Sci. 7, 69–75 (2016).

    PubMed  Google Scholar 

  119. 119.

    Palanza, P., Parmigiani, S., Liu, H. & vom Saal, F. S. Prenatal exposure to low doses of the estrogenic chemicals diethylstilbestrol and o,p′-DDT alters aggressive behavior of male and female house mice. Pharmacol. Biochem. Behav. 64, 665–672 (1999).

    CAS  PubMed  Google Scholar 

  120. 120.

    Hunt, P. A. et al. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13, 546–553 (2003).

    CAS  PubMed  Google Scholar 

  121. 121.

    Munoz de Toro, M. M. et al. Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 146, 4138–4147 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Markey, C. M., Luque, E. H., Munoz de Toro, M. M., Sonnenschein, C. & Soto, A. M. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol. Reprod. 65, 1215–1223 (2001).

    CAS  PubMed  Google Scholar 

  123. 123.

    Bern, H. A., Mills, K. T., Hatch, D. L., Ostrander, P. L. & Iguchi, T. Altered mammary responsiveness to estradiol and progesterone in mice exposed neonatally to diethylstilbestrol. Cancer Lett. 63, 117–124 (1992).

    CAS  PubMed  Google Scholar 

  124. 124.

    Hovey, R. C. et al. Effects of neonatal exposure to diethylstilbestrol, tamoxifen, and toremifene on the BALB/c mouse mammary gland. Biol. Reprod. 72, 423–435 (2005).

    CAS  PubMed  Google Scholar 

  125. 125.

    Acevedo, N., Rubin, B. S., Schaeberle, C. M. & Soto, A. M. Perinatal BPA exposure and reproductive axis function in CD-1 mice. Reprod. Toxicol. 79, 39–46 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Newbold, R. R. et al. Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethlystilbestrol. Carcinogenesis 19, 1655–1663 (1998).

    CAS  PubMed  Google Scholar 

  127. 127.

    Murray, T. J., Maffini, M. V., Ucci, A. A., Sonnenschein, C. & Soto, A. M. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod. Toxicol. 23, 383–390 (2007).

    CAS  PubMed  Google Scholar 

  128. 128.

    Acevedo, N., Davis, B., Schaeberle, C. M., Sonnenschein, C. & Soto, A. M. Perinatally administered bisphenol A as a potential mammary gland carcinogen in rats. Env. Health Perspect. 121, 1040–1046 (2013).

    Google Scholar 

  129. 129.

    Rothschild, T. C., Boylan, E. S., Calhoon, R. E. & Vonderhaar, B. K. Transplacental effects of diethylstilbestrol on mammary development and tumorigenesis in female ACI rats. Cancer Res. 47, 4508–4516 (1987).

    CAS  PubMed  Google Scholar 

  130. 130.

    Newbold, R. R., Jefferson, W. N. & Padilla-Banks, E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod. Toxicol. 24, 253–258 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Wolstenholme, J. T., Goldsby, J. A. & Rissman, E. F. Transgenerational effects of prenatal bisphenol A on social recognition. Horm. Behav. 64, 833–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Ziv-Gal, A., Wang, W., Zhou, C. & Flaws, J. A. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol. Appl. Pharmacol. 284, 354–362 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank V. Bouffard for her insightful reading of this manuscript. We gratefully acknowledge support by the National Institute of Environmental Health Sciences (grants ES030045 and ES026283). The funders had no role in the content of this article, and it does not necessarily represent the official views of the funding agencies.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ana M. Soto.

Ethics declarations

Competing interests

A.M.S. and C.S. have received travel reimbursements from universities, governments, non-governmental agencies and industry to speak about endocrine-disrupting chemicals. A.M.S. serves ad honorem/pro bono on two scientific advisory boards. C.M.S. declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soto, A.M., Schaeberle, C.M. & Sonnenschein, C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 17, 247–256 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing