Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability

Abstract

Improving the intrinsic film quality of metal halide perovskites is very critical to increase the power conversion efficiency and long-term stability of perovskite solar cells. Here we report a multifunctional, non-volatile additive that can be used to modulate the kinetics of perovskite film growth through a hydrogen-bond-bridged intermediate phase. The additive enables the formation of large perovskite grains and coherent grain growth from bottom to the surface of the film. The enhanced film morphology results in significantly reduced non-radiative recombinations, thus boosting the power conversion efficiency of inverted (p–i–n) solar cells to 24.8% (24.5% certified) with a low energy loss of 0.36 eV. The unencapsulated devices exhibit improved thermal stability with a T98 lifetime beyond 1,000 h under continuous heating at 65 ± 5 °C in a nitrogen-filled glovebox. This effective approach can also be applied to wide-bandgap perovskites and large-area devices to show reduced voltage loss and high efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical interaction and morphology characterization of the perovskite films.
Fig. 2: Comparison of film growth kinetics by in situ PL.
Fig. 3: Structure analysis and DFT calculations of the intermediate-phase-induced crystallization.
Fig. 4: Characterization of photovoltaic performance and stability of PVSCs.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within this Article and its Supplementary Information. The .cif files corresponding to the single-crystal structures reported in this work are available from the Cambridge Crystallographic Data Centre (2141303).

References

  1. Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    Article  ADS  Google Scholar 

  2. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  3. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  ADS  Google Scholar 

  4. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  ADS  Google Scholar 

  5. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  Google Scholar 

  6. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  ADS  Google Scholar 

  7. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  Google Scholar 

  8. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  ADS  Google Scholar 

  9. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  ADS  Google Scholar 

  10. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  ADS  Google Scholar 

  11. Rajagopal, A., Yao, K. & Jen, A. K. Y. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30, 1800455 (2018).

    Article  Google Scholar 

  12. Li, F. & Jen, A. K. Y. Interface engineering in solution-processed thin-film solar cells. Acc. Mater. Res. 3, 272–282 (2022).

    Article  Google Scholar 

  13. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  14. Liu, S. et al. A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10, 1902492 (2020).

    Article  Google Scholar 

  15. Bu, T. et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article  ADS  Google Scholar 

  16. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  Google Scholar 

  17. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  ADS  Google Scholar 

  18. Li, H. et al. Stiffening the Pb-X framework through a π-conjugated small-molecule cross-linker for high-performance inorganic CsPbI2Br perovskite solar cells. ACS Appl. Mater. Interfaces 13, 40489–40501 (2021).

    Article  Google Scholar 

  19. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  ADS  Google Scholar 

  20. Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    Article  Google Scholar 

  21. Deng, X. et al. Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61, e202203088 (2022).

    Article  Google Scholar 

  22. Quarti, C., De Angelis, F. & Beljonne, D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem. Mater. 29, 958–968 (2017).

    Article  Google Scholar 

  23. Song, T.-B. et al. Revealing the dynamics of hybrid metal halide perovskite formation via multimodal in situ probes. Adv. Funct. Mater. 30, 1908337 (2020).

    Article  Google Scholar 

  24. Mrkyvkova, N. et al. Combined in situ photoluminescence and X-ray scattering reveals defect formation in lead-halide perovskite films. J. Phys. Chem. Lett. 12, 10156–10162 (2021).

    Article  Google Scholar 

  25. Song, T.-B. et al. Dynamics of antisolvent processed hybrid metal halide perovskites studied by in situ photoluminescence and its influence on optoelectronic properties. ACS Appl. Energy Mater. 3, 2386–2393 (2020).

    Article  Google Scholar 

  26. D’Innocenzo, V., Srimath Kandada, A. R., De Bastiani, M., Gandini, M. & Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014).

    Article  Google Scholar 

  27. You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).

    Article  ADS  Google Scholar 

  28. Shi, B. et al. Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J. Phys. Chem. C 122, 21269–21276 (2018).

    Article  Google Scholar 

  29. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  30. Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  ADS  Google Scholar 

  31. Wang, K., Wu, C., Yang, D., Jiang, Y. & Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12, 4919–4929 (2018).

    Article  Google Scholar 

  32. Wang, Y., He, J., Liu, C., Chong, W. H. & Chen, H. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem. Int. Ed. 54, 2022–2051 (2015).

    Article  Google Scholar 

  33. Han, T.-H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  ADS  Google Scholar 

  34. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  Google Scholar 

  35. Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017).

    Article  ADS  Google Scholar 

  36. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  Google Scholar 

  37. Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  ADS  Google Scholar 

  38. Yamaguchi, M. in Post-Transition Metals (ed Rahman, M. M.) Ch. 7 (IntechOpen, 2020).

  39. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  40. Mohammadi, M. et al. Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: damp heat, freezing, and outdoor illumination conditions. ACS Appl. Mater. Interfaces 13, 45455–45464 (2021).

    Article  Google Scholar 

  41. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  ADS  Google Scholar 

  42. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  ADS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  46. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  ADS  Google Scholar 

  47. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  48. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  49. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Lee Shau-Kee Chair Professor (Materials Science) (A.K.-Y.J.); the support from the APRC Grant of the City University of Hong Kong (9380086, 9610508) (A.K.-Y.J.); the TCFS Grant (GHP/018/20SZ) (A.K.-Y.J.) and MRP Grant (MRP/040/21X) (A.K.-Y.J.) from the Innovation and Technology Commission of Hong Kong; the Green Tech Fund (202020164) (A.K.-Y.J.) from the Environment and Ecology Bureau of Hong Kong; the GRF grant (11307621, 11316422) (A.K.-Y.J.); from the Research Grants Council of Hong Kong, Guangdong Major Project of Basic and Applied Basic Research (2019B030302007) (A.K.-Y.J.); and the Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials (2019B121205002) (A.K.-Y.J.). We thank S. You for the technical support of single-crystal analysis and W. K. Wong for XPS measurements. A.K.-Y.J. thanks C. S. Lee for support with the UPS test.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and X.D. contributed equally to this work and were supervised by A.K.-Y.J. F.L. and X.D. conducted the film characterization, device fabrication and device characterization. F.L. synthesized the single crystal and analysed the results with S.-H.J. Z.S. performed the DFT calculations and was supervised by X.-K.C. S.W. contributed to fabricate the large-bandgap device. Z. Zeng helped collect the in situ PL data and was supervised by S.-W.T. D.W. performed the PL and time-resolved PL characterizations. Y.L. conducted the UPS measurement. F.Q. conducted the 1H nuclear magnetic resonance measurements. Z. Zhang performed the atomic force microscopy and KPFM characterizations and was supervised by Z.Y. F.R.L., X.-K.C. and A.K.-Y.J. revised the manuscript.

Corresponding author

Correspondence to Alex K.-Y. Jen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xiaojing Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38 and Tables 1–5.

Reporting Summary

Supplementary Data

The crystal structure of the GBAC–PbI2–DMF intermediate phase.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Deng, X., Shi, Z. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01180-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing