Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal telluride nanosheets by scalable solid lithiation and exfoliation

Abstract

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1,2,3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4,5,6,7,8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium–oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of 2D TMT nanosheets and the applications of TMT inks.
Fig. 2: Morphology and Raman characterizations of TMT nanosheets.
Fig. 3: Structural characterizations of MoTe2, WTe2, Mo0.5W0.5Te2 and NbTe2 nanosheets.
Fig. 4: Transport properties of exfoliated MoTe2 and WTe2 nanosheets.
Fig. 5: Applications of TMT nanosheets produced by solid lithiation and exfoliation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the paper and its Supplementary Information. Other raw data are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article  ADS  CAS  Google Scholar 

  4. Choi, S. H. et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Editorial. Moving towards the market. Nat. Mater. 18, 519. https://doi.org/10.1038/s41563-019-0394-4 (2019).

  6. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, L. et al. Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets. Adv. Funct. Mater. 30, 2004139 (2020).

    Article  CAS  Google Scholar 

  8. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Li, H. et al. Two-dimensional metal telluride atomic crystals: preparation, physical properties, and applications. Adv. Funct. Mater. 31, 2010901 (2021).

    Article  CAS  Google Scholar 

  10. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  11. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Jindal, A. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhao, X. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl Sci. Rev. 7, 1360–1366 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McGlynn, J. C. et al. The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 10, 4916 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  18. Yang, S., Zhang, P., Nia, A. S. & Feng, X. Emerging 2D materials produced via electrochemistry. Adv. Mater. 32, 1907857 (2020).

    Article  CAS  Google Scholar 

  19. Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023).

    Article  ADS  Google Scholar 

  20. Yang, R. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Peng, J. et al. High phase purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).

    Article  Google Scholar 

  23. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  24. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  ADS  PubMed  Google Scholar 

  25. Tsai, H.-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated-restacked phase of WS2. Chem. Mater. 9, 879–882 (1997).

    Article  CAS  Google Scholar 

  26. Kanatzidis, M. G. & Marks, T. J. Tetrahydroborate intercalation reagents. Convenient, straightforward routes to known and new types of layered intercalation compounds. Inorg. Chem. 26, 783–784 (1987).

    Article  CAS  Google Scholar 

  27. Ono, M. et al. New lithium- and ethylenediamine-intercalated superconductors Lix(C2H8N2)yWTe2. J. Phys. Soc. Jpn. 90, 014706 (2020).

    Article  ADS  Google Scholar 

  28. Peng, J. et al. Two-dimensional tellurium nanosheets exhibiting an anomalous switchable photoresponse with thickness dependence. Angew. Chem. Int. Ed. 57, 13533–13537 (2018).

    Article  CAS  Google Scholar 

  29. Jawaid, A. et al. Redox exfoliation of layered transition metal dichalcogenides. ACS Nano 11, 635–646 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, C. et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl Sci. Rev. 7, 324–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Hangyo, M., Nakashima, S.-I. & Mitsuishi, A. Raman spectroscopic studies of MX2-type layered compounds. Ferroelectrics 52, 151–159 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Li, J. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 30, 1801043 (2018).

    Article  ADS  Google Scholar 

  33. Mleczko, M. J. et al. High current density and low thermal conductivity of atomically thin semimetallic WTe2. ACS Nano 10, 7507–7514 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Chia, X., Ambrosi, A., Lazar, P., Sofer, Z. & Pumera, M. Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 4, 14241–14253 (2016).

    Article  CAS  Google Scholar 

  35. Huang, J.-H. et al. Polymorphism control of layered MoTe2 through two-dimensional solid-phase crystallization. Sci. Rep. 9, 8810 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Cui, J. et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, F. C. et al. Extremely large magnetoresistance in the type-II Weyl semimetal MoTe2. Phys. Rev. B 94, 235154 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Kowalczyk, H. et al. Gate and temperature driven phase transitions in few-layer MoTe2. ACS Nano 17, 6708–6718 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, F.-T. et al. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 10, 4211 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Rhodes, D. A. et al. Enhanced superconductivity in monolayer Td-MoTe2. Nano Lett. 21, 2505–2511 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong, S. et al. Origin of magnetoresistance suppression in thin γ–MoTe2. Phys. Rev. B 97, 241409 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 13, 5465 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grants 22125903, 22209176, 22279137, 12374035, 22075279, E211L5031R and E311L5191R), Basic Science Center Project of the National Natural Science Foundation of China (52188101), the National Key R&D Program of China (grants 2022YFA1504100 and 2023YFB4005204), Innovation Program for Quantum Science and Technology (grant 2021ZD0302600), the China Postdoctoral Science Foundation (2021M703145), International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) (YJ20210311), the Dalian Innovation Support Plan for High Level Talents (2019RT09), Liaoning Natural Science Foundation (2023-BS-007) and Shanghai Pujiang Talent plan project (23PJ1402000). We thank P. A. Thrower for carefully reviewing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.-S.W., N.K. and H.-M.C. conceived and supervised the project. L.Z. conducted the production and characterization of the TMT nanosheets. Z.Y., Y.F., S.F. and D.-M.S. carried out transport measurements of the TMT nanosheet devices. Q.J. performed the XRD and XPS of the alloyed nanosheets. Y.D. characterized the Li–O2 batteries. P.D. tested the electrochemical performance of the MSCs. Z.B. characterized the lithium batteries. J.Ma., J.Mi, S.W., Z.G. and S.Z. carried out the 3D printing, photolithography and screen printing of the NbTe2 nanosheet ink. H.Z. characterized the EMI shielding performance of the Mo0.5W0.5Te2/CNT film. M.L. obtained the spherical aberration-corrected TEM images. L.Z., Z.Y., P.D., N.K., Z.-S.W. and H.-M.C. wrote the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Ning Kang, Zhong-Shuai Wu or Hui-Ming Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Zheng Liu, Kian Ping Loh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Illustration of the hydrolysis process of lithiated NbTe2 bulk powder into a nanosheet colloid solution.

ag, Photographs of the exfoliation process of Li1NbTe2 by adding distille water to the glass bottles at different times. Li1NbTe2 is hydrolysed into NbTe2 nanosheets by the generation of H2 gas, resulting in a homogenous colloidal dispersion. h, Tyndall effect of a NbTe2 nanosheet colloid solution.

Extended Data Fig. 2 Morphology and elemental characterization of various TMT nanosheets using a long lithium intercalation time when the molar ratio of LiBH4 to MTe2 is equal to 1.

aa4, MoTe2 nanosheets after lithium intercalation for 24 h. a, HAADF-STEM image. EDS elemental maps of Mo (a1), Te (a2) and mixed Mo and Te (a3). a4, Table of the elemental content of the marked area in a3. bb4, WTe2 nanosheets after lithium intercalation for 6 h. b, HAADF-STEM image. EDS elemental maps of W (b1), Te (b2) and mixed W and Te (b3). b4, Table of the elemental content of the marked area in b3. cc4, NbTe2 nanosheets after lithium intercalation for 24 h. c, HAADF-STEM image. EDS elemental maps of Nb (c1), Te (c2) and mixed Nb and Te (c3). c4, Table of the elemental content of the marked area in c3. dd4, TaTe2 nanosheets after lithium intercalation for 6 h. d, HAADF-STEM image. EDS elemental maps of Ta (d1), Te (d2) and mixed Ta and Te (d3). d4, Table of the elemental content of the marked area in d3. ee4, TiTe2 nanosheets after lithium intercalation for 6 h. e, HAADF-STEM image, EDS elemental maps of Ti (e1), Te (e2) and mixed Ti and Te (e3). e4, Table of the elemental content of the marked area in e3. The HAADF-STEM EDS elemental maps show that the morphology of the decomposition products is a nanobelt and that Te is present in all samples after a long lithium intercalation time.

Extended Data Fig. 3 The influence of LiBH4 content on exfoliation yield and solution concentration.

a, MoTe2 nanosheets. b, WTe2 nanosheets. c, NbTe2 nanosheets. d, TaTe2 nanosheets. e, TiTe2 nanosheets. We found that molar ratios of LiBH4 to MTe2 ranging from 0.75 to 1 are suitable for achieving a high exfoliation yield of more than 60% for MoTe2, 50% for WTe2, 80% for NbTe2, 80% for TaTe2 and 40% for TiTe2.

Extended Data Fig. 4 Summary of synthesizable materials using solid lithiation and exfoliation.

a, Periodic table showing the metals (highlighted in brown) and chalcogens (highlighted in blue) that have the possibility of forming layered sulfides, selenides and tellurides. bm, AFM images and height profiles (insets) of 12 types of telluride, selenide and sulfide nanosheet. b, Mo0.5W0.5Te2. c, Nb0.5Ta0.5Te2. d, NbSeTe. e, Mo(SSeTe)2. f, MoSSe. g, TaSSe. h, Mo0.5Nb0.5Se2. i, (MoNbTa)Se2. j, Mo0.5Ta0.5S2. k, Ta0.5Re0.5S2. l, (MoWTa)S2. m, (TiZrHf)S2.

Extended Data Fig. 5 Structural characterizations of a (MoNbTa)Se2 nanosheet.

a, Low-magnification STEM image. b, Atomic-resolution HAADF-STEM image. c, FFT pattern. d, Magnified HAADF-STEM image of b. ee4, HAADF-STEM image and EDS elemental maps of Mo, Nb, Ta and Se.

Extended Data Fig. 6 Transport properties of a Mo0.5W0.5Te2 nanosheet.

a, Low-temperature transport measurement of a Mo0.5W0.5Te2 thin nanosheet. The temperature dependence of resistance shows metallic behaviour. Upper inset, SEM image of a fabricated device with multiterminal Hall-bar geometry. Lower inset, the Hall measurement shows a carrier density of 9.6 × 1013 cm−2. b, Magnetoresistance, defined as (R(B) − R(B = 0))/R(B = 0), plotted as a function of magnetic field for Mo0.5W0.5Te2 thin films with thicknesses ranging from 10 to 70 nm. It is seen that the positive magnetoresistance is substantially decreased with decreasing thickness.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, Z., Feng, S. et al. Metal telluride nanosheets by scalable solid lithiation and exfoliation. Nature 628, 313–319 (2024). https://doi.org/10.1038/s41586-024-07209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07209-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing